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Abstract

The simultaneous acquisition of electroencephalographic (EEG) sig-
nals and functional magnetic resonance images (fMRI) aims to measure
brain activity with good spatial and temporal resolution. This bimodal
neuroimaging can bring complementary and very relevant information in
many cases and in particular for epilepsy. Indeed, it has been shown that
it can facilitate the localization of epileptic networks. Regarding the EEG,
source localization requires the resolution of a complex inverse problem
that depends on several parameters, one of the most important of which
is the position of the EEG electrodes on the scalp. These positions are
often roughly estimated using fiducial points. In simultaneous EEG-fMRI
acquisitions, specific MRI sequences can provide valuable spatial infor-
mation. In this work, we propose a new fully automatic method based
on neural networks to segment an ultra-short echo-time MR volume in
order to retrieve the coordinates and labels of the EEG electrodes. It
consists of two steps: a segmentation of the images by a neural network,
followed by the registration of an EEG template on the obtained detections.
We trained the neural network using 37 MR volumes and then we tested
our method on 23 new volumes. The results show an average detection
accuracy of 99.7% with an average position error of 2.24 mm, as well as
100% accuracy in the labeling.

1 Introduction

Functional magnetic resonance imaging (fMRI) is a technique that allows to
visualize brain activity by detecting hemodynamic variations. It is a non-invasive
method that is widely used for the study of brain function (see for example
Arthurs and Boniface (2002)). Moreover, electroencephalography (EEG) is a
technique for measuring the electrical activity of the brain by using electrodes
placed on the scalp, which is also a non-invasive method, widely used for the
diagnosis of brain disorders and the study of neurophysiological activity (Teplan
et al., 2002). These two techniques are complementary and can be very relevant in
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the study of many neurological disorders. In particular, recent studies have shown
the contribution that simultaneous EEG-fMRI can make to the understanding and
treatment of epilepsy, for example in identifying epileptogenic networks (Maloney
et al., 2015; Dong et al., 2016; Omidvarnia et al., 2019). Indeed, fMRI has an
excellent spatial resolution, in the order of a millimeter, and a lower temporal
resolution, in the order of a second, while EEG has a high temporal resolution
(milliseconds), but has a lower spatial resolution (Mele et al., 2019). In fact,
source localization in EEG requires the solving of an inverse problem that is
sensitive to several parameters (Pascual-Marqui et al., 1994), one of the main
ones being the forward head model used. Another important parameter for the
inverse problem is the 3D position of the electrodes on the scalp (Akalin Acar
and Makeig, 2013). Indeed, the accuracy of the estimated coordinates of the
EEG electrodes impacts the localization of the EEG sources. Position errors
lead to inaccuracies in the estimation of the EEG inverse solution (Khosla et al.,
1999). This is an even more important issue in the case of studies involving
simultaneous EEG/fMRI acquisitions, where several sessions and thus several
EEG cap installations can be required. Furthermore, in order to take full
advantage of these mixed acquisitions, the registration between EEG and MRI
data must be optimal. It is therefore essential to be able to obtain the EEG
electrode positions reliably and accurately.

Several methods have been proposed to address this question (Koessler et al.,
2007). To begin with, there are semi-automated methods that require manual
measurements (De Munck et al., 1991), which are therefore time-consuming and
subject to human error. Then, there are methods that require additional material,
such as electromagnetic or ultrasound digitizers (Le et al., 1998; Steddin and
Bötzel, 1995). Finally, in the context of simultaneous EEG/fMRI acquisitions,
there are methods that use MR localization of electrodes. In that case, a
measurement system external to the EEG, the MRI, is available, but with the
following problem: MRI-compatible EEG systems are designed to be as invisible
as possible on most MRI sequences. Therefore, some of these methods require
manual measurements (de Munck et al., 2012) as well, and others require special
equipment (Adjamian et al., 2004; Whalen et al., 2008). More recent studies
have proposed the use of an ultra-short echo-time (UTE) sequence in which the
electrodes are more visible (Butler et al., 2017; Marino et al., 2016). This type of
recently proposed sequences (Holmes and Bydder, 2005; Keereman et al., 2010)
allows to visualize the tissues with a very short T2 and T2⋆, such as cortical
bone, tendons and ligaments, and has the side-effect of enabling imaging MR
compatible electrode. The introduction of these new sequences opens the door
to new methods, more automatic and more easily usable in the clinical routine.
Indeed, no additional equipment is required, and the additional acquisition
time is quite short, which does not overburden the corresponding EEG-fMRI
studies. In (Fleury et al., 2019), the authors proposed a fully automated method
based on a segmentation step followed by a Hough transform in order to select
the positions of MR-compatible electrodes in an MRI volume using the UTE
sequence. This method does not require any additional hardware and is fully
automatic, but can be sensitive to scalp segmentation error. Thus, our aim here

2



is to keep the advantages of this method (i.e. generalization and automation)
while simplifying the process, which means minimizing the preliminary steps,
and improving performance. In this work, we therefore also use a type of UTE
sequence to create an automatic method, but study the contribution of machine
learning on the electrode detection task.

Therefore, we propose a new two-fold approach based on a combination of
deep learning and template-based registration. In fact, our method starts by
training a model to detect the position of the electrodes in an MRI volume. This
model is based on the U-Net neural network, a fully convolutional neural network
whose architecture allows to obtain accurate segmentations (Ronneberger et al.,
2015). As mentioned above, we use a type of UTE sequence: the PETRA
(Pointwise Encoding Time reduction with Radial Acquisition) sequence (Grodzki
et al., 2012), which is gradually becoming the new standard in applications
of UTE sequences. Finally, we use the iterative closest point (ICP) (Besl and
McKay, 1992) algorithm to take into account the geometrical constraints after
the deep learning phase, and to obtain labeling of the electrodes.

2 Materials

2.1 Simultaneous EEG/fMRI

EEG signals were acquired with an MR-compatible 64-channel cap (Brain
Products, Gilching, Germany) of a circumference between 56 and 58 cm, with
64 Ag/AgCl electrodes placed in conformity with the extended international
10–20 EEG system, with one additional ground electrode as AFz. Two 32-channel
MR-compatible amplifiers (actiCHamp, Brain Products, Gilching, Germany)
were used, and the electrodes were attached to small cups of a diameter of 10 mm
and a height of 4 mm, inserted in the cap with gel. A particular attention
was given to the reduction of electrode impedance and the positioning of the
electrodes according to standard fiducial points.

MRI was performed with a 3T Prisma Siemens scanner running VE11C with
a 64-channel head coil (Siemens Healthineers, Erlangen, Germany). PETRA
acquisitions were obtained using echo-planar imaging (EPI) with the following
parameters: Repetition time (TR1)/(TR2) = 3.61 ms/2250 ms, Inversion Time
(TI1)/(TI2) = 1300/500 ms, Echo Time (TE) = 0.07 ms, Flip Angle 6◦, FOV =
300× 300 mm2, 0.9× 0.9× 0.9 mm3 voxel size, matrix size = 320× 105, with
60 000 and 30 000 spokes. The acquisition lasted 6 minutes for the 60K quality
and 3 minutes for the 30K quality. As a result, PETRA images that we used
have a size of 320× 320× 320 mm and a voxel spacing of 0.9375× 0.9375 mm.
We also acquired a 1 mm isotropic 3D T1 MPRAGE structural scan.

2.2 Subjects

We acquired a set of 60 PETRA volumes that came from 20 different subjects,
ranging from 2 to 5 images per subject acquired at different sessions (implying a
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new positioning of the EEG cap), all varying between two quality levels: 30k
and 60k spokes. These volumes were divided into two datasets. The first one
was used to train a segmentation model, and the second one was used to test
the performance of this model. We decided to separate the data by taking 12
subjects for the training dataset and 8 subjects for the test dataset, resulting in
37 training volumes and 23 test volumes.

3 Methods

Our two-fold method consists of a first step based on a deep neural network
and a second based on a template registration. Fig 1 shows an overview of
the method’s principles. We will begin by describing how to proceed to train
a segmentation model, from data preparation to neural network training by
deep learning. Then, we will detail our method for detecting and labeling EEG
electrodes on MR images, by explaining how to use the previously trained model
as well as the template registration step to obtain the electrode coordinates.

PETRAs
Training Dataset

Ground Truths
nnU-net 

Learned Model

PETRAs
Test Dataset Learned Model

nnU-net 

Predictions

ICP-Based 

Final 
Segment. Map

Figure 1: Overview of the presented detection framework, with the learning
process (top), and then the deep learning-based prediction and the registration-
based refinement step (bottom). From the training dataset and the corresponding
labeled ground truths, the deep learning model is trained using the nnU-Net
framework. Secondly, our method consists of taking an image never seen by
the model and making a predicted segmentation map of the electrodes. Then,
template-based adjustments are carried out and the final labeled segmentation
map is obtained.
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3.1 Ground Truth Estimation

To train our model, ground truth segmentation needs to be computed on the
PETRA volumes in the training dataset. In our case, ground truths are segmen-
tation maps of the same size and characteristics as the PETRA, with segmented
spheres having a different value, also called ”label”, for the 65 EEG cap electrodes
visible on the scalp and a value of 0 for the background.

To ease the manual creation of these ground truths, a scalp segmentation
mask was first estimated. As T1 images have a higher quality than PETRA on
the scalp area, this mask is obtained by firstly registering the T1 image on the
corresponding PETRA image and then by segmenting the registered T1 image
using the FSL library (Jenkinson et al., 2012). These two inputs allow the use
of a Matlab implementation, developed by Butler (Butler, 2017), of a method
proposed by Jan C. de Munck and his colleagues (de Munck et al., 2012) which
displays a so-called ”pancake” view of the scalp. This colorimetric 2D projection
of the scalp region eases the manual selection of the electrode positions. As a
result, a 3D labeled segmentation of each PETRA volume was created.

3.2 Training Framework

The training dataset thus consists of 37 PETRA images, and their associated
ground truth, described above. We use the nnU-Net framework (Isensee et al.,
2019). This framework is a tool that can automate the choice of hyperparameters
used to train a model from any dataset and for any segmentation task. This is very
useful, especially since a large number of variations of neural network architectures
have been proposed for segmentation, for example in the biomedical field, and
the authors of (Isensee et al., 2019) showed that slight design improvements
hardly improve performance, while the choice of hyperparameters seems to be
crucial. In fact, this framework with a basic U-Net architecture outperformed
most of the specialized deep learning pipelines for 19 international competitions,
and 49 segmentation tasks, demonstrating its efficiency but also its adaptability.

Among the different types of neural networks available, we chose the 3D
U-Net (Çiçek et al., 2016) network whose operations such as convolutions and
max pooling are replaced by their 3D counterparts. Once the neural network
architecture is chosen, the framework automatically estimates the best training
hyperparameters from the dataset provided as input. Here, our model is trained
over 1000 epochs (number of times each training data is considered) and 250
minibatches (number of samples considered before updating internal parameters),
with a loss function which is the sum of cross-entropy and Dice loss and with
a Stochastic Gradient Descent (SGD) optimizer. The patch used has a size of
128× 128× 128 and the default data augmentation scheme provided by nnU-net
was used.
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3.3 Deep Learning-Based Predictions and Template-Based
Refinement

Once the model is trained, PETRA images from the test dataset can be provided
as input and the model can then perform predictions. The method for making
predictions, available in the nnU-net framework, consists of a sliding window
approach, using the same patch size that has been used during training, overlap-
ping half of the patch at each step. In order to increase performance, to avoid
artifacts, and overall to have a good quality of segmentation, several strategies
have been selected: a Gaussian importance weighting is used to reduce edge
problems and stitching artifacts, and a so-called ”test-time augmentation”, which
is data augmentation for test datasets, is used by generating slightly modified
images from the tested image and averaging the detections made on them. This
data augmentation step is quite time-consuming, so we will compare the results
obtained with and without it in the following.

Figure 2: Description of the registration-based refinement step. (a) in blue:
the prediction points from the deep learning-based step, in red: the template
obtained by averaging on the training set, (b) a first ICP is performed in order
to register the two points cloud, (c) for each template point, only the closest
detection is kept, (d) then, a second ICP is performed and the number of
detections is now less than or equal to 65, (e) finally, the points in the model not
associated with any predictions are added to our final result, which therefore
contains exactly 65 detections.

The deep network can take into account spatial information, as well as,
naturally, the values present in the image. However, it has more difficulties
to incorporate the rather strong geometrical constraint of our problem: the
electrodes are all placed on a cap, certainly a little elastic, but the distances
between electrodes are, for example, relatively steady. To take into account
this geometric constraint, we propose a second step to improve the predictions
provided by the neural network. The main objectives of this second step are
therefore to force the number of detections to be exactly equal to 65, and to
correctly label the electrodes. We start by registering the n detections (n is not
necessarily equal to 65) to an average model of the EEG cap, using the Iterative
Closest Point (ICP) algorithm. Fig 2 illustrates the principles of this step.

6



This template used here is obtained by averaging the coordinates of 12
manually obtained ground truths point clouds from the training set (one per
subject, to account for head shape variability). This step then consists of
registering these two point clouds (the prediction from the deep learning step
and the template) using the ICP algorithm with similarity transformation
(rotation, translation, scaling). This registration algorithm (Besl and McKay,
1992), between two unpaired point clouds, iterates between two steps. First,
each point of the moving set is associated with the nearest point in the fixed set.
Then the geometric transformation that minimizes the distance between these
pairs of corresponding points is estimated. We then apply this transformation
and iterate until convergence.

Then, by comparing the distance between the prediction and the template
points, a refinement of the detection is carried out. First, each prediction point
is associated with its closest template point, and for each point of the template,
only the closest prediction point is kept. As a result of this sub-step, a maximum
of 65 predicted positions are conserved. Since only the predictions closest to the
model were kept, outliers may have been removed from our initial detections.
This is likely to improve the registration, which is why a new ICP is then
performed. Finally, using this improved registration, and in the case where less
than 65 predictions were kept, the missing positions are added as follows: each
template point that is not associated with any prediction positions are added
in the final result. Thus, our final result contains exactly 65 detections, each
associated with a point of the template, which provides us with a label.

3.4 Validation on the test dataset

To evaluate the proposed method, and for the test dataset, we compared the
detected electrodes to the ground truth coordinates obtained manually. We
computed the connected components for the two images and the position of
their center. Finally, for each prediction point, its distance to the nearest point
of ground truth is computed. This distance is therefore considered a position
error. A prediction presenting an error greater than 10 mm, corresponding to the
diameter of an electrode cup, is considered as a wrong detection (false positive).
Since we systematically consider the nearest ground truth electrode, we do not
consider the labeling when estimating the position error. The quality of the final
labeling, as well as that of the intermediate labeling, will be evaluated separately.
Finally, the number of detections being exactly 65, the number of false positives
is automatically equal to the number of missing points (false negatives).

3.5 Evaluation of the robustness of the method on a dif-
ferent UTE sequence

In order to evaluate the robustness of the method, as well as to compare our
results with those of Fleury et al. (2019), we also applied it to images acquired
according to a different UTE sequence, the one described in the mentioned article.
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First, we directly used the model learned from the PETRA images, to study
the generalizability of the learned model to another MR sequence. Then, we
learned a new model from the different UTE database, containing fewer images,
allowing us to investigate the importance of the number of data in the learning
set, but also to compare our results to the previously introduced method.

4 Results

All the implementations were made on Nvidia Quadro M6000 24GB GPU (which
was the most powerful graphics card in 2016 according to NVIDIA Corporation).
The training then lasts between one and two weeks, depending on the number
of processes launched on the GPU available. Classically in deep neural network
methods, the prediction of one test data is much faster. The presented method
predicts a segmentation map from a PETRA image in about 7 minutes on the
above-mentioned GPU.

4.1 With test-time augmentation

The results are assessed by measuring the position error as described in the
validation section, for all volumes in the test dataset. Table 1 presents the
average results for all subjects in the PETRA test dataset. This test set consists
of 23 volumes, from 8 different subjects not included in the learning data set,
with sampling resolutions of either 30k or 60k spokes, corresponding to a more
or less long acquisition time. The average position error is equal to 2.24 mm,
to be compared with the diameter of one electrode cup, 10 mm. The number
of good (true positive) and wrong (false positive) detections was also assessed,
taking that distance of 10 mm as the threshold. As can be seen in the table,
after the deep learning step, the number of detections was too high on average,
and it was corrected after the registration step, resulting in a better Positive
Predictive Value (PPV) defined as the percentage of detections that are true
positive relative to the total number of detections.

The average total number of detections after the first step is 65.3 (65+0.3)
and is therefore higher than the actual number of electrodes (65). This is
totally logical since the neural network architecture used does not incorporate
any constraint on the number of detections. The output of this first step is a
simple volume, where, at each voxel, a label indicates whether it is considered to
belong to the background or to a specific electrode. Note that, in this case, two
detections associated with the same electrode can count as two good detections,
as long as their distance to the said ground truth electrode is less than 10mm.
After our registration-based refinement step, the final number of detections
is, as expected, exactly equal to 65 (64.8+0.22). 23 volumes were processed,
corresponding to a total of 1495 electrodes, out of which 1490 were correctly
detected and 5 were missed. These missing electrodes often corresponded to those
located behind the ears and provoked few outliers in the output. These outliers
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Deep learning-based
detection

Final results

Mean PE (mm) 2.12 2.24
Std PE (mm) 1.50 1.37
Max PE (mm) 8.84 7.99

Mean number of false
positives

0.30 0.22

Mean number of true
positives

65.0 64.8

PPV (%) 99.5 99.7

Table 1: Electrodes detection on the test dataset. Rows 1,2,3 : mean, standard
deviation and maximum values of Position Error (PE). Rows 4,5 : mean number
of false positives (PE>10 mm) and true positives (PE≤10 mm). Second column
: intermediate results after the deep learning step. Third column : our final
results after registration-based refinement step.

are reflected in the value of the average maximum error, 8.84 mm. One can note
a slight increase of the mean PE after registration. The refinement step indeed
usually allows the recovering of some missing electrodes in the intermediate
detections provided by the neural network. These new electrodes are therefore
provided by the registered model. Although often considered as ”true positives”
because they are close enough to the ground truth, they are sometimes a little
less accurate than the MRI-based detections and cause this relative increase of
the mean PE. However, it can be noted that this increase in mean PE comes
with a decrease in the standard deviation of position error.

Finally, regarding labeling, 100% of the electrodes were correctly labeled in
our final results. As can be seen in the table 2, this was not the case after the
deep learning step. This explains our choice of ICP for the registration step: we
cannot always rely on the labeling of intermediate results. Indeed, the number
of labeling errors can be as many as 11 in a volume. In fact, these observed
errors often correspond to a simple offset in labeling: an electrode is incorrectly
labeled and all its neighbors are then likely to be contaminated by this error. We
therefore decided to disregard the labeling information provided by the neural
network and rely solely on the ICP result for this. It may seem a bit odd to
include labels in the ground truth for the training step since we discard the
resulting label afterward. Nevertheless, our experiences have interestingly shown
that training a neural network with labeled ground truth improves detection
results (in terms of position error) compared to a situation where the ground
truths are simple binary maps. In particular, in the case where 65 different labels
are provided during training, the network is more likely to detect a number close
to 65 also during the test phase.
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Number of labeling
errors among true

positives

Deep learning-
based detection

Final results

Mean 1.87 0
Maximum 11 0

Table 2: Electrodes labeling on the test dataset. Number of labeling errors
among the true positives, for the intermediate results from deep learning and for
our final results.

4.2 Faster predictions without test-time augmentation

For each new PETRA image provided, the method presented above allows us
to make predictions in about 7 minutes on our GPU, almost all of this time
being used by the first step, based on neural network. As a matter of fact, the
ICP-based refinement step runs in few seconds. Therefore, we finally explored
the possibility of reducing the computing time required by the neural network to
obtain a prediction. To this end, we have removed the test-time augmentation,
mentioned in section 3.3. The prediction time of an image was then significantly
reduced to about 2 minutes. Table 3 presents the results of this faster detection
pipeline.

Faster deep
learning-based

detection
Final results

Mean PE (mm) 6.78 2.23
Std PE (mm) 25.4 1.40
Max PE (mm) 168.7 8.20

Mean number of false
positives

2.57 0.13

Mean number of true
positives

65.1 64.9

PPV (%) 96.3 99.8

Table 3: Faster electrode detection on the test dataset. Rows 1,2,3 : mean,
standard deviation and maximum values of Position Error (PE). Rows 4,5 :
mean number of false positives (PE>10 mm) and true positives (PE≤10 mm).
Second column : intermediate results after the faster deep learning step. Third
column : our final results after registration-based refinement step.

All of the indicators for intermediate results, after the deep learning-based
step alone, show that they are clearly worse with this accelerated version: strong
increase in Position Error (mean, standard deviation, and maximum values) and
increase of the total number of detections. However, the associated detections
contain enough valuable information so that the robustness brought by our
refinement step allows us to finally obtain results as good as in the first version,

10



as reported in table 1. Counter-intuitively, some metric values are even slightly
better. However, a statistical paired t-test showed that none of these changes
were significant (p > 0.5 for all comparisons).

Finally, and as in the original version, the labeling contained some errors in
the intermediate results, but is completely accurate in our final results, even
with this faster version, as shown in table 4. The second step, already important
to improve the results in the previous version, turns out to be crucial when we
want to accelerate the processing by the neural network, and allows us to obtain
similar results.

Number of labeling
errors among true

positives

Deep learning-
based detection

Final results

Mean 3.2 0
Maximum 13 0

Table 4: Electrodes labeling on the test dataset for the faster version. Number
of labeling errors among the true positives, for the intermediate results from
deep learning and for our final results.

4.3 Tests on a different UTE sequence

In order to evaluate the robustness of our method, we challenged it by testing it on
a data set from another MRI sequence, the original UTE one (Fleury et al., 2019).
11 subjects were included in this new study. A 60k-spokes acquisition was done
for all subjects and a 30k-spokes image was acquired for seven of them.

First, the previous model, learned using the PETRA images, was used to
detect the electrode positions on these 18 new images, acquired with a different
UTE sequence. Results are shown in table 5. As expected, the detections
estimated by the neural network were not as good as in the previous case. Indeed,
the average number of electrodes provided was lower than 57. However, and very
interestingly, these electrodes were mostly true detections. For this reason, and
as can be seen in the table, the ICP-based registration step was able to retrieve
almost all missing electrodes, leading once again to excellent performance results.
Our registration-based refinement step thus brings robustness to the method,
allowing to limits the risk of overfitting, and improving its generalizability.

Finally, in order to compare our results to Fleury et al. (2019), we learned
a new neural network, using only this different UTE sequence, applied the
refinement step, and evaluated the resulting performance. From the previously
described UTE dataset, we built two groups: 9 MRI volumes in the training set
and 9 volumes in the test set, again ensuring that no subjects were present in
both sets. Table 6 shows the corresponding results. Training the model using
the same type of images as in the tests slightly improves the quality of the
detections, compared to when training the model on PETRA images. Moreover,
and despite this smaller group size (compared to the PETRA study), our results
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Deep learning-based
detection

Final results

Mean PE (mm) 1.81 2.47
Std PE (mm) 1.67 1.64
Max PE (mm) 11.06 9.36

Mean number of false
positives

0.33 0.72

Mean number of true
positives

56.4 64.22

PPV (%) 99.4 98.89

Table 5: Electrodes detection on the UTE dataset, using the previous model,
learned using the PETRA images. Rows 1,2,3: mean, standard deviation, and
maximum values of Position Error (PE). Rows 4,5: mean number of false positives
(PE>10 mm) and true positives (PE≤10 mm). Second column: intermediate
results after the deep learning step. Third column: our final results after
registration-based refinement step.

are now better than those reported in Fleury et al. (2019). For example, the
mean PPV is now 99.3% and was between 88% and 94% for 30k and 60k spokes
images, respectively.

For both of these cases, all the detected electrodes were once again well
labeled: there was no mislabeling among the true positives.

Deep learning-based
detection

Final results

Mean PE (mm) 1.70 2.42
Std PE (mm) 1.24 1.29
Max PE (mm) 8.02 8.19

Mean number of false
positives

0.56 0.44

Mean number of true
positives

60.0 64.6

PPV (%) 99.1 99.3

Table 6: Electrodes detection on the UTE dataset, using a new model, learned
using images acquired with the same UTE sequence. Rows 1,2,3: mean, standard
deviation, and maximum values of Position Error (PE). Rows 4,5: mean number
of false positives (PE>10 mm) and true positives (PE≤10 mm). Second column:
intermediate results after the deep learning step. Third column: our final results
after registration-based refinement step.
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5 Discussion

We have introduced a new fully automatic method for the detection of EEG
electrodes in an MRI volume during simultaneous EEG-MRI acquisition. This
technique is easy to set up and use, and gives accurate and reliable results.
Indeed, after the model has been learned once and for all, the method requires
nothing more than acquiring a PETRA volume, after the installation of the EEG
headset. No additional equipment is required, and the PETRA volume can be
acquired in a few minutes. The computation time is, for the most part, used
by the deep learning-based prediction. This can be accelerated up to 2 minutes
and is the most important part of the proposed method. Nevertheless, as the
results showed, the second registration-based step allows both to improve the
final results and to make them more robust to possible outliers.

It is well known that deep learning models are highly dependent on the quality
and representativeness of the data in the learning set. Our first investigations in
this direction, using a different UTE sequence, seem to indicate that the method
can be generalized to other types of images, even keeping the model learned
on the initial data, thanks to the robustness brought by the registration step.
Another interesting question is the behavior of the method when the number of
electrodes is not the same between the learning and testing phases. One can hope
that the robustness brought by the second ICP-based step can provide a good
detection, if the same sequence and the same type of electrodes are used, but this
needs to be verified with a future investigation. Finally, this method has been
tested on one type of EEG cap (Brain Products), but is valid for any detection
problem of elements on the scalp. It will therefore also be interesting to test it on
other EEG headsets, but also on other systems, for example, the near-infrared
spectroscopy (NIRS) modality, which consists of a system of optodes placed on
the scalp.

Finally, it should also be noted that our second study, on the original UTE
sequence, had a smaller sample size, probably more consistent with a typical
simultaneous EEG-MRI study (11 subjects were involved, corresponding to 18
volumes, and only 9 of these were used in the training phase). Despite the
smaller amount of data, the results (table 6) were only slightly less good than
those obtained with a larger sample (table 1).

6 Conclusion

We presented a new method for the detection and labeling of EEG electrodes
in an MR volume acquired using PETRA sequence. The first step is to train a
model from a set of training data and associated manual ground truths, then use
this model to obtain a segmentation map, and finally to apply a step using the
ICP registration algorithm to improve the detections and their labeling. This
fully automatic method is easy to implement, requires very few steps, and gives
excellent results. For all these reasons, we strongly believe that it can be very
useful for all protocols with simultaneous EEG-fMRI acquisitions. In particular,
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when an EEG source localization is planned later, as is often the case when
studying epilepsy, accurate information on the position of the electrodes is a
definite advantage.
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