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Abstract 

Background: After stroke, kinematic measures obtained with non‑robotic and robotic devices are highly recom‑
mended to precisely quantify the sensorimotor impairments of the upper‑extremity and select the most relevant 
therapeutic strategies. Although the ArmeoSpring exoskeleton has demonstrated its effectiveness in stroke motor 
rehabilitation, its interest as an assessment tool has not been sufficiently documented. The aim of this study was to 
investigate the psychometric properties of selected kinematic parameters obtained with the ArmeoSpring in post‑
stroke patients.

Methods: This study involved 30 post‑stroke patients (mean age = 54.5 ± 16.4 years; time post‑
stroke = 14.7 ± 26.7 weeks; Upper‑Extremity Fugl‑Meyer Score (UE‑FMS) = 40.7 ± 14.5/66) who participated in 3 
assessment sessions, each consisting of 10 repetitions of the ‘horizontal catch’ exercise. Five kinematic parameters 
(task and movement time, hand path ratio, peak velocity, number of peak velocity) and a global Score were computed 
from raw ArmeoSpring’ data. Learning effect and retention were analyzed using a 2‑way repeated‑measures ANOVA, 
and reliability was investigated using the intra‑class correlation coefficient (ICC) and minimal detectable change 
(MDC).

Results: We observed significant inter‑ and intra‑session learning effects for most parameters except peak velocity. 
The measures performed in sessions 2 and 3 were significantly different from those of session 1. No additional signifi‑
cant difference was observed after the first 6 trials of each session and successful retention was also highlighted for 
all the parameters. Relative reliability was moderate to excellent for all the parameters, and MDC values expressed in 
percentage ranged from 42.6 to 102.8%.

Conclusions: After a familiarization session, the ArmeoSpring can be used to reliably and sensitively assess motor 
impairment and intervention effects on motor learning processes after a stroke.

Trial registration The study was approved by the local hospital ethics committee in September 2016 and was regis‑
tered under number 05‑0916.
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Background
More than 40% of post-stroke patients display resid-
ual and permanent neurological upper extremity (UE) 
impairments [1]. It is essential to quantify these impair-
ments in order to assess functional loss and develop 
more effective therapeutic interventions.

The effectiveness of motor rehabilitation is tradition-
ally appraised using validated and standardized clini-
cal scales [2], such as the upper extremity Fugl-Meyer 
subscale (UE-FMS) [3]. However, clinical scales are 
not always appropriate to assess motor strategies dur-
ing movements, and they are not sensitive enough to 
capture the quality of sensorimotor performance or 
the effectiveness of therapeutic interventions [4]. They 
do not effectively distinguish between restitution and 
compensation [5, 6]. Some authors therefore recom-
mend using kinematic parameters provided by optoki-
netic, robotic or gravity-supporting devices to assess 
movements [5–10]. These parameters are thought to be 
more sensitive and provide more information on move-
ment performance and quality in the context of health 
and disease, helping to fill the gap related to the use of 
clinical scales.

Many robotic and non-robotic devices have been 
developed for UE rehabilitation after neurologi-
cal disorders such as stroke [11, 12], with the goal of 
increasing the intensity and control of therapies. The 
ArmeoSpring (developed by Hocoma, Inc) is a pas-
sive orthosis that assists the movements of patients’ 
joints, using a structure parallel to the mobilized UE. 
It also provides kinematic parameters that inform 
about movement speed, duration and trajectory [9, 
13], and thus could be used to assess movement effi-
cacy and smoothness [7, 14]. Based on clinical criteria 
for impairments and function, the effectiveness of the 
ArmeoSpring was demonstrated in the rehabilitation 
of patients with motor deficits related to cerebral palsy, 
multiple sclerosis and stroke [8, 15, 16].

Given the increasing use of such devices as assess-
ment tools, it is imperative to obtain better knowl-
edge of the psychometric properties of the parameters 
provided [17, 18]. Indeed, these parameters must be 
sensitive enough to detect subclinical changes, and 
the variations observed must reflect a decrease in the 
motor deficit and not be due to a learning effect of 
the task. Some studies have addressed these questions 
[19–22]. Up to now, only one study has investigated 
the reliability of kinematic parameters provided by the 
ArmeoSpring [13]. Rudhe et  al. demonstrated fair to 

good reliability of the movement workspace obtained 
with the ArmeoSpring in healthy participants and in 
patients with spinal cord injury [13]. Using mostly 
robotic devices, some authors have shown no or little 
learning effect [19–21] and advocated a single practice 
session to shorten the learning process. Other authors 
have demonstrated the existence of learning processes 
during mechanized training with the ArmeoSpring in 
post-stroke patients [23], and in children with cerebral 
palsy [16]. These latter studies used the vertical catch 
exercise, with only one or very few kinematic param-
eters used to assess motor learning and performance 
with the ArmeoSpring. Furthermore, motor learning 
is a fundamental process in rehabilitation and recovery 
post-stroke [6]. An increasing number of authors have 
suggested the use of kinematic parameters obtained 
with robotics to also assess motor learning and control 
in the contexts of health and disease. However, besides 
skill acquisition, motor learning also implies persis-
tence of the changes brought about (i.e. retention) [24]. 
It is essential to at least demonstrate that the skills 
acquired are still present and measurable at a later time 
point. The majority of studies did not, however, address 
this question appropriately [24].

There is no consensus on the kinematic parameters 
to be used for UE assessment and little is known about 
their ability to identify learning during the post-stroke 
recovery phase. As far as we know, no study has inves-
tigated the extent of learning and its successful reten-
tion, together with the reliability of the parameters 
provided by the ArmeoSpring during the performance of 
a 2D-horizontal catch assessment exercise after a stroke. 
Thus, our main objective was to assess the learning effect 
and the reliability of the repeated measures of selected 
parameters obtained with the ArmeoSpring in post-
stroke patients during their routine clinical care.

Methods
Participants
Thirty hemiparetic post-stroke patients were consecu-
tively recruited during the course of their routine care 
in the Neurorehabilitation department of the Tou-
louse University Hospital. The routine care is standard-
ized in accordance with the most recent guidelines for 
adult stroke rehabilitation and recovery [25] and with 
the French health authority [26]. Given the preliminary 
nature of this study for stroke, the sample size seemed 
appropriate and consistent with other studies [13]. 
All the patients included were naïve to the use of the 

Keywords: Learning, Hemiplegia, Exoskeleton device, Psychometrics, ArmeoSpring
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ArmeoSpring and gave their written consents in accord-
ance with the Declaration of Helsinki. The study was 
approved by the local hospital ethics committee in Sep-
tember 2016 (n°05-0916).

The inclusion criteria were: (i) a first ischemic or hem-
orrhagic stroke as diagnosed by a CT scan or MRI that 
occurred (ii) more than 3  weeks ago, (iii) an UE-FMS 
score between 10 and 44/66, and (iv) the presence of at 
least 10° voluntary movement at the shoulder and elbow. 
The exclusion criteria were: (i) the presence of apraxia, 
severe unilateral spatial neglect, (ii) UE pain limiting 
movement, and (iii) lack of stability of the trunk while 
seated or sitting position not recommended.

Study design
Each patient made 4 visits over 2  days with the same 
unique rater who was an advanced user of the Arme-
oSpring. During the pre-inclusion visit, the patients were 
informed by the rater about the protocol details, and 
the inclusion/exclusion criteria meeting was verified. 
If included, each patient made 3 visits on 3 consecutive 
half-days. During the first visit, the patient was comfort-
ably seated on the ArmeoSpring, which was adjusted 
to allow movements of the UE in a large tridimensional 
workspace required to perform the assessment exercises 
(Fig.  1). During the second and third visits, the patient 

was placed on the device in the same way and performed 
the same series of exercises as during the first visit.

The ArmeoSpring device
The ArmeoSpring (Hocoma, Switzerland), is a pas-
sive exoskeleton which provides UE weight support and 
allows early training of motor skills [27]. It has six degrees 
of freedom and can be attached to the UE at the level of 
the arm, forearm and wrist. It thus allows self-initiated 
arm movements in a large tridimensional workspace. 
Support against gravity is provided by adjustable springs 
for the upper arm (9 levels, from A, no tension exerted 
and minimum support, to I, maximum tension and sup-
port) and the forearm (5 levels from A to E). It is supplied 
with the Armeocontrol 1.22 software, which provides 
many functional exercises, simulated in a virtual envi-
ronment with auditory and visual feedback. The software 
also allows recording kinematic parameters via seven 
sensors positioned on the different exoskeleton joints, 
and provides all the exoskeleton joint angles, the effector 
location in a tridimensional workspace (used to control a 
cursor on a screen) and the grip pressure. Several assess-
ment exercises are available, with different levels of dif-
ficulty. Difficulty can be modulated by the workspace size 
and the number of targets to be caught.

Fig. 1 Experimental setup. a Installation of the patient performing a training exercise of the impaired upper limb with the ArmeoSpring. b 
Screenshot of the 2D‑horizontal catch assessment exercise used in this study
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Experimental procedures
All the patients were seated in the same standardized 
and ergonomic central position, in front of the com-
puter screen (Fig.  1a). The exoskeleton was adjusted to 
the length of the arm and forearm, but the same level of 
weight support was set for all the patients (medium sup-
port, level E for the arm, and level C for the forearm). 
Initially, the patient’s shoulder was placed between 0 and 
20° elevation and elbow at 90° flexion. Patient-specific 
settings on the ArmeoSpring were retained between the 
three consecutive sessions.

Each testing session lasted between 20 and 30  min, 
depending on the patient’s motor impairment. Each 
patient performed with their paretic upper limb 10 rep-
etitions (trials) of the same assessment exercise (the 
2D-horizontal catch, Fig.  1b) separated by 30  s of rest. 
The 2D-horizontal pointing task required moving the 
cursor (corresponding to the patient’s hand) in order to 
catch the targets (represented by red billiard balls) that 
appeared sequentially on the screen. Depending on the 
position of the target in the workspace, the patients had 
to perform shoulder movements or a combination of 
shoulder and elbow movements in order to reach the 
most distant targets. Each patient was instructed to move 
as accurately as possible and at a self-selected speed, 
while being aware that they had a time limit of 10  s to 
catch each ball. When a ball was caught, it disappeared 
and another appeared at a new fixed location. During a 
trial, 12 balls had to be caught and the time to catch a ball 
was limited to 10 s; if this period was exceeded, the ball 
disappeared and another ball appeared at the new loca-
tion. For this study, the difficulty of the 2D-horizontal 
catch exercise was set to the easiest level (level 1) for all 
the patients, with a predefined number of targets (12 tar-
gets) and a horizontal workspace size of 40 × 30 cm.

Each patient was subjected to three repetitions of the 
testing session, resulting in 30 trials per patient. The 
target positions and sequence order remained fixed 
throughout the 3 visits. The between-patient standardi-
zation of the protocol settings (compensation level, exer-
cise difficulty and rest period) allowed attributing the 
potential differences between patients to performance 
changes rather than changes related to different settings. 
The sessions were controlled independently by the rater.

Kinematic assessment
A unitary movement was defined between two consecu-
tive targets and considered only if both balls, the previ-
ous and the next, were successfully caught. During a trial, 
a maximum of 12 balls had to be caught, thus representa-
tive of 12 consecutive unitary movements.

The Armeocontrol software records raw data, spe-
cific to the assessment exercise, at a frequency of 64 Hz, 

corresponding in this case to the hand position in the 
horizontal plane (XY), and the time when the target 
appeared, was caught and disappeared. From the raw data 
file, we computed kinematic parameters with a custom 
code implemented on Matlab software (see Additional 
file  1: S1), freely downloadable at https ://githu b.com/
david gasq/Armeo _2DHor izCat ch.git. These parameters 
were chosen because, based on the recommendations by 
Schwarz et  al. [5], they are relevant to explore different 
dimensions of the movement performed.

The task time (TaskTime in seconds, s) was the dura-
tion needed to complete the exercise (the maximal dura-
tion was 120 s). The movement time (MovementTime, s) 
was the duration given to catch one ball (10 s maximum 
per ball) and reflected the efficiency of movement. The 
peak velocity (PeakVel, cm/s) was the maximal absolute 
velocity recorded during each movement. The hand path 
ratio (HPR, dimensionless) was the ratio between the real 
path in the horizontal plane and the shortest possible one 
(a value ranging between 1 and infinity) and reflected 
movement efficiency. The number of velocity peaks 
(nPeak) was the number of peaks, defined as the number 
of times the derivative of velocity changes sign from posi-
tive to negative, and which reflected the smoothness of 
the movement. The Score (%) corresponded to the game 
score, computed as the number of balls reached divided 
by the total number of balls that could be reached, and 
summarized the efficiency of the movement.

The Armeocontrol software systematically provided 
a summary report where 3 parameters among those 
described above were given: HPR, TaskTime and Score.

Data analysis
The statistical analyses were performed using Statis-
tica software (StatSoft. Inc. Version 10). The significance 
threshold of the p-value was set at 0.05. For each trial 
and each patient, the parameter data were averaged from 
all the successful unitary movements (a maximum of 12 
balls). The data were also averaged for each session (10 
consecutives trials).

We first ensured that the kinematic parameters of the 
summary report and those calculated with the custom 
code were consistent (paired t-tests not statistically sig-
nificant, see Additional file  1: Figure S2). Although we 
tried to standardize the starting position at the begin-
ning of the exercise, we observed that not all the patients 
started from the same position. Some patients had their 
hands already almost placed over the ball. Accordingly, 
the first trajectory (corresponding to the movement 
which starts from the 1st ball caught) was excluded 
from the analysis. The number of failed attempts was 
also significantly decreased for the target 1, which sup-
ports our observation (see Additional file  1: Figure S3). 

https://github.com/davidgasq/Armeo_2DHorizCatch.git
https://github.com/davidgasq/Armeo_2DHorizCatch.git


Page 5 of 12Brihmat et al. J NeuroEngineering Rehabil          (2020) 17:130  

Consequently, only the last 11 unitary movements were 
considered to compute the parameters. We detected out-
liers using the Tukey method [28] and removed them 
from the statistical analysis.

Secondly, the learning effect was studied using a 2-way 
repeated measures ANOVA (rm-ANOVA, 10 trials  *  3 
sessions) to determine if differences existed between the 
ten trials of each of the three sessions. The dependent 
variables were tested for non-sphericity using Mauchly’s 
test and those not meeting the sphericity assumption 
were adjusted using the Greenhouse–Geisser correction 
and corrected p-values were reported instead. If signifi-
cant, a Tukey post-hoc analysis was applied to analyze 
significant main effects and interactions. If no trial * ses-
sion interaction was found, we considered the same trial 
effect across sessions. The retention of the kinematic 
parameters was inferred from the rm-ANOVA results 
with the between-session comparisons. Indeed, the data 
obtained from the last day of training (S3) were com-
pared to those obtained at the end of the previous day, 
during S2.

Thirdly, reliability was studied specifically on the aver-
aged data of the sessions and trials for which we con-
sidered there was no longer an obvious learning effect 
(the last four trials of S2 and S3, see “Results” section 
for details). The relative reliability was evaluated using 
the intraclass correlation coefficients (ICC) that provide 
information on inter- and intra-session reliability. We 
used the  ICC2,k because we analyzed averaged data which 
were independent from the rater [29]. An ICC ≥ 0.75 was 
considered excellent, moderate if between 0.40 and 0.75 
and weak if < 0.40 [30].

The  MDC95 (minimal detectable change) represents 
the magnitude of change necessary to exceed the meas-
urement error of 2 repeated measures at a confidence 
interval of 95%  (CI95%) [31]. It integrates the variability of 
the measurement related to the patient, the tool and also 
possible systematic biases between test–retest sessions, 
such as a learning effect. A low MDC corresponds to a 
better theoretical capability of the parameter to detect 
a real change. First, the standard error measurement 
(SEM) was computed, considering the systematic dif-
ferences between the test and retest, with the following 
formula:

where �(intra)2 represented the variance of individ-
ual differences between the test–retest measurements 
and (residual)2; the residual variance of the interaction 
between intra- and inter-individual differences obtained 
from a repeated ANOVA [31]. Then, the  MDC95 was 
computed as follows [32]:

SEM =

√

σ(intra)2 + σ(residual)
2

MDC95 was also expressed as a percentage  (MDC%) so 
that it could be independent of the measurement unit 
and comparable across the kinematic parameters, thus:

where the mean is the parameter averaged for all the 
observations across the selected trials of two sessions. 
Finally, the  CI95 of the mean difference was computed 
between the test and retest measures to identify any sys-
tematic trends or outliers, and no residual systematic bias 
was considered if it included the zero [33].

Results
All the 30 patients performed the 3 assessment sessions 
under the rater’s control. Only one patient (#27) per-
formed 6 trials instead of 10 in each of the 3 sessions, 
due to fatigue. The mean age was 54.5 ± 16.4  years; the 
post-stroke time was 14.7 ± 26.7 weeks. The average UE-
FMS was 40.7 ± 14.5 [from 15 to 65]. The detailed data 
for each patient are presented in Table 1.

Learning effect
Most of the parameters showed an intra- and/or inter-
session learning effect, independent from each patient’s 
initial performance (results not shown), corresponding to 
a significant improvement of the parameters across tri-
als and/or sessions, respectively. The ANOVA values and 
the significant differences between sessions and/or trials 
are reported in Table 2. The learning curves are shown in 
Fig. 2.

A session effect was observed for most parameters, 
except for PeakVel and Score (Table 2). Tuckey post-hoc 
tests revealed that the session effect occurred mainly 
between S3 and S1 for TaskTime (p = 0.02) and Move-
mentTime (p = 0.0006) and between S2/S3 and S1 for 
HPR (p = 0.026 and p = 0.0005 respectively) and nPeak 
(p = 0.037 and p = 0.0004 respectively). A trial effect 
was also observed for nPeak (p < 0.05, Table  2) and the 
learning effect was no longer observed after the 6th trial 
(four last columns of the Table 2). For Score, only a trial 
effect was highlighted between the first trial and the sec-
ond on one part, and the 5th to the 10th on the other 
part (p < 0.05). No session or trial effect was shown for 
PeakVel.

Learning occurred mainly between S1 and S2/S3 
(Fig.  2), which made us consider retention between 
S2 and S3. Indeed, no significant difference (p > 0.05, 
Table  2, Fig.  2) was observed between the kinematic 
parameters measured in S3 and those measured at the 

MDC95 = 1.96× SEM ×
√
2

MDC% =
MDC95

mean
× 100
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Table 1 Patient characteristics

F female, L left, M male, R right, UE-FMS upper extremity Fugl Meyer scale

Patients Gender Age (years) Dominant hand Post-stroke time 
(weeks)

Paretic side UE-FMS (/66)

1 M 74 R 4 L 29

2 M 69 R 3 L 30

3 M 54 R 22 L 24

4 F 76 R 8 L 42

5 M 49 R 16 L 48

6 M 23 L 18 R 57

7 F 70 R 10 L 64

8 M 59 R 6 R 15

9 M 61 R 5 L 39

10 M 62 R 8 L 38

11 F 34 R 11 R 15

12 M 48 R 7 R 33

13 F 76 R 20 L 36

14 F 72 R 7 R 51

15 F 33 R 9 R 22

16 M 46 R 3 R 54

17 M 76 R 14 R 36

18 M 53 R 7 R 28

19 F 47 R 10 L 31

20 M 65 R 153 L 28

21 M 35 R 3 R 48

22 F 38 R 10 R 48

23 M 33 R 11 R 65

24 M 69 L 15 L 53

25 M 67 L 4 L 42

26 M 43 R 5 L 44

27 M 52 R 20 L 23

28 M 59 R 5 L 55

29 F 70 R 8 R 58

30 M 22 R 66 R 64

Table 2 Learning effect analysis with a two-way repeated measures ANOVA

HPR, hand path ratio (dimensionless); MovementTime, movement time; nPeak, number of velocity peaks; PeakVel, peak velocity; Score, the game score corresponding 
to the number of balls reached divided by the total number of balls that could be reached; S1, session 1; S3, session 3; TaskTime, task time; T1 to T10, trials 1 to 10. The 
second column report the session(s) significantly different from session 1 (S1). The columns of the intra-session effect report the trial(s) significantly different from 
each other

Inter-session effect 
(among 3 sessions)

Intra-session effect (among 10 trials)

S1 F-value; p-value F-value; p-value T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

TaskTime (s) S3 4.23; p < 0.05 7.59; p < 0.0001 T2–T10 – T9 – – – – – – –

MovementTime(s) S3 9.71; p < 0.001 9.96; p < 0.0001 T7–T10 T7–T10 T9–T10 T9–T10 T9–T10 T9–T10 – – – –

PeakVel (cm/s) – – – – – – – – – – – – –

HPR S2/S3 10.69; p < 0.001 5.74; p < 0.0001 T9–T10 T6, T9–T10 T9 – T9 – – – – –

nPeak S2/S3 11.16; p < 0.001 10.76; p < 0.0001 T4, T6–T10 T3–T4, T6–T10 T10 – – – – – – –

Score (%) – – 3.59; p < 0.01 T2, T5–T10 – – – – – – – – –



Page 7 of 12Brihmat et al. J NeuroEngineering Rehabil          (2020) 17:130  

end of the previous day, in S2, thus revealing the success-
ful retention of the skills acquired for all the kinematic 
parameters.

Additionally, the Additional file  2: Figure S4 repre-
sents the individual learning curves obtained from two 
patients’ data (patient #21 and #29). These patients had 
mild residual motor deficits (as reflected by their UE-
FMS > 47/66 [34], Table 1). Their performance in the task 
are similar when looking at the TaskTime or Movement-
Time (Additional file 2: Fig. S4.A and B) and Score (reach-
ing a score of 100/100, Additional file 2: Fig. S4.F) but not 
so much when looking at the PeakVel, HPR and nPeak 
parameters (Additional file 2: Fig. S4.C–E respectively).

Reliability
Considering the previous ANOVA results and the graph-
ical observation of the evolution of reliability (see Addi-
tional file  2: Figure S5 for details), data from trials 7 to 
10 (the last 4 trials) of sessions 2 and 3 were selected for 
the reliability analysis. The reliability data are reported in 
Table 3. All the parameters, except MovementTime, HPR 
and nPeak, had excellent relative reliability, as expressed 
by the  CI95 lower bound of the ICC ≥ 0.75.

The  MDC% values were heterogeneous from one 
parameter to another, ranging from 43.1 to 109.8%, with 
only PeakVel and Score showing a  MDC% < 50%. For 
TaskTime and nPeak, a residual systematic bias (i.e.  CI95 

Fig. 2 Learning curves of the averaged parameters (± SD) showing the evolution of a specific parameter over the trials (1 to 10) for the 3 sessions. a 
Task time (TaskTime, s). b Movement time (MovementTime, s). c Peak velocity (PeakVel, cm/s). d Hand path ratio (HPR, dimensionless). e Number of 
peak velocity (nPeak). f Game score (Score, %). Between‑session significances are represented with asterisks (*p < 0.05; **p < 0.01; ***p < 0.001) and 
within‑session significances are reported in Table 2

Table 3 Reliability data for the 30 patients computed from the last 4 trials of sessions 2 and 3

ICC, intraclass correlation coefficient (lower and upper-bound of the 95% confidence interval  [CI95%]);  MDC95, minimal detectable change values computed with a 
95% confidence interval;  MDC%, minimal detectable change values expressed as a percentage of the mean; mDiff, mean difference computed between test and retest 
measures (lower and upper-bound of the  CI95%); Mean S2/S3, mean (standard deviation [SD]) value of parameters for session 2 (S2) and 3 (S3)

Mean S2 (SD) Mean S3 (SD) ICC  (CI95%) MDC95 MDC% mDiff  (CI95%)

TaskTime (s) 58.95 (31.73) 53.82 (31.16) 0.97 (0.91 to 0.99) 57.94 102.77 − 5.13 (− 9.13 to − 1.13)

MovementTime (s) 3.20 (0.74) 2.97 (0.77) 0.77 (0.47 to 0.90) 2.58 83.78 − 0.24 (− 0.50 to 0.03)

PeakVel (cm/s) 28.32 (9.97) 27.61 (9.29) 0.93 (0.83 to 0.97) 12.06 43.11 − 0.71 (− 2.85 to 1.43)

HPR 1.91 (0.39) 1.79 (0.36) 0.77 (0.47 to 0.90) 1.28 68.92 − 0.12 (− 0.25 to 0.02)

nPeak 6.25 (1.58) 5.61 (1.34) 0.78 (0.45 to 0.91) 6.51 109.77 − 0.64 (− 1.12 to − 0.16)

Score (%) 70.66 (36.81) 73.46 (36.90) 0.99 (0.97 to 0.99) 32.84 45.57 2.80 (− 0.003 to 5.59)
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of mDiff not including zero) can be seen, reflecting an 
improvement between sessions 2 and 3.

Discussion
In this pilot study, kinematic parameters computed from 
data provided by the ArmeoSpring exoskeleton were ana-
lyzed to investigate the relevance of these parameters in 
the assessment of post-stroke hemiplegic patients dur-
ing a 2D-horizontal catching exercise. The results high-
lighted an intra- and inter-session learning effect for all 
the parameters except PeakVel. The reliability analysis, 
applied to data without a priori learning, showed that 
PeakVel and Score had the lowest margin of error.

Learning effect
We observed an inter- and intra-session learning effect 
for the parameters MovementTime, TaskTime, HPR and 
nPeak and an intra-session effect only for the Score. This 
result highlights the importance of the learning effect, 
even most studies reported little or no learning effect 
for the kinematic parameters obtained with robotic and 
non-robotic devices [19–21, 35]. This difference may be 
explained by the fact that, unlike us, the authors of the 
latter studies used robotic devices. Such devices provide 
some assistance during movements, thus maybe limiting 
the learning process during the performance of the task. 
It has already been described that physical assistance hin-
ders motor learning of a simple walking balance task in 
healthy subjects [36]. Furthermore, in order to shorten 
the learning process, the authors preconized a single 
practice session before the real training sessions, which 
may have also limited the learning effect observed dur-
ing the latter. MovementTime was the parameter most 
sensitive to the learning effect, showing a significant 
decrease of the time needed to catch a ball across trials 
and sessions. This parameter is used to globally assess the 
patient’s ability to perform the movement [7], reflecting 
movement efficiency [5], and is classified in the "activ-
ity" domain of the ICF [4]. Given the importance of this 
learning effect, it seems necessary to repeat the exercise 
at least ten times per session, and consider only the last 
four trials of the second session to obtain a consistent 
result. The entire first session and the first six trials of 
the following sessions should not be considered because 
MovementTime continues to decrease, independently of 
any intervention or recovery. nPeak, used to character-
ize the smoothness of the movement [4, 5] and which 
has been shown to decrease following robotic train-
ing [37], is also sensitive to a persistent inter- and intra-
session learning effect. This learning effect was already 
described in post-stroke patients during a frontal plane 
reaching task with the ArmeoSpring [23]. In this latter 
study, the fast and early improvement of this parameter 

was considered to reflect the improvement of perfor-
mance due to learning processes, while its late and slower 
improvement was considered to reflect a reduction of UE 
motor impairments. However, in view of the design of 
our study, which took place over only 2 days, we cannot 
extrapolate this latter result. The parameters that showed 
a persistent learning effect over sessions may be used to 
assess the effect of a specific therapeutic intervention on 
learning processes that are known to occur in post-stroke 
settings [38, 39].

The PeakVel and Score parameters were less sensi-
tive to the learning effect. PeakVel, which evolves with 
time post-stroke to match healthy patient values [12], 
showed a concurrent validity with the UE-FMS score 
[9] and moderate quality of evidence regarding its reli-
ability [5]. However, within a session, the Score stabilized 
quickly after 1 trial. It was shown to correlate with wrist 
function [40] and reflects movement efficacy [5]. Conse-
quently, these two parameters should be used to assess 
patient performance/impairment and motor recovery 
at a given time or over time. Although considered simi-
lar, MovementTime and PeakVel showed different sensi-
tivity to the learning effect. This may be due to the fact 
that these parameters reflect different aspects of move-
ment properties. As already mentioned, MovementTime 
reflects a global dimension of the temporal efficiency of a 
movement [5, 17]. This parameter is correlated and pre-
dicts well the residual motor deficits of stroke patients as 
assessed with the UE-FMS [41], thus it is recommended 
for the evaluation of motor recovery and robot-assisted 
rehabilitation after stroke [4, 42]. PeakVel is a speed met-
ric that reflects the first (i.e. ballistic) phase of a move-
ment, its strategy and ease [17]. Contrary to movement 
duration, PeakVel showed weak correlation with clinical 
scales [21, 42] and less sensitivity to changes [37, 43]. 
These arguments may explain their different sensitivi-
ties to the learning effect. Whereas patients continued to 
perform the movements in an increasingly shorter time, 
PeakVel remain unchanged and the time of occurrence of 
the peak velocity during the movement increased across 
session (see Additional file 2: Figure S6), thus revealing a 
right-shift of the velocity profile. This result is in favor of 
the improvement of the corrective and controlled phase 
of the movement across sessions [44, 45]. Additional 
file 2: Figure S4 also highlights the importance of a kin-
ematic assessment with different parameters from those 
computed by the Armeocontrol to highlight subtle differ-
ences between subjects, not shown by UE-FMS, or due to 
recovery and/or therapeutic intervention.

Retention refers to the persistence of the performance 
acquired during the training period. This phenomenon 
is an important part of motor learning [24]. The gains in 
all the kinematic parameters chosen were retained for at 
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least 24 h (as revealed by the absence of significant dif-
ferences between S2 and S3). These results revealed the 
successful inter-session retention of the 2D-horizontal 
exercise with this paradigm in our stroke population and 
are in line with previous studies [16].

Reliability
All the parameters selected showed overall an excellent 
(TaskTime, PeakVel and Score) or moderate (Movement-
Time, HPR and nPeak) relative reliability [30]. These 
results are consistent with those of other studies investi-
gating this type of task in stroke populations [19, 46, 47]. 
Thus, they may be appropriate for intra-individual com-
parisons [35].

MDC95 and  MDC% are useful in determining whether 
a change of a parameter is metrically real or if it is due to 
a measurement error. Thus, the lower the measurement 
error, the greater the reliability [47–49]. For a patient, 
a significant improvement may therefore be suggested 
when the improvement of the parameter exceeds the 
 MDC95 values reported in Table 3.  MDC% values ranged 
from 42.6 to 109.8%, indicating that some parameters 
require larger variations than others to highlight real 
changes. For TaskTime, its variation must exceed 102% 
to indicate a real change, which is congruent with the 
literature [17, 19, 47, 50]. For example, in a study assess-
ing stroke patients performing a simple forward-reaching 
task measured with an optical tracking system,  MDC% 
ranged from 7.4 to 98%, depending on the kinematic 
parameter, the task instructions and the analysis method 
used [47]. For the HPR, the  MDC% ranged between 7.4 
and 28.9%, whereas the values ranged between 24.4 and 
67.6% for the nPeak [47]. The higher values found in our 
study for these parameters could be explained by the 
method of MDC computation we used which, unlike 
[47], incorporated the presence of a systematic bias 
between tests and retests [31]. Although we have shown 
that there are still systematic bias residues (i.e. learning 
effect) when calculating the reliability between sessions 2 
and 3, our MDC values are higher but may better reflect 
the reality of clinical practice.

Important considerations and limitations
Since we wanted unrestricted arm movements, the exo-
skeleton was unlocked at the level of shoulder and elbow. 
Sometimes, the hand was directly located at the first ball 
position and therefore the movement observed did not 
reflect the real one. Consequently, in our study, the data 
were averaged over 11 consecutive movements and not 
12 as designed in the horizontal catching task, and as the 
Armeocontrol software computes kinematic parameters.

We investigated the psychometric properties of certain 
carefully chosen kinematic parameters based on a recent 

review [5], that represent all the dimensions of a move-
ment. The kinematic parameters were slightly different 
(although not significantly) from those provided in the 
ArmeoSpring report (see Additional file 1: Figure S2), but 
computed with a stricter and more rigorous methodol-
ogy (removal of the first target, trajectories considered 
only if the departure and arrival targets are reached). This 
may be used to administer a short assessment protocol 
to post-stroke patients with the ArmeoSpring, but could 
also limit its ease of use in routine care by a clinician. To 
exceed these limits, we have made available to the com-
munity the script used to calculate the parameters (see 
Additional file 1: S1).

Depending on the research questions and hypothesis, 
some parameters may be more appropriate than others to 
capture movement patterns. As demonstrated, we must 
be careful in the interpretation since the initial param-
eter value may also depend on learning processes that are 
relatively independent from the impairment reductions 
[23]. In our study, learning occurred mainly between ses-
sion 1 and sessions 2 and 3, and until the sixth repetition 
for some parameters. Consequently, in similar conditions 
and particularly for the parameters MovementTime, Task-
Time, HPR and nPeaks, we suggest considering the first 
session (consisting of 10 repeated trials) as a session of 
familiarization with the device and the task to avoid data 
corruption by learning processes. For the learning effect 
to be minimized, the actual assessment session should 
include a minimum of 1 to 6 trials, depending on the 
parameter used (see Table  2). The measurement error 
data computed in our study are applicable for judging a 
change over time (e.g., pre-post treatment) only if 10 tri-
als are performed and the last 4 averaged. However, some 
MDC values were still high and variable across param-
eters, with a systematic bias for some of them. It may 
therefore be more relevant to identify for each parameter 
a specific number of trials per session to overcome the 
learning effect observed.

We cannot exclude the influence of the exoskeleton 
support on the results since some devices are known 
to affect the validity of kinematic data [9, 51]. However, 
since the ArmeoSpring is a passive orthosis, we can 
assume that it was limited. A comparison with the kin-
ematic parameters obtained during the same task but 
without weight support and with a free UE may appropri-
ately address this question.

Unfortunately, we were not able to assess the suc-
cessful transfer or generalization of the task, which is 
another important aspect of motor learning. A transfer 
test is usually administered after the training period and 
assesses the skill with another effector or a skill that was 
not practiced [24], thus revealing the effects of learn-
ing on untrained effectors/contexts/tasks. It would be 
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interesting to carry out further studies to evaluate reten-
tion over a much longer period of time and generaliza-
tion to other functionally relevant tasks [52, 53].

Conclusions
This study demonstrated that the ArmeoSpring may be 
effectively used for a reliable, objective and quantitative 
assessment of upper-extremity motor and functional 
impairments, and to assess therapeutic effects on motor 
learning in post-stroke patients. The results provided 
greater precision for structuring an assessment session 
with the device, depending on the research question. An 
initial session with a specific number of trials (depend-
ing on the parameter) must be performed to allow the 
patient to familiarize themselves with the procedure, 
before carrying out the actual assessment sessions. Cer-
tain parameters such as PeakVel and Score may be used 
to assess performance at a specific time whereas Task-
Time, MovementTime, HPR and nPeak may be used to 
assess the effect of specific interventions on learning 
processes. This preliminary study confirms the impor-
tance of such studies aimed at standardizing the use of 
kinematic assessment, and emphasizes the relevance of 
using such devices to track and highlight subtle changes 
and progress due to learning, recovery and the adminis-
tration of therapeutic interventions.
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Additional file 1. Additional methodological file. Additional material 
S1. Custom Matlab code. The Matlab code used for the calculation of kin‑
ematic parameters, available on GitHub website. Figure S2. Box plot com‑
parison between kinematics calculation methods. Comparison between 
the averaged parameter values provided in the summary report of the 
ArmeoSpring (Armeocontrol Software) and those calculated with the 
Matlab code (custom code). Statistical results of the paired t‑tests for the 
hand path ratio (A. HPR), Task Time (B. TaskTime in seconds) and the Score 
(C. Score in percentage) are reported on the figure. Figure S3. Graphical 
representation of the average number of failed attempts to catch the 
consecutive balls (targets 1 to 12). Statistical parameters of the ANOVA are 
shown below the graph. The number of failed attempts to catch target 1 
is significantly lower compared to the other targets (*p < 0.0001).

Additional file 2. Additional results file. Figure S4. Learning curves of two 
example patients’ data (#21 and #29) showing the evolution of a specific 
parameter over the trials (1 to 10) for the 3 sessions. A. Task time (TaskTime, 
s). B. Movement time (MovementTime, s). C. Peak velocity (PeakVel, cm/s). 
D. Hand path ratio (HPR, dimensionless). E. Number of peak velocity 
(nPeak). F. Game score (Score, %). Figure S5. Evolutions of Minimal Detect‑
able Change (MDC, dashed lines) and Intraclass Correlation Coefficient 
(ICC, solid lines) according to the number of trials (of sessions 2 and 3), tak‑
ing into account the calculation of reliability (1: only the 10th trial, to 10: 
the 10th to the 1st trial). Different parameters are represented by different 
colors and shapes (black (■): peak velocity, gray (♦): score, orange (●): 
number of peaks, blue (▲): task time, green (⁃): movement time, yellow 
(▬): HPR). Figure S6. Learning curves of the averaged time of occurrence 
of the peak velocity during the movement expressed in percentage 

(PercPeakVel (%) ±SD), showing the evolution of this parameter over the 
trials (1 to 10) of the 3 sessions. Between‑session significance is repre‑
sented with asterisks (* p < 0.05). No significant trial effect was observed.
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