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ABSTRACT 
Pediatric	 liver	cancers	(PLCs)	comprise	diverse	diseases	affecting	 infants,	children	and	
adolescents.	 Despite	 overall	 good	 prognosis,	 PLCs	 display	 heterogeneous	 response	 to	
chemotherapy.	 Integrated	 genomic	 analysis	 of	 126	 pediatric	 liver	 tumors	 showed	 a	
continuum	of	driver	mechanisms	associated	with	patient	age,	including	new	targetable	
oncogenes.	 In	 10%	of	 hepatoblastoma	patients,	 all	 before	 3	 years	 old,	we	 identified	 a	
mosaic	premalignant	clonal	expansion	of	cells	altered	at	 the	11p15.5	 locus.	Analysis	of	
spatial	 and	 longitudinal	 heterogeneity	 revealed	 an	 important	 plasticity	 between	
‘Hepatocytic’,	 ‘Liver	 Progenitor’	 and	 ‘Mesenchymal’	 molecular	 subgroups	 of	
hepatoblastoma.	 We	 showed	 that	 during	 chemotherapy,	 ‘Liver	 Progenitor’	 cells	
accumulated	 massive	 loads	 of	 cisplatin-induced	 mutations	 with	 a	 specific	 mutational	
signature,	leading	to	the	development	of	heavily	mutated	relapses	and	metastases.	Drug	
screening	in	PLC	cell	lines	identified	promising	targets	for	cisplatin-resistant	progenitor	
cells,	 validated	 in	mouse	xenograft	 experiments.	These	data	provide	new	 insights	 into	
cisplatin	resistance	mechanisms	in	PLC	and	suggest	alternative	therapies.	
	
SIGNIFICANCE 
Pediatric liver cancers (PLCs) are deadly when they resist to chemotherapy, with 
limited alternative treatment options. Using a multiomics approach, we identified PLC 
driver genes and the cellular phenotype at the origin of cisplatin resistance. We 
validated new treatments targeting these molecular features in cell lines and 
xenografts. 
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INTRODUCTION 
Pediatric	liver	cancers	(PLCs)	are	rare	tumors	and	therefore	have	not	been	molecularly	
characterized	 in	 large	 series.	 Hepatoblastomas	 (HB)	 represent	 about	 67%-80%	 of	 all	
pediatric	 liver	 cancers	worldwide,	 generally	developing	before	5	years	of	 age	on	non-
fibrotic	liver	(1,2).	While	some	rare	syndromes	such	as	Familial	Adenomatous	Polyposis,	
Beckwith-Wiedemann	 syndrome	 or	 Simpson	 Golabi	 Behmel	 predispose	 to	 HB	
development,	 the	 etiology	of	HB	 is	 poorly	 understood	 since	most	 of	 these	 tumors	 are	
sporadic.	HB	are	characterized	by	their	histological	heterogeneity,	with	3	main	histology	
patterns	-	fetal,	embryonal	and	mesenchymal	-	that	often	coexist	within	a	single	tumor.	A	
handful	of	genomics	studies	(3–7)	have	established	HB	as	genetically	simple	tumors,	with	
the	 smallest	mutation	 burden	 among	 24	 pediatric	 cancer	 types	 (8).	 Beyond	 activating	
CTNNB1	 (β-catenin)	alterations	 found	in	most	HB	(70-90%),	only	 few	recurrent	driver	
mutations	 have	 been	 described,	 including	 NFE2L2	 (5-10%)	 and	 TERT	 promoter	
mutations	 (2-5%),	 and	 no	 potentially	 druggable	 event.	 Pediatric	 hepatocellular	
carcinomas	 (HCC,	 incidence=0.24-0.65	 per	 1,000,000)	 resemble	 adult	 HCC	 in	 their	
histology	and	frequently	develop	on	fibrotic/cirrhotic	liver	as	a	consequence	of	hepatitis	
B	virus	infection	or	rare	congenital	disorders	(1,9).	Previous	genomic	studies	identified	
recurrent	alterations	in	Wnt	signaling	and	telomerase	pathways,	but	no	oncogenic	driver	
in	pediatric	HCC	with	underlying	liver	disease	(10,11).	Fibrolamellar	carcinomas	(FLC),	a	
rare	subtype	of	HCC,	develop	in	adolescent	and	young	adults	on	healthy	liver	and	have	
been	 characterized	 by	 a	 recurrent	 DNAJB1-PRKACA	 driver	 gene	 fusion	 (12).	 Finally,	
benign	lesions	such	as	hepatocellular	adenomas	(HCA)	and	focal	nodular	hyperplasias	are	
usually	 related	 to	 congenital	 malformation	 associated	 with	 vascular	 abnormalities,	
metabolic	genetic	diseases	or	occur	after	chemotherapy	(2,13).		
HB	are	usually	 treated	by	 cisplatin-based	neo-adjuvant	 chemotherapy	and	subsequent	
surgical	removal	of	the	tumor,	leading	to	>80%	5-years	survival	(14,15).	However,	some	
HB	develop	resistance	to	chemotherapy	during	the	initial	neo-adjuvant	chemotherapy	or	
after	tumor	recurrence,	and	the	molecular	determinants	of	cisplatin	resistance	are	yet	to	
be	discovered.	In	contrast	to	HB,	pediatric	HCC	respond	poorly	to	chemotherapy	and	as	
in	adults,	they	have	a	poor	prognosis	if	not	completely	removed	by	surgery.	
We	aimed	to	establish	the	detailed	driver	landscape	of	126	pediatric	liver	tumors,	then	
we	analyzed	the	plasticity	of	HB	tumors	in	relation	to	cisplatin	resistance,	and	explored	
new	therapeutic	strategies	to	overcome	this	resistance.		
	 	



 5 

RESULTS 
The	driver	landscape	of	pediatric	liver	cancers	(PLC)		
	 We	 analyzed	 a	 cohort	 of	 126	 pediatric	 liver	 tumors	 comprising	 104	
hepatoblastomas	 (HB)	 that	developed	 in	65	patients	 (87	primary	 tumors	 including	18	
pre-chemotherapy,	and	17	relapses/metastases),	10	hepatocellular	carcinomas	(HCC,	9	
patients),	 7	 fibrolamellar	 carcinomas	 (FLC)	 and	 5	 hepatocellular	 adenomas	 (HCA)	
sequenced	by	Whole	Genome	(WGS,	65),	Whole	Exome	(WES,	57),	RNA	(RNAseq,	120)	
and	Reduced	Representation	Bisulfite	(RRBS,	92)	sequencing	(Supplementary	Fig.	S1	
and	Supplementary	Table	S1).	Among	the	65	HB	patients,	14	were	older	than	5	years	
old	 at	 diagnosis.	 HCC	 developed	 in	 fibrotic	 or	 cirrhotic	 liver	 related	 to	 various	
constitutional	liver	diseases	(tyrosinemia,	mitochondrial	cytopathy,	progressive	familial	
intrahepatic	 cholestasis,	 associated	 to	germline	mutations	of	FAH,	NDUFA11,	NDUFB9,	
TJP2,	ABCB11	Supplementary	Table	S2)	while	the	other	tumors	arose	on	normal	liver.	
Germline	truncating	mutations	of	BRCA1	and	BRCA2	were	also	identified	in	2	HB	and	1	
FLC.	 In	 WGS	 analyses,	 primary	 HB	 displayed	 a	 small	 number	 of	 somatic	 mutations	
(median=886,	0.3	mutations/Mb)	whereas	HB	metastases	and	relapses	showed	a	massive	
mutation	 load	 (median=12,824,	4.3	mutations/Mb)	with	a	high	proportion	of	doublet-
base	substitutions	(8%,	Fig.	1a).	Overall,	HCC	displayed	a	higher	mutation	rate	than	HB	
(median	5,318,	P=0.002)		
	 The	Wnt/β-catenin	pathway	was	the	most	frequently	altered	oncogenic	pathway	
in	PLCs	(84.5%),	with	different	activating	mechanisms	across	diagnoses.	In	HB,	CTNNB1	
alterations	activating	β-catenin	were	identified	in	92%	of	the	tumors	(Supplementary	
Tables	 S3-4),	 with	missense	 mutations	 exclusively	 observed	 in	 young	 patients	 (<4y)	
whereas	 exon	 3	 inframe	 deletions	 were	 observed	 later	 in	 life	 (Fig.	 1b	 and	
Supplementary	Fig.	S2).	The	remaining	5	HB	patients	without	CTNNB1	mutation	showed	
germline	truncating	mutations	of	APC	(n=3)	or	AXIN1	(n=1)	with	somatic	inactivation	of	
the	second	allele	in	the	tumor,	and	only	one	HB	remained	without	an	identified	alteration	
in	the	pathway.	CTNNB1	was	also	altered	in	40%	of	HCA.	In	HCC,	no	CTNNB1	mutations	
were	detected,	but	bi-allelic	inactivation	of	AXIN1	and/or	AMER1	occurred	in	6/9	patients	
(67%).		
	 The	11p15.5	imprinted	locus,	containing	the	IGF2	oncogene,	was	the	second	most	
frequently	 altered	 locus	 in	HB	 and	HCC	 (84%	and	 89%,	 respectively),	mostly	 through	
copy-neutral	loss	of	heterozygosity	(cn-LOH,	51-56%,	Fig.	1c).	Adding	to	LOH,	we	found	
epimutations	of	the	imprinting	control	regions	IC1	(gain	of	methylation,	22%	of	HB	and	
33%	of	HCC)	and	IC2	(loss	of	methylation,	5%	of	HB),	and	recurrent	somatic	mutations	of	
CDKN1C	in	4	HB	patients.	In	6	HB	patients	(10%),	imbalanced	B	allele	frequency	profiles	
revealed	that	 the	cn-LOH	found	 in	tumor	cells	was	present	as	a	mosaic	 in	 the	adjacent	
normal	liver	(Fig.	2a-b).	These	young	patients	(median=8.4	months,	P=0.045)	were	not	
diagnosed	with	Beckwith–Wiedemann	syndrome	(BWS).	Yet,	the	cn-LOH	of	11p15.5	was	
detected	in	a	significant	fraction	of	normal	liver	cells	(6%-58%)	without	the	other	driver	
alterations	 identified	 in	 the	 corresponding	 tumor,	 indicating	 pre-malignant	 clonal	
expansions	of	hepatocytes.	Oncogenic	transformation	involved	the	acquisition	of	CTNNB1	
missense	activating	mutation	in	the	6	cases	(Fig.	2b).	Accordingly,	IGF2	was	highly	over-
expressed	 in	the	non-tumor	 liver	samples	of	 two	patients	harboring	a	mosaic	11p15.5	
alteration	whereas	Wnt/β-catenin	target	genes	were	only	overexpressed	in	tumor	cells	
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(Fig.	2c).	In	patient	#3559	(30%	mosaic	cn-LOH	in	the	non-tumor	liver),	RNAscope	in	situ	
hybridization	revealed	a	massive	over	expression	of	IGF2	in	both	the	tumor	and	adjacent	
non-tumor	 tissue,	 whereas	 Glutamine	 synthetase	 and	 β-catenin	 immunostainings	
demonstrated	an	oncogenic	activation	of	Wnt/β-catenin	pathway	specifically	 in	 tumor	
cells	 (Fig.	 2d).	 These	 data	 support the	 idea	 that	 premalignant	 clonal	 expansions	 of	
“normal”	 hepatocytes	 with	 11p15.5	 cn-LOH	 overexpress	 IGF2	 and	 can	 lead	 to	 HB	
formation	 after	 oncogenic	 CTNNB1	 mutation.	 Finally,	 one	 patient	 with	 BWS	 (#3180)	
displayed	IC2	mosaic	epimutation	in	both	blood	cells	and	the	liver	(27%	of	cells).	Overall,	
the	mechanism	of	11p15.5	alteration	in	PLC	was	related	to	age,	with	cn-LOH	occurring	
more	frequently	in	young	patients	and	gain	of	methylation	of	IC1	mostly	observed	in	older	
patients	(Fig.	1b	and	Supplementary	Fig.	S2).	
	 A	 paucity	 of	 structural	 variants	 (SV)	 was	 observed	 in	 primary	 HB	
(median=6/tumor)	except	 for	6	 tumors	with	 chromoplexy,	which	mostly	developed	 in	
older	patients	(Fig.	1a	and	Supplementary	Table	S5).	In	HCC,	we	identified	an	unusual	
number	 of	 focal	 deletions	 (median=47/tumor)	 of	 small	 size	 (median=27	 kb).	 This	
remarkable	deletor	phenotype	led	to	recurrent	cancer	driver	alterations,	particularly	on	
chromosome	 X	 with	 complete	 inactivation	 of	 AMER1	 (44%),	 GPC3	 (44%),	 RPS6KA3	
(33%),	 SMARCA1	 (22%)	 and	 BCORL1	 (11%),	 but	 also	 on	 chromosome	 16	 with	
homozygous	deletion	or	combined	deletion	and	truncating	mutation	of	AXIN1	(44%)	and	
CREBBP	(11%)	(Fig.	1b-c	and	Supplementary	Fig.	S3).	Of	note,	GPC3,	BCORL1,	CREBBP,	
RPS6KA3	 and	 AXIN1	 were	 also	 inactivated	 in	 HB	 through	 truncating	 or	 damaging	
mutations,	 including	 one	 germline	 GPC3	 mutation	 in	 a	 patient	 with	 Simpson-Golabi	
syndrome.	Recurrent	copy-number	alterations	were	identified	in	two	genes	controlling	
p53	degradation:	focal	deletions	at	4q35	pinpointed	inactivation	of	the	tumor	suppressor	
IRF2	in	30%	of	HB	and	56%	of	HCC,	whereas	focal	amplifications	at	1q32.1	led	to	a	high	
expression	 of	 MDM4	 in	 4	 HB	 patients	 (Fig.	 1c,	 Supplementary	 Fig.	 S3	 and	
Supplementary	Table	S6).	Interestingly,	gains	of	the	entirety	of	1q	were	also	observed	
in	50%	of	HB	and	HCC	(Fig.	1c).	At	the	chromosome	arm	level,	HCC	and	HB	had	a	roughly	
similar	 profile	 of	 gains	 but	 HCC	 harbored	more	 losses,	 including	 loss	 of	 the	 13q	 arm	
(encompassing	 RB1)	 in	 33%	 of	 cases	 (Supplementary	 Fig.	 S4).	 Finally,	 focal	
amplifications	of	CCND1/FGF19	were	found	in	3	HB	patients	leading	to	the	overexpression	
of	 both	 genes.	 Other	 recurrent	 driver	 mutations	 in	 HB	 involved	 TERT	 promoter	 in	 9	
patients	(all	older	than	40	months,	P=1.5x10-5,	Supplementary	Fig.	S2),	NFE2L2	(4	pts)	
and	ARID1A	 (2	 pts).	No	 recurrent	 gene	 fusion	was	 identified	 in	 the	 cohort	 except	 the	
PRKACA-DNAJB1	fusion	pathognomonic	of	FLC.	We	also	identified	recurrent	mutations	of	
ERBB4	in	2/7	FLC	(29%)	and	of	HNF1A	in	3	HCA	(60%),	including	one	germline	mutation.	
Overall,	HB	and	HCC	shared	common	pathways	altered	by	diverse	genes	and	mechanisms,	
while	HCA	and	FLC	had	specific	driver	alterations	(Fig.	1b).		
 
Phenotypic	plasticity	of	hepatoblastoma	cells	across	three	differentiation	states	
	 Unsupervised	 transcriptomic	 classification	of	100	HB	samples	 from	64	patients	
revealed	4	robust	molecular	groups	characterized	by	diverse	differentiation	states,	cell	
proliferation	and	immune	infiltration	levels	(Fig.	3a).	The	differentiated	‘Hepatocytic’	HB	
group	comprised	44	 samples,	73%	of	which	had	only	 ‘fetal’	histological	 component	 in	
their	 corresponding	mirror	 block	 (versus	 10%,	P=1.5x10-10).	 They	 strongly	 expressed	
transcription	factors	(TFs)	involved	in	hepatic	differentiation	(HNF1A,	HNF4A,	Fig.	3a).	
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‘Hepatocytic’	HB	were	divided	in	two	clusters:	the	'Hepatocytic	hot'	subgroup	was	defined	
by	a	strong	signature	of	polymorphic	immune	infiltration,	including	a	mixture	of	T,	B,	NK	
cells	and	macrophages,	with	20/21	of	 these	samples	collected	after	chemotherapy;	 the	
'Hepatocytic	cold'	subgroup	was	characterized	by	lower	levels	of	immune	infiltrates,	and	
it	 was	 enriched	 in	 pre-chemotherapy	 samples	 (39%,	 P=0.010,	 Fig.	 3a	 and	
Supplementary	Fig.	S5a-c).	The	‘Liver	Progenitor’	group	comprised	44	samples	enriched	
in	 highly	 proliferative,	 immune-cold	 tumors	 with	 embryonal	 compartments,	 11p15.5	
alterations	 and	 MDM4	 amplifications.	 They	 expressed	 TFs	 involved	 in	 hepatic	
differentiation	 but	 also	 TFs	 involved	 in	 self-renewal	 and	 pluripotency	 maintenance	
(MYCN,	MIXL1,	LIN28B).	The	last	group,	 ‘Mesenchymal’	HB,	included	all	samples	with	a	
mesenchymal	 histology	 which	 were	 derived	 from	 mixed	 hepatoblastomas	 with	 both	
epithelial	 and	 mesenchymal	 components,	 and	 was	 found	 mostly	 in	 younger	 patients	
(Supplementary	 Fig.	 S2).	 These	 mesenchymal	 samples	 displayed	 a	 distinct	
differentiation	 program,	with	 no	 expression	 of	 liver	differentiation	 genes	 but	 a	 strong	
expression	of	mesenchymal	stem	cell	TFs	(TWIST1,	TBX5,	MSX2),	and	variable	levels	of	
immune	 infiltration.	 We	 validated	 these	 4	 transcriptomic	 subgroups	 and	 their	
associations	with	histology	and	immune	infiltration	in	an	independent	RNA-seq	cohort	of	
34	HB	samples	(16)	(Supplementary	Fig.	S6a-c).	
	 Strikingly,	14/24	patients	(58%)	with	multiple	synchronous	and/or	metachronous	
samples	displayed	transcriptomic	group	switches	(Fig.	3b	and	Supplementary	Fig.	S7).	
Spatial	transcriptomic	heterogeneity	was	identified	in	the	primary	tumors	of	7	patients	
and	matched	histological	heterogeneity	between	fetal	and	embryonal	parts	of	the	tumor	
(Fig.	3b).	Longitudinal	transcriptomic	group	changes	were	also	identified	between	pre-	
and	 post-chemotherapy	 samples	 (6	 patients),	 and	 between	 primary	 tumors	 and	
relapses/metastases	(8	patients).	Phylogenetic	trees	revealed	private	driver	alterations	
in	 some	 cases,	 but	 no	 recurrent	 gene	 associated	 with	 specific	 transcriptional	 group	
changes.	 In	 contrast,	 DNA	 methylation	 profiles	 were	 closely	 associated	 with	
differentiation	 states,	 and	 transcriptomic	 group	 changes	 were	 associated	 with	 DNA	
methylation	 reprogramming	 (Fig.	 3c	 and	 Supplementary	 Fig.	 S8a).	 In	 particular,	
mesenchymal	 samples	 displayed	 coordinated	 hypermethylation	 of	 HNF4	 and	 PPAR	
binding	sites,	both	in	our	cohort	(Supplementary	Fig.	S8b-c)	and	in	an	independent	data	
set	(16)	(Supplementary	Fig.	S6b).		
	 The	molecular	 plasticity	 of	HB	 recapitulated	 the	 heterogeneity	 observed	 at	 the	
histological	level	(Fig.	3b).	A	systematic	histological	review	at	the	sample	(mirror	block)	
and	whole	tumor	levels	revealed	that	80%	of	primary	HB	displayed	spatial	heterogeneity	
with	 a	 mixture	 of	 embryonal,	 fetal,	 or	 mesenchymal	 areas.	 The	 'Liver	 Progenitor'	
molecular	group	was	associated	with	increased	intra-sample	histological	heterogeneity	
(P=1.0x10-6,	Fig.	3d),	with	frequent	coexistence	of	fetal	and	embryonal	cells	(Fig.	3a-b).	
Primary	 tumors	with	alterations	 in	 the	11p15.5	 locus	also	displayed	more	histological	
heterogeneity	(89%	vs.	46%,	P=0.0021,	Fig.	3e).	Thus,	 the	phenotypic	plasticity	of	HB	
may	relate	to	the	multipotency	of	progenitor	cells	with	11p15.5	alteration.	
	 Consistent	with	this	plasticity,	the	proportion	of	molecular	groups	evolved	across	
disease	 stages	 (P=0.0014,	Fig.	 3b).	 The	 ‘Hepatocytic	 hot’	 group	was	 enriched	 in	 post-	
versus	pre-chemotherapy	samples	 (30%	vs	6%),	whereas	 the	 ‘Liver	Progenitor’	group	
was	enriched	in	metastases	and	relapses	(64%	vs	40%).	Wnt/β-catenin	alterations	were	
always	 trunk	 in	phylogenetic	 trees	and	already	present	 in	100%	of	pre-chemotherapy	
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primary	samples.	In	contrast,	11p15	alterations	occurred	late	in	8	out	of	the	20	affected	
phylogenetic	trees	and	their	frequency	increased	in	later	disease	stages,	which	was	also	
the	case	for	IRF2	deletions	(Fig.	3b).	
	 To	validate	this	phenotypic	plasticity	at	the	single-cell	level,	we	analyzed	matched	
non-tumor	 liver,	primary	HB	and	 lung	metastasis	 from	one	patient	 (#3981)	by	 single-
nucleus	RNA-seq.	Virtual	 copy-number	profiles	were	 consistent	with	 the	 copy-number	
changes	observed	in	bulk	whole	exome	sequencing	data,	with	gains	of	1q,	2q,	5q	and	15q	
identified	 in	all	 tumor	cells,	and	an	extra	gain	of	Xq	 in	all	metastatic	cells	(Fig.	4a).	 In	
contrast	to	this	genetic	homogeneity,	we	identified	clusters	of	tumor	cells	with	distinct	
transcriptomic	 profiles,	 corresponding	 to	 the	 ‘Mesenchymal,	 ‘Liver	 progenitor’	 and	
‘Hepatocytic’	 signatures	 (Fig.	 4b).	 The	 3	 populations	 were	 present	 in	 different	
proportions	in	each	sample,	with	a	larger	‘Mesenchymal’	contingent	in	the	primary	tumor,	
consistent	 with	 the	 molecular	 classification	 of	 bulk	 samples	 (‘Mesenchymal’	 for	 the	
primary,	‘Liver	Progenitor’	for	the	metastasis).	These	data	demonstrate	the	existence	of	
the	three	differentiation	states	at	single-cell	 level,	and	the	plasticity	of	hepatoblastoma	
cells	across	these	differentiation	states.	Indeed,	both	the	last	common	ancestor	(LCA)	of	
the	primary	tumor	and	the	LCA	of	the	metastasis	(with	additional	Xq	gain)	were	able	to	
generate	the	three	cell	types	repeatedly	during	tumor	evolution	in	this	patient	(Fig.	4c).	
	 Thus,	 dynamic	 switches	 between	 3	 differentiation	 states	 operate	 in	
hepatoblastoma	cells,	resulting	in	high	intra-patient	heterogeneity	in	space	and	time.	This	
phenotypic	plasticity	is	more	frequent	in	tumors	with	11p15.5	alterations	and	involves	
transcriptional	 and	 epigenetic	 reprogramming	 of	 TF	 modules.	 Molecular	 phenotypes	
match	well	with	histological	cell	types	and	display	drastically	different	immune	infiltrates.		
	
Cisplatin	resistance	results	from	the	expansion	of	progenitor	cell	clones	acquiring	
massive	mutation	load	
	 Mutational	 signature	 analysis	 of	 65	 pediatric	 liver	 cancer	 genomes	 identified	 4	
single	base	substitution	(SBS),	2	doublet	base	substitution	(DBS),	and	5	indel	signatures,	
most	of	which	matched	signatures	previously	described	 in	pan-cancer	 studies	 (17,18)	
(Fig.	 5a,	 Supplementary	 Fig.	 S9a-b	 and	Supplementary	 Table	 S7).	 The	majority	 of	
signatures,	including	the	clock-like	signatures	SBS1	and	SBS5,	were	found	ubiquitously	in	
the	 tumors,	 while	 the	 signature	 SBS18,	 commonly	 found	 in	 neuroblastoma	 (17)	 and	
related	 to	 oxidative	DNA	damage	 (19),	was	 identified	 in	 a	 subset	 of	hepatoblastomas.	
Finally,	we	identified	a	massive	load	of	mutations	due	to	the	signatures	SBS35,	DBS5	and	
ID3	in	20/66	primary	HB	resected	after	neoadjuvant	chemotherapy	(vs.	0/17	HB	sampled	
before	cisplatin	treatment,	P=0.009).	Consistently,	SBS35	and	DBS5	are	known	to	reflect	
the	diverse	mutation	types	caused	by	cisplatin	adducts	on	DNA	(18,20).	In	primary	HB	
after	 neoadjuvant-chemotherapy,	 cisplatin	 mutations	 were	 subclonal	 and	 almost	
exclusively	found	in	the	‘Liver	Progenitor’	tumor	subgroup	(18/27	vs	2/38;	P=1.2x10-7)	
(Fig.	5b-c).	Furthermore,	in	4	tumors	with	spatial	heterogeneity,	cisplatin	signature	was	
restricted	to	the	'Liver	Progenitor'	component	even	though	the	non-'Progenitor'	samples	
were	exposed	to	the	same	chemotherapy	regimen	(Supplementary	Fig.	S7).		

Interestingly,	 all	 16	 HB	 relapses	 and	 metastases	 that	 developed	 after	
chemotherapy	displayed	a	deluge	of	clonal	cisplatin-induced	mutations	(Fig.	5c),	leading	
to	high	mutation	loads	(median	=	4.3	mutations/Mb),	comparable	to	those	of	adult	tumors	
and	15-times	higher	than	those	of	primary	liver	tumors	of	the	same	age	(Supplementary	
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Fig.	S9c-e).	We	analyzed	in	detail	8	patients	with	chemoresistant	HB	at	different	stages	of	
the	 disease	 including	 primary	 tumors,	 relapses	 and	 metastases	 operated	 between	 4	
months	 and	 12	 years	 after	 chemotherapy.	 All	 relapses	 were	 clonally	 related	 to	 their	
matched	 primary	 tumors,	 even	 the	 lung	metastasis	 of	 patient	 #3538	 (germline	 APC),	
detected	12	years	after	initial	surgery	(Fig.	5d).	Phylogenetic	trees	revealed	that	a	sudden	
burst	of	mutations	is	acquired	during	cisplatin	treatment.	Every	relapse/metastasis	was	
derived	 from	 a	 single	 common	 ancestor	 cell	 that	 acquired	 between	 5,000	 and	 13,000	
mutations	 during	 cisplatin	 treatment,	 with	 various	 modes	 of	 metastatic	 seeding.	 In	
patients	#3370	and	#3981,	SBS35	mutations	were	private	to	each	sample,	indicating	that	
metastatic	 seeding	 involved	 independent	 resistant	 cells.	 In	 patient	 #3694,	 the	 two	
relapses	 displayed	 a	 mixture	 of	 shared	 and	 private	 SBS35	 mutations,	 indicating	
successive	rounds	of	cisplatin	mutagenesis	followed	by	clonal	expansion	of	resistant	cells.	
Finally,	 patients	 #3529	 and	 #3949	 displayed	 late	 branching	 of	 relapse/metastasis	
samples	 derived	 from	 a	 same	 cisplatin-resistant	 clone.	 The	 seeding	 abilities	 of	 these	
clones	is	clearly	illustrated	by	patient	#3529	whose	primary	tumor	was	treated	by	liver	
transplantation:	 the	same	cisplatin	resistant	clone	gave	rise	 first	 to	a	metastasis	 in	 the	
spleen,	followed	by	2	subsequent	metastases	on	the	grafted	liver	(Fig.	5d).		

Overall,	these	data	suggest	that	‘Liver	Progenitor’	cells	are	able	to	bypass	cisplatin-
DNA	adducts	and	proliferate	under	chemotherapy	while	accumulating	SBS35	mutations.	
Accordingly,	we	found	an	enrichment	of	genes	related	to	cisplatin	resistance	(21)	or	DNA	
repair	 among	 genes	 overexpressed	 in	 ‘Liver	 Progenitor’	 HB	 (63	 genes,	 P<2.2x10-16).	
Among	those,	20	genes	were	also	up-regulated	in	post-	versus	pre-chemotherapy	‘Liver	
Progenitor’	HB	(Supplementary	Fig.	S10a-d),	including	genes	involved	in	inhibition	of	
apoptosis	 (BIRC5,	 coding	 for	 survivin)	 and	 DNA	 repair	 through	 homologous	
recombination	(BRCA1,	RAD54L,	EXO1),	Fanconi	anemia	(FANCA,	FANCB,	FANCD2,	FANCI)	
or	base	excision	repair	pathways	(LIG1,	LIG3,	POLE,	POLE2).	Of	note,	most	of	these	genes	
were	also	overexpressed	in	fetal	liver	samples	(13th	to	30th	weeks	of	amenorrhea)	vs.	post-
natal	liver.		

The	 subclonal	 presence	 of	 the	 signature	 SBS35	 in	 primary	 tumors	 after	 neo-
adjuvant	chemotherapy	is	thus	a	marker	of	cisplatin-resistant	cell	proliferation,	and	was	
associated	 with	 poor	 progression-free	 and	 overall	 survival	 (log-rank	 P=0.012	 and	
P=0.032	respectively,	Supplementary	Fig.	S11).	Heavily	mutated	resistant	cells	later	give	
rise	 to	 relapses	 and	 metastases.	 A	 median	 of	 70	 coding	 sequence	 mutations	 per	
relapse/metastasis	occurred	due	to	the	extra	mutation	load	attributed	to	cisplatin.	While	
some	 of	 these	mutations	 affected	 known	 cancer	 genes	 including	NF1,	BRAF	 (L485W),	
KMT2C,	KMT2D,	BCORL1	and	NOTCH1,	no	recurrent	driver	gene	associated	with	tumor	
progression	was	identified.	
	
New	therapeutic	strategies	targeting	hepatoblastoma	based	on	molecular	features	
	 To	 investigate	new	 therapeutic	options,	we	characterized	a	panel	of	9	pediatric	
liver	cancer	cell	lines	PL-CCL	(8	HB,	1	HCC)	(Fig.	6a	and	Supplementary	Table	S8).	Our	
panel	of	cell	lines,	which	are	mainly	derived	from	older	patients	and	of	‘Liver	Progenitor’	
type	with	multiple	alterations	in	cancer	driver	genes,	reproduced	the	major	driver	events	
identified	 in	 PLC.	 In	 particular,	 3	 cell	 lines	 with	 a	 matched	 primary	 or	 relapsed	 HB	
displayed	genomic	alterations	globally	similar	to	 the	original	 tumors	(Supplementary	
Table	S9).	All	HB	cell	lines	carried	CTNNB1	alteration	whereas	Hep3B,	derived	from	an	
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HCC,	carried	TP53,	AXIN1	and	RPS6KA3	alterations	with	frequent	homozygous	deletions	
in	agreement	with	the	deletor	phenotype	that	we	observed	in	pediatric	HCC.	Furthermore,	
all	cell	lines	exhibited	11p15.5	locus	alterations	through	cn-LOH	(5/9),	GOM	IC1	(3/9)	or	
CDKN1C	mutation	(1/9).		
	 We	tested	our	panel	of	cell	lines	with	conventional	therapeutic	regimens	(cisplatin,	
carboplatin	and	doxorubicin	treatments,	Supplementary	Table	S10).	In	the	9	cell	lines	
analyzed,	 resistance	 to	 cisplatin	 and	 carboplatin	 correlated	with	 a	high	 expression	 of	
‘Liver	 Progenitor’	 markers	 (Fig.	 6b	 and	 Supplementary	 Fig.	 S12a).	 Additionally,	 we	
treated	5	cell	lines	with	long	term	exposure	to	low	doses	of	cisplatin	(0.5	µM,	4	weeks,	
Supplementary	Fig.	S12b).	Only	B6-2	was	completely	sensitive	after	2	weeks.	In	the	4	
remaining	 cell	 lines,	 WES	 of	 resistant	 clones	 revealed	 an	 accumulation	 of	 the	 SBS35	
cisplatin	mutational	 signature.	 These	 results	 demonstrate	 that	 the	 SBS35	 signature	 is	
directly	 induced	 by	 cisplatin	 exposure	 in	 resistant	 cells	 (Fig.	 6c).	 Interestingly,	
doxorubicin,	which	 is	commonly	used	 in	resistant	or	high-risk	HB	patients,	exhibited	a	
significant	anti-tumor	effect	in	all	cell	lines.	
	 Next,	 we	 tested	 treatments	 targeting	 specific	 genomic	 alterations	 and	 their	
consequences.	Three	out	of	5	tested	cell	lines	were	sensitive	to	anti-IGF-2	antibodies,	and	
sensitivity	 to	 this	 drug	 correlated	with	 the	 level	 of	 IGF2	 expression	 (P=0.03,	 R=-0.91,	
Pearson	 correlation,	 Fig.	 6d).	 We	 also	 tested	 the	 monoclonal	 therapeutic	 antibody	
Xentuzumab	and	we	obtained	between	14%	and	47%	growth	inhibition	(Supplementary	
Fig.	 S12c),	 consistent	 with	 a	 previous	 report	 in	 mice	 xenografts	 (22).	 Surprisingly,	
sensitivity	to	Xentuzumab	was	not	correlated	with	IGF2	expression,	possibly	because	it	
neutralizes	both	IGF-1	and	IGF-2.	We	then	tested	our	cell	lines	with	the	MEK1/2	inhibitor	
Trametinib	 (Fig.	 6e).	 Remarkably,	 5/9	 cell	 lines	 were	 sensitive	 to	 Trametinib	 and	
harbored	 alterations	 within	 the	 MAP	 kinase	 pathway	 through	 RPS6KA3	 homozygous	
deletions,	NRAS	activating	mutation,	or	FGF19	amplifications	as	previously	shown	in	adult	
HCC	cell	lines	(23).	Of	note,	one	of	our	patients	with	a	metastatic	HB	(#3538)	displayed	a	
hotspot	MAPK1	 E322K	 trunk	mutation	 and	 acquired	 a	 BRAF	 L485W	mutation	 in	 the	
metastasis	which	has	previously	been	associated	with	response	to	an	ERK	inhibitor	(24).	
	 To	 identify	 new	 targets	 in	 cisplatin-resistant	 ‘Progenitor’	 cells,	we	 performed	 a	
differential	 expression	 analysis	 between	 the	 ‘Liver	 Progenitor’	 and	 ‘Hepatocytic’	 HB	
subgroups.	Of	the	genes	over-expressed	in	‘Liver	Progenitor’	samples,	we	selected	3	key	
targetable	 genes:	PLK1,	BIRC5	 (Survivin),	 and	CHEK1	which	 are	 involved	 in	 cell	 cycle,	
apoptosis	 and	 DNA	 damage	 response	 respectively	 (Fig.	 6f-g).	 In	 HB	 patients	 high	
expression	 of	 PLK1,	 BIRC5	 and	 CHEK1	 was	 associated	 with	 (1)	 poor	 response	 to	
chemotherapy	 as	 assessed	 with	 AFP	 reduction	 in	 the	 sera	 (P=4.1x10-4,	 2.0x10-4,	 and	
4.7x10-4,	respectively),	(2)	embryonal	histology	(P=1.2x10-5,	5.1x10-6	and	7.1x10-6),	(3)	
the	cisplatin	resistance	signature	SBS35	(P=8.8x10-10,	1.3x10-9,	7.6x10-9)	and	(4)	a	high	
expression	of	proliferation	genes	(P ≤2.2x10-16)	(Supplementary	Fig.	S13a-d).	We	thus	
tested	 inhibitors	of	 PLK1	 (BI-2536),	 Survivin	 (YM155)	 and	CHEK1	 (AZD-7762)	 in	 our	
collection	of	9	cell	lines.	Interestingly,	the	3	drugs	were	more	efficient	than	both	cisplatin	
and	carboplatin	in	all	the	cell	lines	except	B6-2,	which	has	the	least	‘Liver	Progenitor’-like	
phenotype.	All	cell	lines	were	sensitive	to	BI-2536,	including	those	which	are	resistant	to	
cisplatin	(Fig.	6h).	Notably,	the	cell	lines	most	resistant	to	cisplatin	were	also	the	most	
sensitive	to	YM155	and	AZD-7762	(Supplementary	Fig.	S14a-c).	Finally,	we	tested	the	
most	 effective	 drug,	 BI-2536,	 in	 vivo	 in	 24	 nude	 mice	 xenografted	 with	 HepG2	 cells	
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randomized	 in	4	groups	(cisplatin,	cisplatin+doxorubicin,	BI-2536	and	control).	HepG2	
xenografts	were	resistant	to	cisplatin	treatment,	both	in	isolation	and	in	combination	with	
doxorubicin.	 In	 contrast,	 tumors	 in	 mice	 receiving	 BI-2536	 responded	 to	 treatment	
(P=0.003)	without	significant	toxicity	unlike	with	cisplatin	(Fig.	6i-j).	
In	 conclusion,	 the	 PLK1	 inhibitor	BI-2536	 showed	 efficacy	 in	 both	 in	 vitro	 and	 in	 vivo	
models	and	appears	to	be	a	good	candidate	drug	for	the	treatment	of	PLC.	Trametinib	and	
anti-IGF-2	antibodies	show	promise	for	the	treatment	of	resistant	HB	with	CCND1/FGF19	
amplification	or	high	IGF2	expression,	respectively.		 	
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DISCUSSION 
	 Altogether,	 our	 findings	 suggest	 a	 major	 role	 of	 cell	 plasticity	 in	 the	 spatio-
temporal	 evolution	 of	 hepatoblastomas	 and	 their	 resistance	 to	 cisplatin-based	
chemotherapy.	In	this	study,	genomic	analysis	of	multiple	parts	of	primary	tumors	and	of	
longitudinal	samples	at	various	timepoints	allowed	us	to	profile	the	clonal	evolution	of	
hepatoblastoma	along	treatment.	Cisplatin	induced	hundreds	of	mutations	in	progenitor	
tumor	 compartments,	 a	 phenomenon	 reproduced	 in	 cell	 lines,	 and	 targeting	 specific	
oncogenic	processes	with	different	inhibitors	could	be	used	to	target	resistant	cells.	
	 Primary	liver	cancers	showed	a	low	mutation	burden,	as	seen	in	other	pediatric	
cancers	(25).	In	PLC,	β-catenin	activation,	mainly	caused	by	CTNNB1	mutations,	acted	as	
the	major	early	and	common	mechanism	of	liver	tumorigenesis.	However,	we	identified	
an	earliest	recurrent	premalignant	alteration	with	mosaic	cn-LOH	of	11p15	in	the	liver	of	
very	young	HB	patients	(10%).	This	finding	is	in	line	with	similar	pre-malignant	clonal	
expansions	 recently	 identified	 as	 precursors	 of	 Wilms	 tumors,	 associated	 with	
hypermethylation	of	 IC1	at	 the	11p15	locus	(26).	Our	data	reinforce	the	role	of	11p15	
alterations	in	pre-malignant	stages	that	occur	during	pregnancy	or	early	in	life.	Systematic	
searches	 of	 11p15	 locus	 alterations	 in	 the	 liver	 and	 other	 organs	 of	 pediatric	 cancer	
patients	could	reveal	additional	mosaic	cases.	
	 The	 present	 molecular	 transcriptomic	 classification	 revealed	 4	 robust	 HB	
subgroups	defined	by	both	their	differentiation	states	and	immune	infiltration	levels.	We	
verified	 that	 our	 clustering	 was	 not	 driven	 by	 patients	 with	 multiple	 samples	
(Supplementary	Fig.	S15),	and	we	validated	our	classification	in	an	independent	RNA-
seq	cohort	of	34	HB	(Supplementary	Fig.	S6).	Our	transcriptomic	classification	overlaps	
the	 previously	 published	 subtypes	 C1/C2	 (27),	 C1/C2A/C2B	 (28)	 and	
MRS1/MRS2/MRS3a/MRS3b	 (16),	 with	 a	 good	 match	 between	 'Hepatocytic'	 and	 C1,	
'Liver	 progenitor'	 and	 C2A,	 and	 'Mesenchymal'	 and	 C2B	 subgroups	 (Fig.	 3a	 and	
Supplementary	Fig.	S16). Our	'Liver	progenitor'	subgroup	also	overlaps	with	the	very	
high-risk	MRS-3b	 subgroup	 identified	 by	 Carrillo-Reixach	 et	 al.	 (16)	 (P=2.0x10-6).	 The	
most	original	findings	of	our	classification	are	(1)	the	definition	of	clear	transcriptomic	
signature	of	‘Mesenchymal’	histological	cell	type	validated	by	careful	histological	review	
of	mirror	blocks,	and	(2)	the	identification	of	two	subgroups	of	'Hepatocytic'	HB	showing	
varying	 levels	of	 immune	 infiltration,	which	 is	potentially	enhanced	by	 cisplatin-based	
chemotherapy.	HB	 subgroups	 are	 not	 defined	by	 specific	 driver	 events,	 as	opposed	 to	
medulloblastoma	subgroups	(29),	for	example.	In	turn,	each	state	of	HB	differentiation	is	
defined	by	specific	transcription	factors	and	a	characteristic	DNA	methylation	landscape.	
Our	methylation-based	classification	revealed	two	main	HB	clusters	reminiscent	of	 the	
previously	described	Epi-CA/CB	groups	(16):	a	normal-like	cluster	matching	the	Epi-CA	
group	 comprising	 most	 ‘Hepatocytic’	 samples,	 and	 a	 differentially	 methylated	 cluster	
matching	 the	Epi-CB	group,	 	which	we	 further	divided	 into	3	 subgroups	associated	 to	
'Liver	Progenitor',	'Mesenchymal'	phenotype	and	older	age.	Importantly,	HB	cells	are	able	
to	switch	between	differentiation	states	along	the	course	of	the	disease,	leading	to	striking	
spatial	and	temporal	heterogeneity.	Our	single-cell	data	support	the	notion	that	HB	cells	
have	 the	 inherent	 ability	 to	 switch	 across	 3	 differentiation	 states.	 Yet,	 clinical	 and	
molecular	 features	 associated	 with	 transcriptomic	 subgroups	 suggest	 that	 the	 cell	 of	
origin,	patient	age,	chemotherapy	and	driver	alterations	can	favor	the	predominance	of	a	
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given	subtype	in	each	tumor	(Supplementary	Table	S11	and	Supplementary	Fig.	S17).	
This	molecular	 plasticity,	 driven	 by	 specific	 TF	modules	 and	 epigenetic	 landscapes,	 is	
reminiscent	 of	 neuroblastoma	 cells	 that	 can	 trans-differentiate	 between	 committed	
adrenergic	 cells	 and	 undifferentiated	 mesenchymal	 cells	 (30,31),	 the	 latter	 being	
chemoresistant	and	enriched	in	relapse	tumors.	Similarly,	we	showed	that	HB	‘Progenitor’	
cells	 proliferate	 under	 neo-adjuvant	 chemotherapy	 and	 are	 enriched	 in	 relapses	 and	
metastases.		
	 Moreover,	PLC	development	follows	evolutionary	trajectories	that	vary	according	
to	age,	involving	similar	pathways	but	diverse	mechanisms	of	activation.	In	contrast	to	
HB,	pediatric	HCC	occur	in	older	children,	on	cirrhotic	liver	due	to	various	causes.	Like	
HB,	HCC	displayed	frequent	11p15.5	alterations,	but	also	a	characteristic	chromosome	
deletor	 phenotype	 leading	 to	 WNT/β-catenin	 activation	 through	 AXIN1	 or	 AMER1	
deletions,	as	well	as	frequent	GPC3,	RPS6KA3	and	SMARCA1	alterations.	Since	a	deletor	
phenotype	 is	 only	 seen	 in	 3%	 of	 adult	 HCC	 (32),	 this	 oncogenic	mechanism	 could	 be	
associated	with	young	age.	 Interestingly,	many	HCC	driver	genes	are	 located	on	 the	X	
chromosome	 (AMER1,	 RPS6KA3,	 GPC3,	 SMARCA1),	 which	 may	 partly	 explain	 the	
enrichment	of	pediatric	HCC	in	male	patients	described	previously	(9)	and	retrieved	in	
the	present	cohort	(7/9	males,	78%).	Pediatric	HCC	are	commonly	resistant	to	cisplatin,	
but	their	mechanism	of	resistance	likely	differs	from	that	involved	in	HB	since	they	do	not	
exhibit	similar	progenitor	and	stem	cell	features.		
	 ‘Progenitor’	cells	are	able	to	proliferate	under	treatment,	bypass	cisplatin-induced	
adduct	formation,	acquire	a	huge	number	of	cisplatin-induced	mutations	(median	11,142)	
with	a	 characteristic	SBS35	signature,	 and	give	 rise	 to	highly	mutated	 relapse	 tumors.	
Various	DNA	polymerases	and	DNA	repair	genes	involved	in	double-strand	break	repair,	
homologous	 recombination	 and	 Fanconi	 pathway	 are	 already	 over-expressed	 both	 in	
‘Liver	 Progenitor’	 HB	 before	 chemotherapy	 and	 in	 the	 fetal	 liver,	 showing	 that	 these	
mechanisms	are	constitutively	active	in	liver	progenitor	cells.	Relatedly,	a	previous	work	
had	shown	that	Fanconi	anemia	inhibitors	were	able	to	block	the	growth	of	HB	cells	in	
vitro	 and	 in	 vivo	 (28).	 Pich	 et	 al.	 estimated	 that	~15	 of	 every	 1,000	 cisplatin-induced	
mutations	affect	the	sequence	of	coding	genes,	of	which	~0.7	are	expected	to	affect	the	
sequence	of	known	cancer	genes	(33).	Thus,	an	average	HB	relapse	or	metastasis	is	at	risk	
of	 acquiring	 167	 coding	 mutations,	 including	 7.8	 in	 cancer	 genes	 due	 to	 cisplatin	
treatment.	Although	most	cancer	gene	mutations	are	unlikely	to	play	a	functional	role	in	
HB	cells,	this	increased	mutational	burden	provides	an	opportunity	for	resistant	cells	to	
acquire	additional	oncogenic	capabilities.	These	data	highlight	 the	necessity	 to	 identify	
alternative	treatments	for	cisplatin-resistant	HB,	in	which	more	aggressive	chemotherapy	
regimens	may	 just	promote	the	selection	of	aggressive	progenitor	cells	with	a	massive	
extra	mutational	burden.	
	 Our	findings	revealed	new	potential	therapies	to	combat	HB	resistant	to	cisplatin.	
Targeting	 the	 different	 mechanisms	 involved	 in	 cisplatin	 resistance	 (21)	 such	 as	
apoptosis	(YM155	targeting	survivin),	DNA	repair	(AZD-7762	targeting	CHEK1)	or	cell	
cycle	control	(BI-2536	as	a	PLK1	inhibitor)	is	very	promising	since	an	efficient	anti-tumor	
effect	was	observed	in	PLC	cell	lines	with	a	progenitor	molecular	signature.	In	the	same	
line,	 other	 drugs	 targeting	 the	 proteasome	 (bortezomib)	 could	 also	 be	 efficient	 in	
resistant	HB(28).	Immunotherapy	could	be	another	appealing	type	of	treatment	for	HB	
since	we	showed	that	cisplatin	treatment	can	induce	an	intra-tumor	polymorphic	immune	
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response	leading	to	'Hepatocytic	hot’	HB,	consistent	with	our	previous	observation	in	HB	
with	 germline	APC	mutations	 (34).	 Reinforcement	 of	 an	 efficient	 intra-tumor	 immune	
response	could	be	improved	by	the	use	of	oxaliplatin	to	induce	an	immune	cell	death	(35)	
or	by	treatments	with	immunomodulators.	However,	‘Liver	Progenitor’	HB	are	immune	
cold	despite	showing	multiple	cisplatin	induced	mutations.	In	these	cases,	penetrating	the	
progenitor	compartments	with	 immune	cells	will	be	challenging.	Ongoing	and	planned	
clinical	 trials	 aim	 to	 test	 immunomodulators	 or	 targeted	 therapies	 in	 high-risk	
hepatoblastoma;	however	these	trials	are	limited	by	the	small	number	of	patients.	
	 In	 conclusion,	PLC	showed	various	mechanisms	of	 tumorigenesis	 related	 to	age	
and	 cell	 of	 origin.	 Hepatoblastomas	 demonstrated	 a	 striking	 spatial	 and	 longitudinal	
phenotypic	 plasticity	 related	 to	 the	 progenitor	 compartment	 associated	with	 cisplatin	
resistance	 and	 the	 mutational	 signature	 of	 DNA	 adduct	 bypass.	 And	 finally,	 the	
identification	of	drugs	targeting	‘progenitor’	cells	opens	new	avenues	to	treat	children	at	
high	risk	of	resistance.		
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METHODS 
Clinical	samples	
A	series	of	126	 liver	 tumor	 samples	and	 their	non-tumor	counterparts	were	 collected	
from	86	patients	surgically	treated	in	various	French	hospitals.	The	study	was	approved	
by	the	local	Ethics	Committee	(CCPRB	Paris	Saint-Louis).	Written	informed	consent	was	
obtained	in	accordance	with	French	legislation.	All	samples	were	immediately	frozen	in	
liquid	nitrogen	and	stored	at	−80 °C.	Tumors	included	in	this	study	comprised	87	primary	
hepatoblastomas	 (HB,	18	prior	 chemotherapy	and	69	after	 chemotherapy)	and	17	HB	
relapses	and	metastases	 (from	65	HB	patients	 including	14	older	 than	5	years	old),	5	
hepatocellular	adenomas	(HCA,	5	patients),	7	fibrolamellar	carcinomas	(FLC,	7	patients)	
and	 10	 hepatocellular	 carcinomas	 (HCC,	 9	 patients).	 HCC	 were	 developed	 in	 various	
etiological	 contexts	 including	 tyrosinemia	 (2	 patients),	 mitochondrial	 cytopathy	 (3	
patients)	 and	 progressive	 familial	 intrahepatic	 cholestasis	 (3	 patients).	 Samples	were	
analyzed	by	a	combination	of	whole	Genome	(WGS,	n=65),	whole	exome	(WES,	n=57),	
RNA	(RNAseq,	n=120)	and	reduced	representation	bisulfite	sequencing	(RRBS,	n=92).	A	
summary	 of	 the	 cohort	 is	 provided	 in	 Supplementary	 Fig.	 S1,	 and	 detailed	 clinical	
characteristics	of	each	sample	are	provided	in	Supplementary	Table	S1.	Also,	7	human	
fetal	 liver	 samples	between	 the	13th	and	30th	weeks	of	 amenorrhea	were	analyzed	by	
RNAseq.	
	
Pathological	reviewing	
All	tumors	were	reviewed	by	3	expert	pathologists	specialized	in	pediatric	liver	tumors.	
For	 hepatoblastoma,	 fractions	 of	 histological	 components	 (fetal,	 embryonal,	
mesenchymal,	cholangioblastic,	small	cell	undifferentiated)	were	estimated	according	to	
the	 consensus	 classification	 (14)	 for	 the	 whole	 tumor	 as	 well	 as	 for	 mirror	 blocks	
corresponding	to	frozen	samples	when	available.	Thus	spatial	heterogeneity	was	defined	
by	the	coexistence	of	at	least	2	histological	components,	either	at	the	whole	tumor	level	
or	at	the	intra-sample	level	(mirror	block).	
	
Whole	genome	sequencing	(WGS)	
We	 extracted	 DNA	 using	 Maxwell	 DNA	 extraction	 kit	 (Promega)	 or	 AllPrep			
DNA/RNA/miRNA	 Universal	 Kit	 (Qiagen).	 Sixty-five	 tumors	 and	 matched	 non-tumor	
samples	were	 sequenced	 at	 the	 Centre	 National	 de	 Génotypage	 (Evry,	 France)	 on	 an	
Illumina	HiSeqX5	as	paired-end	150 bp	reads,	with	an	average	depth	of	90X	for	tumors	
and	30X	for	non-tumor	liver	samples.	Sequence	reads	were	aligned	to	the	hg19	version	of	
the	 human	 genome	 using	 BWA	 (36).	 We	 used	 Picard	 tools	
(http://broadinstitute.github.io/picard/)	 to	 remove	PCR	duplicates	and	GATK	 (37)	 for	
local	 indel	 realignment	 and	 base	 quality	 recalibration,	 as	 recommended	 in	GATK	best	
practices	(38).		
	
Whole	exome	sequencing	(WES)	
Whole	exome	data	 from	57	tumors	and	matched	non-tumor	samples	were	analyzed	 in	
this	study,	as	well	as	9	pediatric	liver	tumor	cell	lines.	Sequence	capture,	enrichment	and	
elution	of	genomic	DNA	was	performed	by	IntegraGen	(Evry,	France).	Agilent	in-solution	
enrichment	was	used	with	the	manufacturer’s	biotinylated	oligonucleotide	probe	library	
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SureSelect	 Clinical	 Research	 Exome	 V2	 or	 Twist	 Bioscience	 Human	 Core	 Exome	
Enrichment	System,	according	 to	 the	manufacturer’s	 instructions.	The	eluted	enriched	
DNA	 samples	 were	 sequenced	 on	 an	 Illumina	 HiSeq4000	 as	 paired-end	 75 bp	 reads	
(n=35)	or	Illumina	NovaSeq	as	paired-end	100	bp	reads	(n=31),	with	an	average	depth	of	
100X	for	tumors	and	65X	for	non-tumor	liver	samples.	We	used	BWA	to	align	reads	on	the	
hg38	version	of	the	human	genome	and	sambamba	to	remove	duplicate	reads.		
	
Somatic	mutation	calling	
We	used	MuTect2	to	call	somatic	mutations	from	WES	and	WGS	data	by	comparing	each	
tumor	 sample	with	 its	matched	 non-tumor	 counterpart.	 The	 3	 cell	 lines	derived	 from	
patient	 tumors	within	our	 cohort	were	 compared	 to	 the	matched	non-tumor	samples,	
while	the	6	other	cell	lines	were	compared	to	a	panel	of	normal	samples.		We	excluded	
mutations	 belonging	 to	 the	 ENCODE	 Data	 Analysis	 Consortium	 blacklisted	 regions	
(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/
wgEncodeDacMapabilityConsensusExcludable.bed.gz)	and	regions	covered	by < 6	reads	
in	the	tumor	or	normal	sample.	We	then	selected	only	single	nucleotide	variants	(SNVs)	
with	a	MuTect2	flag	among	“PASS”,	“clustered_events”,	“t_lod_fstar”,	“alt_allele_in_normal”	
or	 “homologous_mapping_event”	 and	 small	 insertions	 and	 deletions	 (indels)	 with	 a	
MuTect2	 flag	 among	 “PASS”,	 “clustered_events”	 or	 “str_contraction”.	 To	 improve	
specificity	 in	 the	 calling	 of	 mutations	 with	 low	 variant	 allele	 frequency	 (VAF),	 we	
quantified	the	number	of	high	quality	variant	reads	in	the	tumor	(mapping	quality ≥ 20,	
base	 quality ≥ 20)	 and	 the	 number	 of	 variant	 reads	 in	 the	 non-tumor	 sample	with	 no	
quality	 threshold	 using	 bamreadcount	 (https://github.com/genome/bam-readcount).	
Only	variants	matching	the	following	criteria	were	finally	retained:	VAF ≥ 2%	in	the	tumor	
with ≥ 3	variant	reads,	VAF ≤ 5%	in	the	non-tumor	samples	with ≤ 2	variant	reads,	and	a	
VAF	ratio ≥ 5	between	the	tumor	and	non-tumor	sample.	
	
Germline	mutation	calling	
Germline	variant	calling	was	performed	independently	for	WGS	and	WES	data	according	
to	 GATK	 (version	 4.0)	 best	 practices	 recommendations	 (39).	 For	 each	 dataset,	 we	
performed	SNVs	and	indels	discovery	using	HaplotypeCaller	and	joint	genotyping	across	
all	 non-tumor	 samples	 simultaneously	 using	 GenomicsDBImport	 followed	 by	
GenotypeGVCFs.	We	used	hard	filtering	for	WES	data	with	different	parameters	for	SNVs	
(ExcessHet	>	54.69,	FS	>	10.0,	MQ	<	50.0,	MQRankSum	<	-5.0,	QD	<	5.0,	QUAL	<	50.0,	
ReadPosRankSum	<	-5.0,	SOR	>	2.0,	DP	<	8.0,	GQ	<	20.0)	and	indels	(ExcessHet	>	54.69,	
FS	>	200.0,	QD	<	2.0,	QUAL	<	30.0,	ReadPosRankSum	<	-20.0,	DP	<	8.0,	GQ	<	20.0),	and	we	
used	variant	quality	score	recalibration		for	WGS	(truth	sensitivity	level:	SNVs	=	99.6%,	
indels	=	95.0%).	Resulting	high	quality	variants	were	annotated	using	the	Variant	Effect	
Predictor	toolset	(40).	We	selected	variants	with	an	allele	frequency	lower	than	0.01	or	
lacking	in	the	gnomAD	database	(41).	All	candidate	pathogenic	variants	were	manually	
verified	using	the	Integrative	Genomics	Viewer	(42).	
	
Copy-number	and	structural	rearrangement	analysis	
We	used	MANTA	 (43)	 software	 to	 identify	 somatic	 structural	 rearrangements	 in	WGS	
data.	To	keep	only	the	most	reliable	events,	we	selected	only	rearrangements	supported	
by ≥ 15	reads	and	with	a	variant	allele	fraction ≥ 10%	in	the	tumor,	and	not	more	than	1	
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variant	 read	 in	 the	 non-tumor	 counterpart.	We	 used	 cgpBattenberg	 (44)	 algorithm	 to	
reconstruct	absolute	copy-number	profiles	from	WGS	data	and	estimate	tumor	purity.	We	
used	the	Genome	Alteration	Print	method	(45)	to	infer	absolute	copy-number	profiles	and	
tumor	 purity	 from	 WES	 data,	 and	 the	 circular	 binary	 segmentation	 algorithm	
implemented	 in	the	Bioconductor	package	DNAcopy	(46)	to	 identify	 focal	homozygous	
deletions	and	high-level	amplifications,	as	previously	described	(47).	
	
Identification	of	driver	genes	
We	used	two	different	approaches	to	identify	driver	genes	in	pediatric	liver	cancers,	using	
both	WES	and	WGS	data.	First,	the	MutSigCV	tool	(48)	was	used	to	identify	genes	with	
significantly	 recurrent	 mutations	 while	 taking	 into	 account	 gene	 size	 and	 genomic	
covariates.	 High-level	 amplifications	 and	 homozygous	 deletions	were	 included	 in	 this	
analysis	as	additional	mutation	categories.	Second,	we	used	Oncodrive	(49)	to	 identify	
genes	 with	 a	 significant	 enrichment	 of	 mutations	 with	 functional	 impact.	 Finally,	 we	
defined	as	putative	drivers	genes	with	damaging	alterations	in	≥2	patients	and	either	(1)	
a	p-value	<	0.05	with	both	MutSigCV	and	Oncodrive	tools	or	(2)	identified	as	driver	genes	
in	previous	pediatric	pan-cancer	studies	(25,50).	After	removing	3	genes	not	expressed	in	
normal	liver	nor	in	tumors	(95th	FPKM	quantile	<	0.1),	we	obtained	22	candidate	driver	
genes	(Supplementary	Table	S2).	Only	genes	with	damaging	alterations	in	≥3	patients	
were	 represented	 in	Fig.	 1b.	 The	 frequency	 of	 driver	 alterations	 per	 tumor	 type	was	
estimated	by	patient	and	not	by	 sample,	 in	order	 to	avoid	biases	due	 to	patients	with	
multiple	samples.	To	this	end,	a	patient	was	considered	as	altered	for	a	gene	as	long	as	
one	of	its	samples	harbored	an	alteration	in	this	gene.	
	
Identification	of	mosaic	copy-neutral	LOH	of	11p15.5	locus	in	non-tumor	liver	
For	each	tumor	with	a	copy-neutral	LOH	(cn-LOH)	of	11p15.5	locus,	we	searched	for	the	
presence	 of	 the	 same	 cn-LOH	 in	 matched	 non-tumor	 liver	 tissue.	 To	 that	 aim,	 we	
calculated	 the	B-allele	 frequencies	 (BAF)	of	 common	single	nucleotide	polymorphisms	
(SNPs),	 obtained	 from	WGS	 or	WES	 data,	 in	 the	 tumor	 (BAFT)	 and	 in	 the	 non-tumor	
(BAFNT)	sample.	We	considered	a	cn-LOH	to	be	present	in	the	non-tumor	liver	if	there	was	
a	significant	overlap	between	SNPs	with	the	B	allele	retained	in	the	tumor	(BAFT	>	0.5)	
and	those	with	a	BAFNT	>	0.5	(binomial	test).	We	then	estimated	the	proportion	of	non-
tumor	liver	cells	carrying	the	cn-LOH	as	2*RAFNT-1	with	RAFNT	the	median	BAF	of	retained	
alleles	(those	with	a	BAFT	>	0.5)	in	the	non-tumor	sample.	
	
Mutational	signature	analysis	
We	used	Palimpsest	(51)	to	extract	signatures	of	single	base	substitutions	(SBS),	doublet	
base	 substitutions	 (DBS)	 and	 indels	 in	WGS	data	 of	 65	 pediatric	 liver	 cancers,	 and	 to	
compare	 them	with	 known	 signatures	 from	 COSMIC	 database	 (v3).	 De	 novo	 analysis	
revealed	 4	 SBS	 signatures	 corresponding	 to	 the	 COSMIC	 SBS1,	 5,	 18	 and	 35	 (cosine	
similarity	scores	>	0.8),	2	DBS	signatures	corresponding	to	the	COSMIC	DBS5	and	a	new	
signature	(DBSnew),	and	5	indel	signatures	corresponding	to	the	COSMIC	ID1,	2,	3,	5	and	
8.	To	ensure	comparability	with	other	data	sets,	signature	exposures	in	each	tumor	were	
recalculated	 using	 the	 COSMIC	 versions	of	 signatures,	 except	 for	 signature	 SBS35	 (we	
kept	our	own	version	as	it	was	based	on	a	larger	number	of	mutations	than	the	COSMIC	
version)	and	DBSnew	(absent	in	COSMIC).	SBS	signature	exposures	were	also	calculated	
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in	WES	data.	Finally,	we	estimated	the	cancer	cell	 fraction	(CCF),	 i.e.	 the	proportion	of	
tumor	cells	carrying	each	mutation	(see	the	‘Clonality’	section	below).	Mutations	with	an	
upper	bound	of	their	CCF	confidence	interval	<	0.95	were	considered	subclonal.	We	then	
quantified	SBS	signature	exposures	among	clonal	and	subclonal	mutations	separately.	
	
Clonality	analysis	and	phylogenetic	tree	reconstruction	
We	used	Palimpsest	to	estimate	the	CCF	of	each	mutation	from	its	variant	allele	fraction,	
taking	into	account	tumor	purity	and	absolute	copy-number,	as	previously	described	(52).	
For	23	patients	with	multiple	 tumor	samples,	we	used	a	Bayesian	Dirichlet	process	 in	
multiple	dimensions	(53)	to	identify	clusters	of	mutations	with	a	similar	CCF	distribution	
across	all	samples,	hence	belonging	to	the	same	branch	of	the	phylogenetic	tree.	We	then	
manually	reconstructed	the	phylogenetic	tree	of	each	patient	by	organizing	branches	to	
fit	 the	 observed	 clonal	 composition	 of	 each	 sample.	 Damaging	 mutations	 affecting	
candidate	driver	genes	were	annotated	on	the	trees,	and	we	quantified	the	contribution	
of	each	mutational	process	on	each	branch	with	Palimpsest.	
	
RNA	sequencing	(RNA-seq)	
We	performed	RNA-seq	for	120	tumors,	4	non-tumor	liver,	7	 fetal	 liver	samples	and	9	
pediatric	liver	tumor	cell	lines.	RNA	samples	were	enriched	for	polyadenylated	RNA	from	
1 μg	of	total	RNA,	and	the	enriched	samples	were	used	to	generate	sequencing	libraries	
with	the Illumina	TruSeq	Stranded	mRNA	kit	or	NEBNext	Ultra	II	Directional	RNA	Library	
Prep	 kit	 and	 associated	 protocol	 as	 provided	 by	 the	 manufacturer.	 Libraries	 were	
sequenced	by	IntegraGen	(Evry,	France)	on	an	Illumina	HiSeq	4000	as	paired-end	75 bp	
reads	or	Illumina	NovaSeq	as	paired-end	100 bp	reads.	Full	Fastq	files	were	aligned	to	the	
reference	 human	 genome	 hg38	 using	 TopHat2	 (54).	 We	 removed	 reads	 mapping	 to	
multiple	locations,	and	we	used	HTSeq	(55)	to	obtain	the	number	of	reads	associated	to	
each	gene	in	the	Gencode	database.	We	used	DESeq2	(56)	to	import	raw	read	counts	into	
R	 statistical	 software	 and	 apply	 variance	 stabilizing	 transformation	 (VST)	 to	 the	 raw	
count	matrix.	FPKM	scores	(number	of	fragments	per	kilobase	of	exon	model	and	millions	
of	mapped	reads)	were	calculated	by	normalizing	the	count	matrix	for	the	library	size	and	
the	coding	length	of	each	gene.	
	
Gene	fusion	detection	
Fusions	 detected	 by	 TopHat2	 (54)	 (--fusion-search	 --fusion-min-dist	 2000	 --fusion-
anchor-length	 13	 --fusion-ignore-chromosomes	 chrM)	 were	 filtered	 using	 the	
TopHatFusion-post	 algorithm	 and	 validated	 using	 FusionInspector	 (57)	
(https://github.com/FusionInspector).	We	kept	only	fusions	validated	by	BLAST,	with	at	
least	 10	 split-reads	 or	 read	 pairs	 spanning	 the	 fusion	 event,	 and	 an	 FFPM	 (Fusion	
Fragments	Per	Million	reads)	≥	0.1.	We	removed	fusions	identified	recurrently	in	a	cohort	
of	36	normal	 liver	samples,	 involving	genes	with	 inconsistent	orientations,	non-coding	
genes	and	putative	read-through	transcripts.		
	
Detection	of	large	in-frame	CTNNB1	deletions	
Large	in-frame	CTNNB1	deletions	were	screened	in	WGS,	WES	and	RNA-seq	data	using	
dedicated	approaches.	We	used	MANTA	software	 (43)	 to	 identify	 structural	 variations	
spanning	 CTNNB1	 region	 in	 WGS	 and	 WES	 (with	 the	 --exome	 option)	 data,	 with	 the	
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following	 parameters	 to	 increase	 sensitivity:	 minEdgeObservations=2,	
minScoredVariantSize=10.	For	RNA-seq,	we	analyzed	the	junctions.bed	output	files	from	
TopHat2	 (54)	 to	 identify	abnormal	 junctions	 involving	CTNNB1	 exons	3	or	4.	We	also	
screened	 for	paired	 reads	with	one	mate	 in	exon	2	and	 the	other	 in	exon	3/4,	 and	an	
abnormally	long	insert	size,	greater	than	the	mean	insert	size	of	the	library	+	1	standard	
deviation.	
	
Gene	expression-based	classification	of	hepatoblastoma	
We	restricted	the	transcriptomic	classification	to	HB	samples,	excluding	other	diagnoses	
(HCC,	FLC,	HCA)	with	a	limited	number	of	samples,	in	order	to	identify	robust	subgroups.	
Hierarchical	clustering	was	performed	on	100	hepatoblastomas	and	4	non-tumor	liver	
samples,	 based	 on	 the	 vst-normalized	 expression	 of	 the	 3000	 autosomal	 genes	 with	
sufficient	expression	(95th	FPKM	percentile	≥	0.1)	and	the	highest	standard	deviation.	The	
hclust	R	function	was	used	with	Euclidean	distance	and	Ward.D2	linkage	method,	after	
median-centering	the	data.	To	verify	that	HB	subgroups	were	not	driven	by	patients	with	
multiple	samples,	we	reproduced	the	clustering	with	only	one	sample	by	patient	and	we	
obtained	 similar	 results	 (Supplementary	 Fig.	 S15).	 For	 external	 validation	 of	 HB	
clusters,	we	downloaded	RNA-seq	data	set	from	Carrillo-Reixach	et	al.	(16)	comprising	34	
HB	 (Gene	 Expression	 Omnibus	 accession	 number	 GSE132219)	 and	 performed	 a	
hierarchical	 clustering	 based	 on	 the	 expression	 of	 the	 19	 markers	 of	 hepatic	
differentiation,	 progenitor	 and	 mesenchymal	 subgroups	 represented	 in	 Fig.	 3,	 with	
Cosine	 distance	 and	Ward.D2	 linkage	method	 (Supplementary	 Fig.	 S6).	We	 used	 the	
Bioconductor	limma	(58)	package	to	identify	differentially	expressed	genes	between	HB	
subgroups.	We	 applied	 a	 q-value	 threshold	 of ≤ 0.05	 to	 define	 differentially	 expressed	
genes.	
	
Gene	expression	signatures	
We	used	previously	established	molecular	signatures	from	MSigDB	database	to	quantify	
the	 level	 of	 hepatic	 differentiation	 (‘Hsiao	 liver	 specific	 genes’),	 cell	 proliferation	
(‘Hallmark	REACTOME	cell	cycle’)	and	inflammation	(‘Hallmark	inflammatory	response’)	
in	each	sample.	We	used	MCPcounter	(59)	to	estimate	the	infiltration	by	diverse	immune	
cell	 types	 and	 classify	 HB	 samples	 accordingly.	 We	 also	 classified	 each	 HB	 sample	
according	to	the	previously	described	C1/C2	(27),	C1/C2A/C2B	(28)	and	RMS-1/2/3a/3b	
(16)	classifications.	For	C1/C2	(respectively	C1/C2A/C2B)	classification,	we	generated	a	
consensus	 clustering	 (1000	 resampling	 iterations	 of	 hierarchical	 clustering	 with	
Euclidean	distance	and	Ward.D2	linkage)	of	our	cohort	in	2	(resp.	3)	groups	based	on	the	
16	marker	genes	defined	by	Cairo	et	al.	(27)	(resp.	the	4	markers	VIM,	HSD17B6,	TOP2A	
and	ITGA6	defined	by	Hooks	et	al.	(28)),	and	we	assigned	to	each	consensus	cluster	to	the	
relevant	 subgroup	 based	 on	 the	 expression	 of	 their	 respective	markers.	 For	 the	 RMS	
classification,	we	first	performed	a	hierarchical	clustering	based	on	the	expression	of	68	
genes	of	the	14q32	imprinted	locus	to	define	2	groups	(moderate	vs	strong	14q32-gene	
signature).	 We	 verified	 that	 our	 two	 main	 DNA	 methylation-based	 clusters	 were	
consistent	with	Carrillo	Reixach’s	Epi-CA/CB	groups	(16).	Finally,	we	combined	the	14q32	
signature,	Epi-CA/CB	methylation	groups	and	C2A	transcriptomic	subgroup	to	define	the	
RMS	classification	as	in	Carrillo-Reixach	et	al.	(16).	A	signature	of	the	‘Liver	Progenitor’	
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subgroup	of	HB	comprising	the	7	representative	genes	indicated	in	Fig.	3a	was	used	to	
quantify	this	phenotype	in	cell	lines.	
	
Single-nucleus	isolation	from	frozen	tissues	
Single	 nuclei	 were	 isolated	 from	 4	 samples	 for	 single-nucleus	 RNA-seq	 as	 previously	
described	(60),	using	EZ	Lysis	buffer	workflow	with	slight	modifications. Briefly,	tissue	
samples	were	thawed	in	PBS	and	cut	into	pieces	<	0.5	cm.	Approximately	35	mg	of	tissue	
were	poured	in	a	glass	Dounce	tissue	grinder	(Sigma,	cat.	no.	D8938)	and	homogenized	
25	times	with	pestle	A	and	25	times	with	pestle	B	 in	1.5	mL	of	 ice-cold	nuclei	EZ	 lysis	
buffer.	Samples	were	then	incubated	on	ice	for	5	min	with	an	additional	3	mL	of	cold	EZ	
lysis	buffer.	Nuclei	were	centrifuged	at	500	g	for	5	min	at	4	°C,	washed	with	5	mL	ice-cold	
EZ	lysis	buffer	and	incubated	on	ice	for	5	min.	After	centrifugation,	the	nucleus	pellet	was	
washed	with	5	mL	of	Nuclei	Wash	buffer	containing	1×	PBS,	0.1%,	non-acetylated	BSA	
(Thermo	 AM2618)	 and	 200	 units/mL	 RNase	 inhibitor	 (NEB	M0307L).	 Isolated	 nuclei	
were	 resuspended	 in	 2	 mL	 of	 Nuclei	 Suspension	 Buffer	 containing	 1×	 PBS,	 1%	 non-
acetylated	BSA	 (Thermo	AM2618)	 and	 200	 units/mL	RNase	 inhibitor	 (NEB	M0307L),	
filtered	through	a	70	µm		and	then	a	30	μm	MACS	SmartStrainers	(Miltenyibiotec	130-
098-462	 &	 130-098-458),	 and	 counted	 under	 microscope	 using	 C-chip	 disposable	
hemocytometer.	A	final	concentration	of	1,000	nuclei	per	µL	was	used	for	loading	on	a	
10x	channel.	
	
Single-nucleus	RNA	sequencing	(snRNA-seq)	
Single-nucleus	 RNA-sequencing	 was	 performed	 by	 Integragen	 SA	 (Evry,	 France)	 on	
matched	 non-tumor	 liver,	 primary	 HB	 and	 lung	 metastasis	 samples	 from	 one	 patient	
(#3981),	following	the	Chromium	Next	GEL	Single	Cell	3’	V3.1	protocol.	In	short,	about	
8,800	single	nuclei	were	loaded	into	each	channel	of	a	Chromium	single-cell	3’	chip.	Single	
nuclei	were	partitioned	into	droplets	with	gel	beads	in	the	Chromium	Controller.	After	
emulsions	were	formed,	barcoded	reverse	transcription	of	RNA	took	place,	followed	by	
cDNA	amplification,	fragmentation,	and	adapter	and	sample	index	ligation,	according	to	
the	 manufacturer’s	 recommendations.	 Libraries	 from	 the	 10X	 channels	 were	 pooled	
together	and	sequenced	as	paired-end	100b	reads	on	an	Illumina	NovaSeq.	We	used	10x	
Genomics	 Cell	 Ranger	 5.0	 (61)	 to	 align	 snRNA-seq	 reads	 to	 the	 human	 genome	
(GrCh38/hg38)	and	generate	UMI	counts	for	each	sample,	including	intronic	reads.	We	
obtained	respectively	9142,	5859	and	2875	nuclei,	with	a	median	of	2042,	2334	and	3446	
genes	 per	 nuclei	 from	 samples	#3981N	 (non-tumor	 liver),	 #3984T	 (primary	HB)	 and	
#3988T	 (lung	metastasis).	We	 then	 filtered	 the	 feature-barcode	matrix	 to	 retain	 only	
good-quality	nuclei	and	reliable	genes.	We	removed	nuclei	with	<1000	read	counts,	<500	
genes	detected	or	>5%	of	UMI	 counts	 in	mitochondrial	 genes,	 and	we	 removed	genes	
detected	 in	 <3	 nuclei	 as	 well	 as	 ERCC	 and	 mitochondrial	 genes.	 After	 QC	 we	 kept	
respectively	9140,	5685	and	2826	nuclei,	with	a	total	of	16470,	18384	and	18294	genes	
for	samples	#3981N,	#3984T	and	#3988T.	All	secondary	analyses	were	performed	using	
Seurat	v3	(62).	We	normalized	each	dataset	using	the	SCTransform	function	with	default	
parameters,	performed	principal	component	analysis	on	the	3,000	most	variable	genes	
and	ran	Louvain	graph-based	clustering	on	the	30	principal	components	with	a	resolution	
of	0.5.	We	used	a	Uniform	Manifold	Approximation	and	Projection	(UMAP)	with	default	
settings	to	visualize	 the	 results.	We	used	 inferCNV	v1.6	 (Tickle	T	et	al.,	 available	 from	
https://github.com/broadinstitute/inferCNV)	 to	 reconstruct	 virtual	 copy-number	
profiles,	using	healthy	hepatocytes	 from	 the	non-tumor	 liver	 sample	as	 reference,	 and	
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genes	with	an	average	read	count	>0.1	in	reference	nuclei.	We	performed	a	clustering	of	
copy-number	 profiles	 in	 each	 sample	 separately.	We	 identified	 tumor	 cells	 using	 both	
inferCNV	clusters	and	Seurat	classification,	and	we	redid	the	whole	analysis	(SCTransform	
normalization,	dimensionality	reduction,	clustering	and	UMAP	visualization)	restricted	to	
tumor	 cells.	 To	 characterize	 tumor	 cell	 clusters,	 we	 selected	 marker	 genes	 of	 each	
differentiation	state	(‘Hepatocytic’,	‘Liver	Progenitor’	and	‘Mesenchymal’).	To	that	end,	we	
selected	 the	 top	70	genes	overexpressed	 in	 the	 corresponding	group	 in	 bulk	RNA-seq	
data,	restricted	to	genes	identified	in	snRNA-seq	data.	We	obtained	~50	marker	genes	for	
each	subgroup	and	we	computed	for	each	nucleus	the	mean	log-normalized	expression	
(NormalizeData	pipeline)	over	each	 set	of	markers.	We	 then	assigned	a	 status	 to	each	
cluster	based	on	the	expression	of	these	marker	genes.	
	
Reduced	representation	bisulfite	sequencing	(RRBS)	
RRBS	 was	 performed	 in	 two	 distinct	 projects	 (PJ17	 (n=82)	 and	 PJ20	 (n=23))	 by	
Integragen	SA	(Evry,	France)	as	described	by	Gu	et	al.	(63),	with	the	Diagenode	Premium	
RRBS	kit.	In	brief,	100	ng	of	qualified	genomic	DNA	were	digested	with	MspI.	After	end-
repair,	A-tailing	and	ligation	to	methylated	and	indexed	adapters,	the	size	selected	library	
fragments	were	subjected	to	bisulfite	conversion	and	PCR	amplified.	Samples	of	the	PJ17	
project	 (res.	 PJ20)	 were	 then	 sequenced	 on	 an	 Illumina	 HiSeq4000	 (resp.	 NovaSeq)	
sequencer	as	paired-end	75	bp	(resp.	100	bp)	reads.	Image	analysis	and	base	calling	was	
performed	 using	 Illumina	 Real	 Time	 Analysis	 with	 default	 parameters.	 Reads	 were	
aligned	to	the	hg38	version	of	the	human	genome	using	BS_Seeker2	(64).	Sorted	bam	files	
were	converted	into	CGmap	files	using	CGmaptools	(65),	and	the	methylation	level	of	each	
CpG	site	was	defined	as	the	ratio	between	the	number	of	effective	cytosines	after	bisulfite	
conversion	(=methylated	cytosines)	and	the	total	number	of	cytosines	and	thymines	after	
bisulfite	conversion	(=methylated	+	unmethylated	cytosines).	On	average	~	7	million	CpG	
sites	 were	 covered	 in	 each	 sample	 after	 discarding	 CpG	 sites	 located	 in	 ENCODE	
blacklisted	 genomic	 regions	 (wgEncodeDacMapabilityConsensusExcludable	 tract	 from	
UCSC	 genome	 browser).	 We	 next	 integrated	 methylation	 levels	 across	 100	 bp-long	
genomic	regions	(tiles)	using	the	tileMethylCounts	 function	 from	the	Methylkit	package	
(66).	 Tile	 coverage	 was	 defined	 as	 the	 coverage	 sum	 of	 all	 CpGs	 inside	 the	 tile,	 and	
methylation	was	defined	as	the	ratio	between	the	total	number	of	methylated	CpGs	and	
tile	 coverage.	On	 average	~	 1.3	million	 tiles	were	 covered	 in	 each	 sample.	Due	 to	 the	
different	 read	 lengths	 in	 PJ17	 and	PJ20,	 some	 tiles	 displayed	 heterogeneous	 coverage	
leading	to	systematic	biases	between	the	two	projects.	We	thus	compared	the	non-tumor	
(NT)	liver	samples	from	PJ20	(n=4)	and	PJ17	(n=9),	and	we	removed	58,179	tiles	(~3%)	
with	a	methylation	difference	≥	0.05	or	≤	-0.05	between	all	PJ17	and	all	PJ20	NT	samples.		
To	determine	the	methylation	status	of	11p15.5	locus,	we	computed	for	each	sample	the	
mean	methylation	over	imprinted	regions	IC1	(chr11:1998745-2003509,	hg38)	and	IC2	
(chr11:2697587-2700983,	hg38).	We	then	used	a	K-means	clustering	to	identify	samples	
with	gain	of	methylation	(GOM)	of	IC1	and/or	loss	of	methylation	(LOM)	of	IC2. 
	
DNA	methylation	changes	in	hepatoblastoma	
We	generated	a	DNA	methylation-based	classification	of	84	HB	and	13	non-tumor	liver	
samples.	To	do	so,	we	selected	the	5,000	tiles	with	coverage	>50X	in	all	samples	and	the	
highest	standard	deviation,	and	we	used	the	hclust	R	function	to	perform	a	hierarchical	
clustering	 with	 Pearson	 distance	 and	 Ward.D	 linkage	 method.	 We	 used	 Independent	
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Component	 analysis	 (ICA)	 as	 previously	 described	 (67)	 to	 characterize	 independent	
sources	of	DNA	methylation	changes	in	HB,	based	on	~212,000	tiles	with	coverage	>10X	
in	all	samples	and	standard	deviation	>0.035.	We	identified	5	methylation	components	
(MCs)	including	components	related	to	the	‘Liver	Progenitor’	(MC1)	and	‘Mesenchymal’	
(MC2)	subgroups,	and	to	patient	age	(MC3).	We	explored	various	(epi)genomic	features	
associated	 with	 differentially	 methylated	 tiles	 and	 MCs,	 including	 gene	 features	
(promoter	/	gene	body),	CpG	island	features	(island	/	shore	/	shelf	/	open	sea),	chromatin	
states	(68)	and	DNA	methylation	domains	(69)	(highly	methylated	domains	vs.	partially	
methylated	domains)	in	normal	liver,	and	replication	timing	in	HepG2	cell	line	(70).	We	
used	 ELMER	 v2	 package	 (71)	 to	 identify	 transcription	 factor	 binding	 sites	 (TFBS)	
enriched	within	tiles	hypermethylated	in	the	‘Mesenchymal’	component.	We	used	an	in-
house	 adaptation	 of	 the	 GSEA	 (Gene	 Set	 Enrichment	 Analysis)	 method	 to	 identify	
overrepresented	 gene	 sets	 (MSigDB	 v6	 database)	 among	 genes	 paired	 with	 tiles	
hypermethylated	in	‘Mesenchymal’	samples.	We	compared	the	vst-normalized	expression	
of	transcription	factors	involved	in	liver	differentiation	(HNF1A,	HNF4A,	PPARG,	NR2F6)	
with	 the	 methylation	 of	 tiles	 containing	 their	 respective	 binding	 motifs	 and	
hypermethylated	in	the	‘Mesenchymal’	component.	These	correlations	were	validated	in	
Carrillo-Reixach's	data	set	comprising	26	HB	analyzed	with	Illumina	850k	methylation	
arrays	(16).	
	
Cell	lines	
Nine	pediatric	liver	tumor	cell	lines	were	collected	from	collaborations	or	obtained	from	
commercial	sources	(Supplementary	Table	S8).	Cells	were	grown	either	in	Dulbecco’s	
modified	Eagle’s	medium	(DMEM)	or	Advanced	DMEM	F-12	supplemented	with	10%	fetal	
bovine	 serum	 and	 using	 usual	 conditions	 (100	 U/mL	 penicillin/streptomycin,	 	 1%	
Glutamine	 at	 37	 °C,	 5%	 CO2,	 identity	 confirmed	 using	 whole-exome	 sequencing,	
mycoplasma-free	verified	with	MycoAlert	Mycoplasma	PLUS	detection	kit	(Lonza)).	
	
Determination	of	drug	sensitivity	
Doxorubicin	 (S1208,	 Selleck	 chemicals),	 YM155	 (S1130,	 Selleck	 chemicals),	 BI-2536	
(S1109,	 Selleck	 chemicals),	 AZD7762	 (S1532,	 Selleck	 chemicals),	 trametinib	 (S2673,	
Selleck	chemicals)	were	dissolved	in	DMSO	at	10mM	final	concentration.	Cisplatin	(S1166,	
Selleck	 chemicals)	was	 dissolved	 in	 H2O,	 0.9%	NaCl,	 0.3%	 Tween20	 at	 a	 0.5g/L	 final	
concentration,	carboplatin	(S1215,	Selleck	chemicals)	was	dissolved	in	H2O,	0.1%	Triton.	
Cells	were	seeded	at	2500-4500	cells/well	(Supplementary	Table	S10).	After	overnight	
incubation	 at	 37°C	 and	 5%	CO2,	 cells	were	 treated	with	 5	 different	 concentrations	 of	
drugs	(0.001,	0.01,	0.1,	1,	and	10μM)	using	HP	D300	digital	dispenser	(Tecan,	Mannedorf,	
Switzerland).	Growth	inhibition	was	measured	72h	after	treatment	with	MTS	diluted	1:6	
in	fresh	culture	medium.	Cell	viability	was	assessed	by	recording	absorbance	at	490nm	
using	 a	 FLUOstar	 microplate	 reader.	 Dose-response	 curves	 were	 performed	 using	
GraphPad	Prism	6	Software	to	determine	two	parameters	reflecting	drug	sensitivity:	GI50	
and	the	area	under	the	curve	(AUC).	When	the	GI50	was	not	reached,	the	values	were	set	
to	the	highest	concentration	tested	(10μM).	Each	concentration	was	tested	in	duplicate.	
Polyclonal	goat	anti-IGF2	antibody	(Ref	AF-292-NA,	Biotechne)	and	control	anti-Igg	goat	
antibody	(Ref	AB-108-C,	Bio-techne)	were	tested	using	5	concentrations	(0.1,	0.5,	1,	5	and	
10	 μg/mL).	 Monoclonal	 human	 anti-IGF1/IGF2	 therapeutic	 antibody	 (Xentuzumab,	
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#TAB-475CQ,	Creative	Biolabs)	was	resuspended	in	PBS	at	1	mg/mL	final	concentration	
and	tested	at	1	µM.	
	
In	vivo	xenografts	treatments	
Mice	were	housed	 in	a	specific	pathogen-free	 facility	and	experiments	were	conducted	
using	protocols	and	conditions	approved	by	the	Institutional	animal	ethical	committee	
(Authorization	 n°2015082610113065.01,	 Ethics	 Committee	 Paris-Nord	 C2EA	 121).	 At	
day0,	5.106	HepG2	cells	with	1:1	matrigel	were	inoculated	subcutaneously	on	each	flank	
of	female	BALB/cAnNRj-Foxn1	5	weeks	old	mice.	At	day20,	when	tumors	started	growing	
(volume	 >200mm3),	 mice	 were	 randomized	 in	 4	 groups	 of	 6	 mice	 allocated	 to	 the	
following	treatment	arms:	cisplatin,	cisplatin/doxorubicin,	BI-2536	and	Vehicle.	Mice	in	
cisplatin	group	were	injected	intraperitoneally	at	day20	and	day27	with	5mg/kg	cisplatin.	
Mice	 from	 cisplatin/doxorubicin	 group	 received	 one	 injection	 of	 cisplatin	 at	 day20	
(5mg/kg)	and	one	intraperitoneal	doxorubicin	at	day27	(2mg/kg).	Mice	in	BI-2536	group	
were	intravenously	injected	with	40mg/kg	BI-2536	at	day20	and	day27	whereas	mice	in	
the	vehicle	control	group	received	injections	of	H2O,	0.9%	NaCl.	Mice	were	weighted	two	
times	a	week	and	tumor	volume	was	measured	at	the	same	time	using	a	caliper	and	the	
following	formula:	(Length*width²)/2	and	was	expressed	as	a	percentage	of	initial	tumor	
volume	at	day20.	
	
Generation	of	SBS35	signature	in	vitro	
To	 test	 cisplatin	 ability	 to	 induce	 SBS35	 mutational	 signature	 in	 hepatoblastoma,	 6	
pediatric	 liver	 tumor	cell	 lines	were	treated	with	0.5μM	cisplatin	 for	4	weeks.	At	day0,	
60	000	 cells	 were	 seeded	 in	 a	 6-well	 plate	 and	 reseeded	 each	 week	 at	 the	 same	
concentration.	 When	 mortality	 was	 too	 high,	 cells	 were	 not	 split	 and	 fresh	 medium	
supplemented	with	0.5μM	cisplatin	was	added.	At	day28,	cells	were	grown	in	fresh	DMEM	
and	limit	dilutions	were	performed	in	order	to	expand	clonal	cell	lines.	After	amplification,	
samples	 were	 extracted	 using	 Allprep	 DNA/RNA/miRNA	 universal	 extraction	 kit	
(Qiagen).	Finally,	mutational	signature	analysis	was	performed	on	cells	derived	from	limit	
dilution	and	compared	with	bulk	non-treated	baseline	mutational	profile.	
	
Methylation	specific	Multiplex	ligation-dependent	probe	amplification	(MS-MLPA)	
MLPA	was	used	to	determine	the	status	of	locus	11p15.5	in	27	samples	without	RRBS	data	
available.	MLPA	was	carried	out	with	50-100ng	of	DNA	diluted	in	Tris-HCl,	0.1mM	EDTA.	
DNA	samples	were	screened	using	ME030-C3	BWS/RSS	kit	(MRC-Holland,	Amsterdam,	
The	Netherlands)	containing	42	(MS-)	MLPA	probes:	26	probes	specific	of	BWS	11p15	
region,	2	probes	targeting	NSD1	gene,	13	reference	probes	targeting	other	chromosomes	
and	1	digestion	control	probe.	Two	reference	probes	targeting	respectively	2p25	and	2q24	
were	 excluded	 because	 of	 the	 presence	 of	 very	 frequent	 copy	 number	 variation	 in	
hepatoblastoma	 tumors.	 Among	 the	 26	 probes	 targeting	 11p15	 region,	 10	 were	
methylation	 specific,	 allowing	 for	 the	 detection	 of	 methylation	 abnormalities.	 To	
determine	thresholds	for	IC1	gain	of	methylation	and	IC2	loss	of	methylation,	we	used	K-
means	 clustering	method	 as	well.	 Samples	with	 a	 gain	 of	methylation	 in	 at	 least	 2/3	
probes	 targeting	 IC1	 were	 annotated	 as	 GOM	 IC1	 whereas	 samples	 with	 a	 loss	 of	
methylation	 in	at	 least	2/4	probes	were	 considered	LOM	 IC2.	One	probe	covering	 IC1	
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(H19.11.001.976583)	was	excluded	of	analysis	because	its	distribution	among	samples	
was	not	discriminating	samples	with	and	without	GOM	IC1.		
	
In	situ	hybridization	IGF2	in	FFPE	slides	
In	 situ	hybridization	 experiments	were	performed	using	RNAscope®	 2.5	HD	Detection	
Reagent	 BROWN	 kit	 (Cat	 #322300)	 and	 IGF2	 probe	 (Cat.	 #594361)	 according	 to	
manufacturer’s	 protocol.	 FFPE	 slides	 underwent	 target	 retrieval	 under	 standard	
conditions	 (15	minutes	 in	 target	 retrieval	 reagent	 >98°C)	 and	 a	 20-minutes	 protease	
digestion	at	40°C	in	the	HybEZ	oven.		
	
Immunohistochemistry	
Immunohistochemical	 analyses	 anti-β-catenin	 (BD	 Transduction,	 clone	 14,	 610154,	
1/300)	and	anti-GS	(Bioscience,	1/500)	were	performed	as	in	(34).	
	
TERT	promoter	screening	
TERT	promoter	mutations	were	identified	with	WGS	data	when	available	and	completed	
with	Sanger	sequencing	as	previously	described	(72)	for	other	samples.	
	
Data	availability	
The	sequencing	data	reported	in	this	paper	have	been	deposited	to	the	EGA	(European	
Genome-phenome	 Archive)	 database	 (European	 Genome-phenome	 Archive)	 database	
(accession	numbers	[EGAS EGAS00001005108]	and	[EGAS00001003536]).	
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Figures	
	

Figure	 1.	 Genomic	 landscape	 of	 pediatric	 liver	 cancers.	 a	 Number	 of	 somatic	
mutations	and	structural	variants	identified	in	65	pediatric	liver	cancers	(PLC)	by	whole	
genome	 sequencing	 (WGS).	 Samples	 are	 ordered	 by	 diagnosis	 and	 mutation	 burden.	
Alteration	 types	 are	 indicated	 with	 a	 color	 code,	 and	 specific	 structural	 variant	
phenotypes	are	highlighted.	b	Heatmap	representation	of	driver	alterations	across	122	
PLC	 analyzed	 by	 WGS	 or	 whole	 exome	 sequencing	 (WES).	 Samples	 are	 ordered	 by	
diagnosis	and	patient	age	at	sampling.	c	Frequency	of	copy-number	alterations	along	the	
genome	for	122	PLC	analyzed	by	WGS	or	WES. The	top	axis	indicates	the	frequency	of	low-
amplitude	 changes	 (gains,	 losses	and	 losses	of	heterozygosity	 (LOH));	 the	bottom	axis	
indicates	the	frequency	of	high-amplitude	changes	(focal	amplifications	and	homozygous	
deletions).	 Target	 genes	 of	 amplifications	 and	 homozygous	 deletions	 are	 indicated.	
Correlation	between	gene	expression	(variance-stabilized)	and	copy-number	is	displayed	
for	3	selected	genes.	
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Figure	 2.	 Pre-malignant	 clonal	 expansions	 with	 11p15	 alteration	 in	
hepatoblastoma	 patients.	 a	 Identification	 of	 a	 copy-neutral	 LOH	 (cn-LOH)	 at	 11p15	
locus	in	the	non-tumor	liver	of	patient	#3559.	B	Allele	frequencies	(BAF)	of	heterozygous	
single-nucleotide	polymorphisms	 (SNPs)	are	 represented	along	 chromosome	11.	 SNPs	
with	a	BAF	greater	(resp.	lower)	than	0.5	in	the	tumor	are	colored	in	red	(resp.	blue).	In	
the	cn-LOH	region,	red	(resp.	blue)	SNPs	correspond	to	those	for	which	the	B	allele	was	
retained	(resp.	lost).	The	same	BAF	imbalance	is	identified	in	the	non-tumor	sample,	with	
the	same	boundaries,	demonstrating	the	presence	of	the	cn-LOH.	The	amplitude	of	BAF	
changes	indicate	that	the	cn-LOH	is	present	in	30%	of	cells	in	the	non-tumor	sample.	b		
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Pre-malignant	 expansions	 with	 cn-LOH	 at	 11p15	 locus	 were	 identified	 in	 6	
hepatoblastoma	patients.	The	proportion	of	non-tumor	cells	harboring	the	alteration	is	
indicated	below.	Copy-neutral	LOH	became	clonal	in	matched	hepatoblastoma	that	had	
acquired	in	addition	activating	CTNNB1	mutations.	c	Expression	levels	of	IGF2	and	the	β-
catenin	targets	GLUL,	LGR5,	AXIN2	(2-ΔΔCt	)	in	tumor	and	non-tumor	samples	from	patients	
with	and	without	11p15.5	cn-LOH	premalignant	expansions.		d	Representative	areas	of	
FFPE	slides	from	2	HB	patients:	patient	#3559	with	mosaic	11p15.5	cn-LOH	and	control	
patient	#4217.	Four	types	of	staining	were	performed:	hematoxylin	and	eosin	staining	
(H&E),	 IGF2	 RNAscope	 in	 situ	hybridization,	 and	 β-catenin	 and	 Glutamine	 synthetase	
immunostainings.		
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Figure	3.	Molecular	plasticity	of	hepatoblastoma	across	three	differentiation	states.	
a	 Gene	 expression-based	 classification	 of	 hepatoblastoma.	 Unsupervised	 hierarchical	
clustering	of	100	HB	samples	from	64	patients	and	4	non-tumor	liver	samples	revealed	4	
molecular	 groups.	 Clinical	 and	 molecular	 annotations	 are	 depicted	 below	 the	
dendrogram,	with	p-values	indicating	their	association	with	molecular	groups.	A	heatmap	
shows	the	expression	of	key	transcription	factors	(TF)	and	marker	genes	representative	
of	each	group,	as	well	as	molecular	scores	of	hepatic	differentiation,	cell	proliferation	and	
immune	infiltration.	b	Top:	Proportion	of	transcriptomic	groups	and	a	selection	of	driver	
alteration	 frequencies	 at	 different	 steps	 of	 hepatoblastoma	 progression.	 Middle:	
Transcriptomic	group	switches	identified	in	24	patients	with	multiple	sampling,	including	
patients	with	pre/post-chemotherapy	samples,	synchronous	samples	at	distinct	locations	
in	 the	 primary	 tumor,	 and/or	 paired	 primary	 and	 relapse/metastasis.	 The	 number	 of	
patients	with/without	molecular	switch	is	indicated	for	each	type	of	multiple	sampling,	
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and	 the	 transcriptomic	 switch	 is	 represented	 by	 a	 color	 code	 on	 the	 arrows.	 Bottom:	
Examples	 of	 histological	 heterogeneity	 matching	 transcriptomic	 group	 switches.	 c	
Projection	 of	 hepatoblastomas	 and	 non-tumor	 liver	 samples	 over	 two	 independent	
methylation	 components.	Hepatoblastomas	 are	 colored	 by	 their	 transcriptomic	group,	
and	samples	from	a	same	patient	are	linked	with	black	lines.	d	Association	of	intra-sample	
histological	 heterogeneity	 with	 transcriptomic	 groups.	 e	 Association	 of	 intra-tumor	
histological	heterogeneity	with	11p15.5	locus	alteration.	
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Figure	 4.	 Single-nucleus	 RNA-seq	 reveals	 molecular	 plasticity	 along	 tumor	
progression	 in	 one	 patient.	 a	Virtual	 copy-number	 profiles	 discriminate	 tumor	 and	
normal	cells.	In	agreement	with	WES	data,	all	tumor	cells	display	gains	at	1q,	2q,	5q	and	
15q	whereas	the	Xq	gain	is	specific	to	metastatic	cells.	b	Uniform	manifold	approximation	
and	 projection	(UMAP)	 of	 tumor	 nuclei	 in	 the	 primary	 tumor	 (top)	 and	 metastasis	
(bottom).	Mean	expression	of	marker	genes	for	each	differentiation	state	are	displayed	
with	a	color	code.	The	last	UMAP	on	the	right	shows	the	assignment	of	each	cell	cluster	to	
'Mesenchymal',	 'Liver	Progenitor'	or	 'Hepatocytic'	cell	 type	based	on	the	expression	of	
marker	genes.	c	Schematic	representation	of	genetic	and	non-genetic	evolution	in	patient	
#3981.	 LCA:	 Last	 Common	 Ancestor;	 M:	 Mesenchymal;	 LP:	 Liver	 Progenitor;	 H:	
Hepatocytic.	
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Figure	 5.	 Massive	 load	 of	 cisplatin-induced	 mutations	 in	 chemoresistant	
hepatoblastomas.	a	Single	base	substitution	(SBS)	signatures	identified	in	pediatric	liver	
cancers	(PLC).	Each	signature	is	displayed	according	to	the	96-substitution	classification	
defined	by	substitution	type	and	sequence	context	immediately	5′	and	3′	to	the	mutated	
base.	 b	 Unsupervised	 classification	 of	 65	 PLC	 genomes	 based	 on	 their	 mutational	
signature	 exposures.	 Clinical	 and	 molecular	 annotations	 are	 depicted	 below	 the	
dendrogram.	Bar	graphs	indicate	the	proportion	of	the	4	single	base	substitution	(SBS),	2	
doublet	base	substitution	(DBS)	and	5	indel	(ID)	signatures	in	each	sample.	c	Number	of	
subclonal	(left)	and	clonal	(right)	mutations	attributed	to	signature	SBS35	(cisplatin)	in	
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hepatoblastoma	samples	according	to	sample	type	(pre-chemotherapy	biopsy,	primary	
tumor	or	 relapse	/	metastasis)	 and	molecular	group	 (Hepatocytic	or	Mesenchymal	vs.	
Liver	 Progenitor).	d	Phylogenetic	 trees	 reconstructed	 for	 8	 HB	 patients	with	 primary	
tumors	 and	 relapses	 /	metastases	 analyzed	 by	WGS	 or	WES.	 The	 time	 and	molecular	
group	of	each	sample	is	shown	above	the	trees,	together	with	chemotherapy	treatment.	
Driver	 alterations	 are	 indicated.	 Branch	 lengths	 are	 proportional	 to	 the	 number	 of	
mutations	 acquired,	 with	 a	 color	 code	 indicating	 the	 contribution	 of	 each	 mutational	
signature.	
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Figure	6.	New	therapeutic	strategies	targeting	hepatoblastoma	based	on	molecular	
features.	a	Heatmap	representation	of	somatic	alterations	in	9	pediatric	liver	cancer	cell	
lines	(PL-CCL)	and	corresponding	patient	age	at	diagnosis	(Top).	b	Correlation	between	
sensitivity	to	cisplatin	assessed	with	area	under	the	curve	(AUC)	and	‘liver	progenitor’	7-
genes	expression	signature.	Color	gradient	intensity	reflects	levels	of	 ‘Liver	Progenitor’	
signature.	Pearson	correlation	test	was	performed.	c	Accumulation	of	SBS35	signature	in	
4/5	PL-CCL.	Trapezium	 indicates	 cell	passaging	and	 triangle	 symbolized	cell	 line	 limit	
dilution	and	clonal	expansion.	d	Correlation	between	sensitivity	to	neutralizing	antibody	
anti-IGF2	(AUC)	and	IGF2	expression	in	5	PL-CCL	(Pearson	test).	e	Trametinib	sensitivity	
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Figure 6
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(AUC)	 in	 9	 PL-CCL	 (top)	 and	 corresponding	 genetic	 alterations	 in	Ras	MAPK	pathway	
(bottom).	f	Volcano	plot	representing	differentially	expressed	genes	in	HB	belonging	to	
Hepatocytic	(H-hot	and	H-cold)	and	‘Liver	Progenitor’	transcriptomic	subgroups.	g	PLK1,	
BIRC5	 and	 CHEK1	 interactions	 and	 roles	 in	 cell	 cycle,	 DNA	 damage	 response	 and	
apoptosis.	 h	 Drug	 response	 assessed	 with	 AUC	 in	 9	 PL-CCL.	 Color	 gradient	 intensity	
reflects	 levels	 of	 ‘Liver	 Progenitor’	 signature.	 Pearson	 correlations	 are	 performed	
between	 AUC	 and	 levels	 of	 ‘Liver	 progenitor’	 signature.	 i	 Sensitivity	 to	 Cisplatin,	
Doxorubicin	 and	 BI-2536	 in	 vivo	 in	 HepG2	 xenografts	 from	 24	 nude	mice	 and	 j	mice	
weight	follow-up.	Mann-Whitney-	Wilcoxon	tests	were	performed	at	day	37.	
	
	
	


