
HAL Id: inserm-03187595
https://inserm.hal.science/inserm-03187595

Submitted on 1 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Delivery of cancer therapies by synthetic and
bio-inspired nanovectors

Tina Briolay, Tacien Petithomme, Morgane Fouet, Nelly Nguyen-Pham,
Christophe Blanquart, Nicolas Boisgerault

To cite this version:
Tina Briolay, Tacien Petithomme, Morgane Fouet, Nelly Nguyen-Pham, Christophe Blanquart, et al..
Delivery of cancer therapies by synthetic and bio-inspired nanovectors. Molecular Cancer, 2021, 20
(1), pp.55. �10.1186/s12943-021-01346-2�. �inserm-03187595�

https://inserm.hal.science/inserm-03187595
https://hal.archives-ouvertes.fr


REVIEW Open Access

Delivery of cancer therapies by synthetic
and bio-inspired nanovectors
Tina Briolay†, Tacien Petithomme†, Morgane Fouet, Nelly Nguyen-Pham, Christophe Blanquart and
Nicolas Boisgerault*

Abstract

Background: As a complement to the clinical development of new anticancer molecules, innovations in
therapeutic vectorization aim at solving issues related to tumor specificity and associated toxicities. Nanomedicine is
a rapidly evolving field that offers various solutions to increase clinical efficacy and safety.

Main: Here are presented the recent advances for different types of nanovectors of chemical and biological nature,
to identify the best suited for translational research projects. These nanovectors include different types of
chemically engineered nanoparticles that now come in many different flavors of ‘smart’ drug delivery systems.
Alternatives with enhanced biocompatibility and a better adaptability to new types of therapeutic molecules are
the cell-derived extracellular vesicles and micro-organism-derived oncolytic viruses, virus-like particles and bacterial
minicells. In the first part of the review, we describe their main physical, chemical and biological properties and
their potential for personalized modifications. The second part focuses on presenting the recent literature on the
use of the different families of nanovectors to deliver anticancer molecules for chemotherapy, radiotherapy, nucleic
acid-based therapy, modulation of the tumor microenvironment and immunotherapy.

Conclusion: This review will help the readers to better appreciate the complexity of available nanovectors and to
identify the most fitting “type” for efficient and specific delivery of diverse anticancer therapies.
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Introduction
Cancer causes approximately 10 million deaths per
year worldwide for around 18 million new cases [1].
Advanced understanding of cancer biology and continuous
improvement of treatments such as radiotherapy, chemo-
therapy and more recently immunotherapy have steadily
ameliorated patient survival over the years. In many cases,
these treatments remain associated with adverse effects
and limited efficacy due to a lack of tumor specificity.
Resistances to single treatments are commonly addressed
by combination therapies that can further increase the risks
of life-threatening toxicities. Moreover, some categories of

molecules such as hydrophobic drugs, radioisotopes, toxins
or nucleic acids cannot be injected systemically to patients
because of their instability or of extensive off-target effects.
These limitations can be overcome through vectorization
using nanocarriers that will increase drug solubility and
bioavailability, improve the targeting of the cancer micro-
environment, augment local drug concentration in tumors
and potentiate the efficacy of therapeutic combinations
[2, 3] (Fig. 1).
Specific targeting, which is key to increase treatment

efficacy while reducing detrimental off-target effects,
remains a major scientific challenge in multiple areas of
therapeutic research. In cancer therapy, vectorization
approaches have recently diversified with the development
of new families of nanovectors (1 to 1,000 nm) created by
chemical engineering (e.g. nanoparticles) [3] or derived
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from the biological world (e.g. bacteria, viruses, extracellu-
lar vesicles) [4]. Although this adds to the complexity of
drug development, efficient vectorization appears as
essential to further improve the safety and efficacy of both
current and future cancer therapies. In this review, we
chose to focus on nanovectors that are able to protect and
to carry therapeutic payloads to tumors following a sys-
temic injection. This does not include antibody-mediated
vectorization [5], cancer vaccination strategies [6] or
vectorization for imaging [7] – for instance for guided sur-
gery – which have been reviewed elsewhere. We first
introduce the various families of nanovectors available
today, including the different subtypes of organic and in-
organic nanoparticles (Fig. 2), cell-derived extracellular
vesicles (EVs), virus-like particles (VLPs) (e.g. plant and
animal viruses, bacteriophages), oncolytic viruses (OVs)
and bacterial minicells (Figs. 3 and 4). These vectors
display different physical and structural properties that
dictate their abilities to be coupled to different types
of therapeutic molecules (e.g. chemotherapeutic drugs,

radioisotopes, proteins, nucleic acids) and make them
adapted to different biological and clinical situations.
A clear understanding of the advantages and limitations of
each of these nanovectors (Table 1) to transport different
therapeutic agents (Table 2) and of their evolving potential
will help developing better vectorization approaches in the
future.

Types of nanovectors
Nanoparticles
Chemically engineered nanoparticles form a vast class of
nanovectors with a wide variety of structures, sizes and
compositions [8, 9] (Fig. 2). Among the inorganic family,
the most studied are metallic (e.g. gold, iron oxide)
nanoparticles that display unique optical and electronic
properties particularly favorable for biomedical imaging
[10]. Because of their solid core, drug functionalization
consists in surface bonding and exposes conjugated
drugs to both degradation and exchange dynamics in the
bloodstream. Their use in therapy is also limited by a

Fig. 1 Advantages of vectorization for delivering cancer therapies. The clinical efficacy of therapeutic molecules (e.g. chemotherapeutic drugs,
radionuclides, nucleic acids, antibodies) relies on efficient tumor delivery and limited off-targeting. Nanovectors of different natures (e.g. nanoparticles,
extracellular vesicles, viruses) can improve the transport of these molecules in the bloodstream by increasing their solubility, half-life and bioavailability,
and by helping the crossing of biological barriers. Tumor delivery is also enhanced by improved targeting of the tumor microenvironment, leading to
the accumulation of the therapeutic molecules in the tumors and thus potentiating the use of combination therapies

Briolay et al. Molecular Cancer           (2021) 20:55 Page 2 of 24



low biodegradability. Mesoporous inorganic nanoparticles
– mostly biodegradable, silica-based – constitute an alter-
native to protect drugs within a porous structure but their
safety profile still needs characterization [11, 12]. On the
other hand, the organic nanoparticle family exhibits better
biocompatibility and biodegradability, making those more
suitable for therapeutic applications. The first organic
subfamily encompasses natural (e.g. protein- and
polysaccharide-based) and synthetic (e.g. polylactic acid
derivatives, dendrimers, fluorescent organic nanoparticles)
macromolecular nanoassemblies (also improperly called
polymeric nanoparticles) that possess a good stability and
display numerous free functional groups endowing them
with a high loading capacity [8, 13]. These properties
explain the growing interest for such nanoassemblies in
cancer therapy even if the in vivo characterization of each
of their subunits remains challenging. The second organic
subfamily contains lipid-based nanoparticles that are the
most represented in preclinical and clinical studies due to

their unmatched biocompatibility [8, 14, 15]. They basic-
ally consist in lipid monolayered (i.e. micelles) or bilayered
(i.e. liposomes) nanovesicles and can vectorize a broad
range of molecules with distinct physicochemical proper-
ties; hydrophobic drugs can be embedded within the lipid
bilayer of liposomes or loaded in the core of micelles while
hydrophilic drugs are either entrapped in the aqueous
core of liposomes or displayed on their surface [16, 17].
However, lipid-based nanoparticles still face several limita-
tions among which a low loading capacity and a relative
lack of stability leading to drug leakage. New hybrid nano-
particles have recently been developed to combine the
respective advantages of the different subfamilies, namely
solid-lipid, hybrid polymer-lipid [18] and hybrid organic-
inorganic nanoparticles [19].
Nanoparticular vectorization is traditionally believed

to take advantage of the enhanced permeability and
retention (EPR) effect that results from the abnormal
tumor vasculature causing preferential extravasation and

Fig. 2 Chemically engineered nanoparticles for cancer therapy. This class of nanovectors is commonly divided between inorganic and organic
nanoparticles. Inorganic nanoparticles (e.g. metallic, silica, carbon, quantum dots) are characterized by a high stability, a low biodegradability and intrinsic
electronical and optical properties suitable for cancer imaging and theranostics. Because of their solid core, therapeutic molecules are generally conjugated
on their surface and may be exposed to rapid degradation in vivo. Organic nanoparticles (e.g. lipid-based, macromolecular assemblies) exhibit a lower
stability but a good biocompatibility and multiple possibilities of drug functionalization on their surface or their inner space. Hybrid nanoparticles combine
the advantages of both inorganic and organic families to improve the biocompatibility and the stability of the nanovector
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increased concentration of nanoparticles in tumors
[9, 20, 21]. Recent evidence also supports the exist-
ence of an additional active uptake process through
endothelial cells [22]. However, even though the
global biodistribution of nanoparticles seems to rely
mostly on these mechanisms, only actively targeted
nanoparticles efficiently infiltrate tumors and enter
malignant cells [2, 23]. This requires coupling nano-
particles to targeting molecules – directed against
surface antigens overexpressed on tumor cells – in-
cluding but not limited to proteins (e.g. antibodies
[24, 25]), aptamers [26], peptides [27] or polysaccha-
rides [28]. An emerging alternative modality of active
tumor targeting is the external magnetic guidance of
metallic nanoparticles to promote preferential tumor
extravasation [29]. Their coupling to iRGD peptides
– recognized by the αvβ3 integrin overexpressed on

both the tumor neovasculature and some malignant
cells – was also reported to improve the specific
extravasation of nanoparticles in tumors [23, 27].
Overall, nanoparticles act as multimodal platforms

that can be extensively engineered to improve both
tumor targeting and the delivery of combined treat-
ments to malignant cells; they are perfectly suited to in-
crease both the half-life of therapeutic molecules in the
bloodstream and their concentration in tumors while
lowering their systemic toxicity [3]. Nevertheless, they
face several biological barriers that have limited their
clinical use so far (Fig. 5). These hurdles can however
be overcome by rational engineering [3, 9]. As such,
clearance by the mononuclear phagocytic system is
usually diminished by functionalizing nanoparticles
with non-immunogenic hydrophilic polymers such as
polyethylene glycol (PEG) or zwitterionic ligands [30];

Fig. 3 Biological and bio-inspired nanovectors for cancer therapy. These nanovectors have been derived from different types of organisms and
exhibit high biocompatibility and extensive engineering possibilities. Extracellular vesicles derive from eukaryotic cell membranes and naturally
transport different types of biomolecules (e.g. proteins, RNA). Bacterial minicells are achromosomal 400-nanometer vesicles that can be generated
by genetic engineering of bacteria and have been recently used to vectorize various types of therapeutic molecules. Virus-like particles are
basically viruses (e.g. bacteriophages, plant viruses, eukaryotic viruses) stripped of their replicative capacity; they exist as naked or enveloped
capsids and sometimes require a non-replicative template genome for their assembly. On the contrary, oncolytic viruses are tumor-specific, live-
replicating viruses with intrinsic cytotoxic and immunoactivating properties; they can equally be naked or enveloped and may be modified by
genetic engineering to transport therapeutic transgenes that will be expressed exclusively by infected malignant cells
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this prevents interactions with immune cells – thereby
enhancing their half-life in blood – but can also de-
crease internalization by tumor cells. Of note, PEG can
also be recognized by-anti-PEG antibodies that will im-
pair vectorization efficacy and may generate immune-
related adverse effects [31]. To improve the cellular in-
take of PEGylated nanoparticles within tumors, stealth
polymer coatings that specifically dissolve in the tumor
microenvironment (TME) have been developed [32].
Stealthiness can also be improved by entrapping nano-
particles into cellular membranes to mimic biological
vesicles [19]. A lot of work has been performed lately

to study the effect of the protein corona formation
around nanoparticles, as it can drastically impact their
stealthiness and tumor uptake [33–35]. Tunable drug
release solutions have also been created to promote a
specific delivery of packaged drugs exclusively in tu-
mors. Hence, so-called ‘smart’ drug delivery systems
enclose pH-, enzyme-, heat- or photo-sensitive mole-
cules which conformations change in tumors to specif-
ically destabilize the nanoparticle structure and release
the therapeutic cargo [9, 36]. To improve nanoparticle tis-
sue penetration and diffusion through the dense extracel-
lular matrix (ECM) in tumors, several combinations of

Fig. 4 Biogenesis of biological nanovectors. Biological nanovectors are either derived from prokaryotic (bacterial minicells) or eukaryotic
(extracellular vesicles) cells, or from viruses (oncolytic viruses and virus-like particles). Bacterial minicells are achromosomal vesicles obtained upon
genetic engineering (deletion of the Min operon) from ectopic septation of Gram-positive or Gram-negative bacteria. Extracellular vesicles are
produced by all eukaryotic cells by outward budding of the plasma membrane (microvesicles) or through inward budding and exocytosis
(exosomes). Regarding viruses, whereas live-attenuated oncolytic viruses carry a complete genome and thus retain a replicative capacity specific
for transformed cells, virus-like-particles are only constituted of structural proteins and are consequently not competent for replication

Table 1 Main properties of the different families of nanovectors

Nanovector
family

Biocompatibility Stealth Immunogenicity Ease of
retargeting

Systemic
injection

Frequent
off-targets

Replicative Stability Standardized
production

Cost

Inorganic
nanoparticles

Very low Good Low High Possible Liver,
spleen

No Good Adapted $$$

Organic
nanoparticles

Good Good Low High Adapted Liver,
spleen

No Medium Feasible $$

Extracellular
vesicles

High High None Low Adapted Liver No Low No $$$

Bacterial
minicells

High Low Medium Medium Adapted Liver No Medium Feasible $

Virus-like
particles

High Medium Medium High Adapted Liver No Medium Feasible $$$

Oncolytic
viruses

High Medium High Low Possible Depends
on virus
tropism

Yes Low Difficult $$$
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ECM-modifying molecules and nanoparticles are also cur-
rently under investigation [37]. Finally, a major pitfall for
vectorization with nanoparticles is their trapping in endo-
lysosomes after endocytosis, which exposes the thera-
peutic cargo to degradation. Available solutions include
coupling nanoparticles to endosomal escape domains or
proton sponges to destabilize endosomes and promote
drug release toward the cytoplasm [38].

Biological and bio-inspired nanovesicles
The biological world provides attractive alternatives to
artificial lipid-based nanoparticles. Extracellular vesicles
(EVs) are naturally occurring vesicles produced by
eukaryotic cells and play important roles in intercellular
communications [39]. They naturally package a broad
range of cargos, from nucleic acids to proteins or lipids.
There are two main types of EVs at the nanometer scale,

Table 2 Suitability of the different families of nanovectors for the vectorization of anti-cancer therapeutics

Nanovector family Chemotherapy Radiotherapy Gene therapy RNA interference TME modification Immunotherapy

Nanoparticles +++ ++ + + + +

Extracellular vesicles + - + ++ NT +

Bacterial minicells ++ NT NT* ++ NT NT

Virus-like particles + NT +++ ++ NT +

Oncolytic viruses - + +++ ++ +++ +++

+++: optimal; ++: adapted; +: feasible; -: not adapted.
NT: never tested, TME: tumor microenvironment.
* expected to be similar to RNA interference

Fig. 5 From the blood to the tumor cell: the difficult journey of nanovectors. Systemically injected nanovectors face several biological barriers to reach
the tumor microenvironment and exert their therapeutic effect in malignant cells. First, filtering organs such as the liver (for nanovectors > 5 nm) or
the kidneys (for nanovectors < 5 nm) eliminate an important fraction of the injected nanovectors. Nanovectors then extravasate from the bloodstream
to the tumor either because of an increased vascular permeability (Enhanced Permeability and Retention effect) or by active transcytosis through
endothelial cells. The nanovectors have to overcome the interstitial pressure and to diffuse in the extracellular matrix to reach tumor cells. This can be
partially improved by active targeting strategies through nanovector engineering. Once reaching the cancer cells, nanovectors can be internalized by
several mechanisms (e.g. passive or virus-mediated fusion, endocytosis, macropinocytosis) depending on their origin, size, composition and
functionalization. The final difficulty consists in delivering the therapeutic cargo in the appropriate cellular compartment – generally the cytoplasm – to
achieve optimal therapeutic efficacy. This usually requires further vector engineering (e.g. endosomal escape domains, pH-sensitive moieties), in
particular for non-biological nanoparticles.EVs: Extracellular Vesicles; VLPs: Virus-Like Particles; OVs: Oncolytic Viruses
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namely microvesicles (50 nm to 1 μm) and exosomes
(50 to 150 nm) that differ by their biogenesis and
composition. Microvesicles directly bud outward of the
plasma membrane while exosomes are generated from
the inward budding of endosomal membranes and are
released in the extracellular environment by exocytosis
(Fig. 4). Because of their low immunogenicity and their
efficient intake by cells [40], EVs have been investigated
as drug nanocarriers for cancer therapy [41]. Therapeutic
drugs can be loaded either directly into pre-formed
vesicles or through modification of the EV-producing cells
(e.g. drug exposure, transfection) to entrap the cargo into
EVs during their formation [42, 43]. Although still contro-
versial [44], EVs are suspected to possess inherent target-
ing capacities depending on their progenitor cell type [45];
tumor cell-derived exosomes thus appear to preferentially
home to their cell types of origin in vitro compared with
untargeted liposomes [46]. As for liposomes, the surface
of EVs can be modified with targeting molecules or PEG
[47]. Nevertheless, the lack of content standardization and
of large-scale production methods still hinders their clin-
ical use; the development of EV-like nanovesicles, which
are basically liposomes enriched with membrane proteins
to enhance cellular intake, is expected to help overcoming
some of these limitations [48]. A derivative from this idea
are “virosomes” (150 to 500 nm) that are composed of a
synthetic lipid bilayer containing viral or parasitic
fusogenic glycoproteins [49, 50]. Those take advantage of
the ability of viral envelopes to recognize the targeted cells
and to promote direct fusion with the plasma membrane,
hence skipping the potential degradation of the encapsu-
lated cargo into late endosomes after endocytosis (Fig. 5).
Other strategies use cell-derived nanovesicles to camou-
flage other types of vectors (e.g. nanoparticles, viruses) to
take advantage of their intrinsic properties and to escape
neutralizing antibodies [51–54].
The trend to exploit bio-derived nanostructures for

cancer therapy extends to different families of patho-
gens. Bacterial minicells (200 to 400 nm) are achromoso-
mal vesicles produced by bacteria upon ectopic septation
[55] (Fig. 4), an asymmetric division obtained by deleting
the Min operon [56]. Minicells can be produced from
Gram-positive and Gram-negative bacteria and contain
all the molecular components of the parent cell except
for the chromosome. Because of their vesicular struc-
ture, they are an alternative to lipid-based nanoparticles
for cancer therapy (Fig. 3). Although Gram-positive
minicells are negative for lipopolysaccharides (LPS) and
may be ultimately more adapted for clinical use, most
studies have used Gram-negative minicells that can be
easily redirected to cancer-specific receptors (e.g. HER2/
neu) with bispecific antibodies targeting both the LPS
O-antigen on minicells and a tumor marker [57, 58].
Bacterial minicells can package a wide variety of molecules

with different structures, charges and solubilities in an
easier way than with lipid-based nanoparticles [55, 59].
They display a high loading capacity – up to 1,000 times
higher than liposomes – following simple drug import-
ation through the outer membrane via the non-specific
FadL or OmpW channels. To confirm their interest in
cancer therapy [60, 61], comprehensive studies are still
needed to better characterize their properties, among
which their immunogenic profile. Their safety however
pleads for further developments, as was demonstrated in
three recent phase I clinical trials that tested Epidermal
Growth Factor Receptor (EGFR)-targeted minicells loaded
with either paclitaxel [62], doxorubicin [63] or miRNA
mimics [64] in patients with end-stage solid cancers,
glioblastoma or mesothelioma, respectively.

Virus-like particles
Viruses are extensively studied in therapeutic vectorization
due to their active cell entry mechanisms, biocompatibility
and well-characterized structures. Virus-like particles
(VLPs) were developed to mimic animal, plant or bacteria
viruses without retaining the ability to replicate in human
cells [65] (Figs. 3 and 4). They are viral capsids with an
icosahedral or filamentous structure composed of self-
assembled proteins. Their diameters range from 25 (e.g.
parvoviridae) to several hundred (e.g. herpesviridae) nano-
meters and they can contain a non-infectious genome
composed of single- or double-stranded RNA or DNA
[66]. Icosahedral VLPs can be used as genome-free parti-
cles such as the ones derived from the MS2 bacteriophage
[67], which spontaneously assemble during protein
production in bacteria, or from the cowpea mosaic virus
(CPMV) [68]. On the contrary, filamentous VLPs derived
from plant viruses and bacteriophages generally require a
template genome for capsid proteins to assemble around it
and form a rigid or flexible tube which length and width
are determined by the capsid protein and the genome size.
In addition, some viruses (e.g. retroviridae) present an
envelope composed of an external lipidic membrane
acquired while budding from the host cell surface [69]. As
VLPs contain non-self proteins and potential pathogen-
associated molecular patterns, they can be immunogenic
and were mostly assessed as anti-cancer immuno-
stimulatory treatments [70]. Their use as vaccines showed
a good safety profile that makes them suitable for future
use as nanovectors. Nevertheless, repeated treatments
could promote the generation of antibodies and clearance
by immune cells resulting in decreased tumor delivery.
Capsid PEGylation or elimination of immuno-dominant
epitopes can however limit these issues [71].
Because of their viral nature, VLPs are perfectly

adapted to the delivery of therapeutic nucleic acids [72]
but empty capsids can also be modified to transport
other types of molecules. As such, the fixed structures of
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VLPs allow for extensive genetic and chemical engineer-
ing. Examples include tobacco mosaic virus VLPs that
can be loaded by simple infusion and ionic interactions
with their inner surface [73], the hepatitis B virus capsid
that can be disassembled and re-assembled to capture a
compound [74], or the functionalization of MS2 VLPs
by inserting genetically a cystein residue in the capsid
[75]. Interestingly, filamentous VLPs show a natural
biodistribution to tumors after systemic injection, which
could be mediated by their physical behavior in the
tumor microvasculature [76, 77]. Non-human virus-
based VLPs did not evolve to recognize human cell re-
ceptors; they produce less off-target effects but require
genetic or chemical retargeting to malignant cells. Com-
mon modifications involve the retargeting of VLPs with
cancer-specific peptides [78], aptamers [75] or other
molecules [72, 79], or the pseudotyping of enveloped
VLPs with exogenous proteins. Similarly, twelve
serotypes of adeno-associated viruses (AAVs) have been
identified so far [80] and could be used to target differ-
ent types of cancers. In addition, VLPs from plant or
bacteria viruses cannot easily escape human endo-
lysosomes and display lower transfer efficacy, even after
retargeting [81–84]. Strategies similar to the ones used
with nanoparticles for endosomal escape and cargo
delivery are being tested to overcome these limitations
[78]. On the opposite, VLPs derived from human patho-
gens benefit from coevolution to achieve efficient gene
transfer inside human cancer cells (Fig. 5).

Oncolytic viruses
Contrary to VLPs for which the non-replicative nature is
a major determinant of their clinical safety and inter-
mediate immunogenicity, oncolytic viruses (OVs) display
all the properties of natural viruses except that their
replication is restricted to malignant cells [85] (Fig. 4).
The diversity of OVs has been reviewed extensively
elsewhere [86] and is summarized in Fig. 3. OVs are
either naturally attenuated viral strains or genetically
engineered viruses that harness cancer hallmarks such as
altered metabolism, immunosuppression or resistance to
cell death that make tumors more sensitive than healthy
tissues to viral infections. Tumor cells also commonly
overexpress surface proteins that are used by some
viruses for cell entry [87, 88]. For many oncolytic RNA
viruses, tumor specificity mainly depends on defects in
the innate antiviral pathways commonly acquired by
malignant cells during tumor evolution [89, 90], while
DNA viruses can be modified with tumor-specific
promoters [91]. Contrary to other nanovectors, the tumor
specificity of OVs thus mostly relies on post-entry restric-
tion rather than selective entry through specific surface
markers. They also exhibit therapeutic properties on their
own as they can both directly kill tumor cells and activate

a diversity of immune cell types involved in the anti-
tumor responses [86, 92]. After two decades, more than a
hundred trials and few regulatory approvals for clinical
use [93–95], they have demonstrated a very good safety
profile but a somewhat modest therapeutic efficacy in
humans.
To improve their intrinsic anti-cancer properties, OVs

are commonly armed to vectorize therapeutic transgenes
that will be expressed by infected malignant cells in the
TME, thereby making them bona fide nanovectors [96].
Viruses have evolved to deliver efficiently their genome
in host cells and are thus perfectly designed to vectorize
nucleic acids (Fig. 5). The first OV to be approved by
the US and EU regulatory agencies in 2015 was the
recombinant herpesvirus Talimogene laherparepvec (T-
VEC) that encodes the Granulocyte-Macrophage Colony-
Stimulating Factor to enhance its immunostimulatory
properties [94, 97]. The transgene capacity of viruses is
however limited by the fitness cost – the longer the gen-
ome, the longer it takes to replicate – and the size limit of
the viral particle; DNA viruses generally exhibit a higher
transgene capacity than RNA viruses. OV replication cap-
acity allows both spreading of the transgene in the tumor
and its sustained expression over time [98]. As with VLPs,
surface molecular coupling is theoretically possible – es-
pecially for non-enveloped viruses – to enable intracellular
delivery of drugs in specific cells.
The current standard for OV treatment is intratumoral

injection with the limit that only reachable tumors can be
treated, but recent evidence of viral replication in tumors
following intravenous administration in patients have been
reported [99–103]. Despite pre-existing immunity having
no measurable effect on the therapeutic outcome after
intratumoral injection, innate and adaptive immune re-
sponses against circulating viruses may restrict their efficacy
after intravenous administration [104, 105]. PEGylation of
OVs [106, 107] or switching OV species during the course
of treatment [108, 109] can improve stealthiness and
enhance treatment efficacy. Enveloped viruses can also be
pseudotyped with different viral envelops [110–112], while
changing the serotype of non-enveloped viruses could
evade the immune response [113–115]. Finally, the titration
of OVs by healthy cells after non-specific entry – distinct
from their tumor-specific replication and killing – can be
answered by retargeting OVs to tumor-specific surface anti-
gens through genetic engineering. Advances made in the
field of nanoparticles for chemical modifications are also
expected to lead to alternative solutions [107].

Applications in cancer therapy
Chemotherapy
Cancer chemotherapeutics are a large family of chemical
drugs [116] that affect highly proliferating malignant
cells and exhibit diverse modes of action from cell cycle
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arrest to cell death induction and epigenetic modulation.
These molecules often lack tumor specificity and healthy
proliferative cells are frequently impacted, thereby
causing different debilitating symptoms. Consequently,
vectorization of chemotherapeutics is critical to improve
their tumor specificity and diminish side toxicities. Here,
we present an overview of how the different families of
nanovectors can help bypassing the major limitations of
chemotherapies, including their poor aqueous solubility,
their lack of tumor specificity and the acquisition of re-
sistances. The advantageous physical properties of some
nanovectors that can be exploited in combinatorial strat-
egies with chemotherapies are also discussed.

Solving drug insolubility
Chemical drugs for cancer treatment vary widely by their
structures, charges and solubilities that can limit their
clinical use, an illustrative example being the high
hydrophobicity of taxanes [117]. The nanomedicine
field however provides numerous solutions for drug
vectorization whether they are hydrophobic (e.g.
paclitaxel, cisplatin) or amphipathic (e.g. doxorubicin,
5-fluorouracil). As explained above, the diversity of
chemically engineered nanoparticles with variable
loading and functionalization possibilities makes them
the most suitable for vectorizing chemotherapeutic
drugs [9, 118] (Table 2). Hydrophilic drugs can be eas-
ily encapsulated inside liposomes, adsorbed in pores of
silica nanoparticles or conjugated on metallic or poly-
meric nanoparticles using reactive hydroxyl, carboxyl,
amino or thiol groups. Hydrophobic molecules are
commonly loaded in micelles or solid-lipid nanoparti-
cles or inserted in the lipid bilayer of liposomes. Nano-
particles are also used to vectorize hydrophobic
epigenetic modulators (e.g. inhibitors of histone deace-
tylases or DNA methyltransferases) to improve their
pharmacokinetics and therapeutic efficacy [119–122].
Macromolecular nanoassemblies and lipid-based nano-
particles have been used to vectorize almost all types
of chemotherapeutics and several nanomedications
have either already been approved by the FDA for can-
cer treatment or are currently evaluated in clinical tri-
als [8, 123] (Table 3). It is interesting to note that
cancers with very different profiles, from end-stage
solid tumors to hematological malignancies, can be eli-
gible to nanovectorization of chemotherapeutics. As an
example, the nab-paclitaxel formulation (Abraxane®) –
composed of paclitaxel fused to human albumin nano-
particles – has demonstrated improved safety and effi-
cacy compared to free paclitaxel [136] and is approved
against non-small cell lung cancer, metastatic pancre-
atic cancer and as a second-line treatment for meta-
static breast cancers [137].

Other types of nanovectors are currently studied to
transport and deliver chemical drugs to tumors (Table
2). The characterization of VLPs at the atomic level
allows for precise chemical coupling strategies similar
to the ones used for nanoparticles. For example,
doxorubicin coupling to Physalis Mottle virus icosahe-
dral VLPs [81] or to truncated hepatitis B virus core
antigen (tHBcAg) VLPs [138] improved both its cellu-
lar uptake and cytotoxicity against malignant cells.
Doxorubicin and mitoxantrone were also passively
loaded into CPMV [139] and filamentous plant vi-
ruses VLPs [140–142] by exploiting for the latter the
negative charges of the inner side of the particles.
Simple dissociation/association of tHBcAg allows for
passive dual loading of polyacrylic acid (PAA) along
with doxorubicin that will be released at low pH
when no longer retained by protonated PAA [79].
EVs on their part display similar vectorization abilities
as liposomes. They were shown for instance to deliver
doxorubicin [143] or paclitaxel [144] in vitro to breast
or prostate cancer cells, respectively, or paclitaxel to
lung cancer cells after systemic administration in mice
[145]. Packaging of decitabine in erythro-magneto-
hemagglutinin nanovesicles showed a specific delivery
to prostate cancer xenografts under in vivo magnetic
guidance and a significant tumor mass reduction at a
lower dose than with free decitabine [146]. Among
the bio-inspired nanovectors, bacterial minicells may
be the more promising as they can incorporate a wide
variety of chemotherapeutic agents without drug ef-
flux up to several days [55]. Their encouraging early
clinical results in two phase I clinical trials that used
EGFR-targeted bacterial minicells containing either
doxorubicin or paclitaxel to treat patients with ad-
vanced solid tumors [62, 63] however need to be
confirmed.

Improving tumor specificity
The lack of tumor specificity for chemotherapies causes
off-target effects and limits clinical efficacy by decreasing
drug concentration in tumors. For instance, doxorubicin
displays elevated hematological and cardiac toxicities as
a free molecule [147]. It has been vectorized as early as
the 1990s in the first FDA-approved nanodrug Doxil®,
which is currently approved for the treatment of ovarian
cancer, multiple myeloma, metastatic breast cancer and
Kaposi’s sarcoma. Doxil® is composed of doxorubicin en-
capsulated in untargeted, PEGylated liposomes that en-
able a high concentration of doxorubicin in tumors
correlated with a higher tolerability compared to free
doxorubicin [148]. This formulation was followed by
many other combinations of chemotherapeutic drugs
with numerous types of nanoparticles [124]. As with the
Doxil® liposomal formulation, their tumor specificity
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mostly relied on passive targeting due to destabilized
tumor vasculature and the resultant EPR effect. Based
on a similar idea, the natural tumor distribution of fila-
mentous VLPs [77, 149] can also be exploited for this
purpose; PEGylated Potato Virus X (PVX) VLPs pas-
sively loaded with doxorubicin were indeed shown to
elicit a better control of breast cancer xenografts in im-
munodeficient mice than doxorubicin alone [140]. How-
ever, a combination of PVX and doxorubicin was more
effective than doxorubicin-loaded PVX in an immuno-
competent melanoma model [141], suggesting that VLPs
elicit an adjuvant anti-tumor immune response that par-
ticipates in the therapeutic effect and pleading for the
use of immunocompetent animal models for future
evaluations.
Current studies mostly focus on actively targeted

nanodrug formulations to enhance interactions of the
nanoparticles with malignant cells after having reached
the TME [23, 24, 27]. Several strategies have demon-
strated increased drug concentration in tumors and
enhanced therapeutic efficacy compared with the
corresponding free molecules or untargeted nanovectors
[23, 150]. In a preclinical study, paclitaxel-loaded nano-
capsules constituted of a lipid core surrounded by a
surfactant were targeted to the altered tumor vascular
endothelium with an iRGD peptide [151]. The authors
demonstrated that the targeted nanoparticles concen-
trated in hepatic tumors, induced specific cytotoxicity
and were better tolerated than non-targeted nanoparti-
cles. Another recent study showed that hybrid solid-lipid
nanoparticles decorated with folic acid can significantly
increase the concentration of carboplatin and paclitaxel
in tumors cells in a murine cervical cancer model [152].
EGFR-targeted, doxorubicin-containing bacterial mini-
cells were demonstrated to rapidly locate in spontaneous
gliomas in dogs, a tumor usually difficult to reach be-
cause of the blood-brain barrier [60]. Another approach
for active tumor delivery is to target the hypoxic center
and acidic microenvironment of tumors, in particular
using the pH (low) insertion peptide (pHLIP) [153]. An
example for this strategy is the use of doxorubicin-
loaded bacterial minicells with a pHLIP added to their
membrane, which successfully invaded the necrotic and
hypoxic regions of orthotopic murine breast cancers and
achieved a significant tumor reduction compared to both
free drug and untargeted minicells [154].

Fighting resistance
Cancer cells commonly develop resistance against
chemotherapies, for instance by acquiring a multidrug
resistance (MDR) phenotype. This can result from the
expression of ATP-dependent transporters that promote
the efflux of drugs outside the cell to escape death induc-
tion [155, 156]. Nanovectors enable drug immobilization

and limit efflux, thereby enhancing drug concentration in
tumor cells. They can also carry several drugs at the same
time to strike cancer cells on different fronts simultan-
eously and prevent therapeutic escape [157]. Such strat-
egies can combine several chemotherapies [152] or
different types of treatments such as a combination of a
chemotherapeutic drug with a siRNA [158]. Doxorubicin-
coated, multifunctional mesoporous silica nanoparticles
containing a siRNA against the P-glycoprotein (Pgp) drug
exporter showed targeted Pgp knockdown and a synergis-
tic inhibition of resistant breast tumor growth in preclin-
ical models [159]. A similar approach used sequentially (i)
CD33- or EGFR-targeted bacterial minicells containing a
plasmid coding for shRNAs against MDR pumps and (ii)
chemotherapies [160]; mice bearing drug-resistant colo-
rectal, breast or uterine tumors were efficiently treated
without toxicity as a thousand-fold less drug and shRNA
were used compared to conventional systemic treatment.
Another way to circumvent tumor resistance is to use
highly cytotoxic compounds – such as the PNU-159682
metabolite [161] – that cannot be injected systemically be-
cause of their high toxicity. Systemic vectorization of this
drug in EGFR-targeted bacterial minicells showed signifi-
cant tumor reduction and immune activation with no side
effects in immunocompetent breast and colorectal murine
models but also lung and colorectal human cancer
xenografts [162].

Exploiting intrinsic physical properties
Some chemically engineered nanoparticle families have
intrinsic physical properties that make them suitable for
combined therapies. As such, gold nanoparticles can be
used for photothermal therapy, which consists in a local
vibrational heat generation through the absorption of
specific wavelengths of light [163]. Super Paramagnetic
Iron Nanoparticles (SPIONs) on the other hand can be
used for hyperthermia, a local heat generation under a
magnetic field [164]. Those two phenomena have dem-
onstrated a moderate therapeutic efficacy on their own
but can sensitize cancer cells to chemotherapies loaded
in the same nanoparticles [165]. Indeed, hyperthermia
and photothermia inhibit the repair of DNA lesions (e.g.
double-strand breaks) generated by chemotherapy or
radiotherapy [166]. Several clinical trials involving the
use of hyperthermia as adjuvant for chemotherapy are
ongoing [167]. An example is the use of a near-infrared-
responsive polypeptide nanocomposites charged with
doxorubicin and capable of heat generation and heat-
sensitive nitric oxide (NO) gas delivery [168]. This
combination of photothermia, NO gas therapy and
chemotherapy achieved complete breast tumor regres-
sion in mice after a single near-infrared irradiation.
Hyperthermia can also be used to release chemothera-
peutics enclosed in hybrid delivery systems constituted
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of nanoparticles associated with thermosensitive
molecules [169]. Regarding epigenetic modulation, some
studies suggest that metallic and silica nanoparticles
could directly induce modifications of DNA methylation
or of histone acetylation and disrupt miRNA expression
[170, 171], but the significance of these modifications in
the context of cancer treatment is still to be investigated.
The nanovectorization of chemotherapeutic drugs has

been historically dominated by the use of organic
nanoparticles (Table 2), supported by their unmatched
diversity of structures and compositions (Fig. 2). This
led to different clinical successes resulting in several
drug approvals (Table 3). However, the more recent ad-
vances in vesicular nanovectors (e.g. bacterial minicells,
EVs), provide new solutions with enhanced biocompati-
bility (Table 1) that may advantageously replace syn-
thetic nanoparticles in some clinical contexts. Studies on
VLPs are at an earlier stage of development but also
demonstrated interesting properties in preclinical experi-
ments. In the end, hybrid vectorization systems incorp-
orating both synthetic and biological moieties may
constitute a rational compromise between efficacy,
biocompatibility and standardized manufacturing even if
complex designs may generate additional difficulties for
clinical development.

Radiotherapy
Half the cancer patients receive radiotherapy – which
exploits the low resistance of tumor cells to radiation-
induced DNA damages – during their course of treat-
ment [172]. Overexposure of healthy cells to radiations
leads to radiotherapy-related toxicities that could be
partially addressed using appropriate vectorization
strategies. For external-beam radiotherapy [173] – or for
related photodynamic therapy (PDT) that uses non-
ionizing wavelengths [163] – nanovectors can sensitize
tumors to radiations. For internal radiotherapy, nanomedi-
cine is an elegant solution to deliver specifically radioele-
ments to tumors and an alternative to the use of radiolabeled
antibodies in radioimmunotherapy approaches [174].

a. Radiosensitization

Radiations not only cause direct damages to biomole-
cules but also generate reactive oxygen species (ROS).
This phenomenon can be enhanced in tumors by the
vectorization of radiosensitizing molecules that increase
either ROS production in response to ionizing beams or
malignant cell sensitivity to both direct and indirect
radiation effects [175]. Gold nanoparticles (AuNPs) are
well-characterized for their radiosensitizing properties
[176]; their concentration in tumors increases the dose
delivered locally during radiotherapy, resulting in ROS
production, DNA repair machinery impairment and

improved treatment efficacy. However, the clinical trans-
lation of these metallic nanoparticles remains challen-
ging because of both their tendency to aggregate after
systemic injection and their long-term toxicity due to
liver accumulation. An alternative are chemical ROS-
generating photosensitizers that can be coupled to a
wide variety of biocompatible nanoparticles for PDT
[177, 178]. Interestingly, some chemical radiosensitizers
are also able to self-assemble to generate nanostructures
by themselves [179]. Upconverting nanoparticles were
recently modified to assemble with a photosensitizer
in vivo by click chemistry after systemic injection [180].
These nanoparticles are able to convert low energy near-
infrared light into high energy photons that activate the
photosensitizer to generate ROS and achieved inhibition
of tumor growth in an ectopic breast cancer model. A
recent study used EVs purified from mouse blood and
surface-loaded with the photosensitizer protoporphyrin
IX (PplX) in a two-stage irradiation protocol to
efficiently deliver PplX and induce apoptosis by PDT in
a breast tumor model [181]. The porphyrin photosensi-
tizer has also been effectively vectorized with M13 fila-
mentous phage VLPs retargeted to mammary cancer
cells by a specific peptide displayed on the pVIII coat
protein and demonstrated efficient cancer cell targeting
and sensitization to PDT [182]. The lack of oxygen in
the tumor hypoxic core can lead to radioresistance,
which can be bypassed by developing nanoparticles with
O2-elevating abilities or nano-radiosensitizers with
diminished oxygen dependence [183]. As an example,
mesoporous manganese dioxide nanoparticles are able
to catalyze O2 production to actively reverse hypoxia in
tumors. These nanoparticles were loaded with the pho-
tosensitizer acridin orange and exhibited enhanced
radiotherapy efficacy both in vitro and in vivo in a lung
cancer xenograft model [184]. Hypoxia-reverting lipo-
somes [185], macromolecular nanoassemblies [186, 187]
and other types of nanoparticles [177] have also been
used for their photosensitizing properties.
The radiosensitizer family also encompasses all mole-

cules able to enhance tumor cell sensitivity to radiation
effects by interfering with essential cellular pathways like
DNA repair, apoptosis induction or cell cycle progres-
sion. As such, chemotherapeutics are used as radiosensi-
tizers at the clinical level [175] and their loading on
chemically engineered nanoparticles have demonstrated
radiosensitizing effects [185, 188, 189]. As for chemo-
therapy, SPIONs and gold nanoparticles alone or within
a bigger organic nanoparticle can also mediate tumor
radiosensitization through inhibition of DNA repair
mechanisms by hyperthermia or photothermia, respect-
ively [166]. DNA viruses are capable of impairing the
DNA damage response [190] and some OVs (e.g. adeno-
viridae) naturally downregulate key proteins involved in
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the response to radiation-induced DNA damages [191],
which makes them intrinsically radiosensitizing [192].
SiRNA-mediated gene silencing is another strategy to
target genes involved in the cellular response to ionizing
radiations [175]. As discussed below, OVs and VLPs are
useful tools for such small RNA vectorization, an ex-
ample being an adenovirus encoding a shRNA against
the DNA-dependent protein kinase DNA damage
response protein for local enhancement of radiotherapy
in a human colorectal cancer xenograft model [193].

b. Internal radiotherapy

Radionuclides have been vectorized for several years
with various nanovectors like VLPs [194–196], EVs
[197], nanoparticles [198, 199] or an oncolytic adeno-
virus [200] for cancer imaging, but for VLPs or EVs this
has yet to be studied in therapeutic protocols. High-
energy, short-range alpha-emitters have been conjugated
to various types of chemically engineered nanoparticles
with good therapeutic results but a large majority of
radionuclides currently used in cancer therapy are low-
energy beta-emitters with a longer path length [201].
Iodine 131 ( [143]I) is the most common nanoparticle-
coupled radionuclide reported in the literature. Recent
examples include PEGylated, nuclei-targeted [143]I-
AuNPs tested in a colorectal cancer model [202] and
[143]I-labeled, human serum albumin-bound manganese
dioxide nanoparticles that were capable of significantly
inhibiting tumor growth in a breast cancer model with a
potentiating effect of MnO2 on radiotherapy efficacy
[203]. In another study, treatment with PEGylated lipo-
somes enclosing an [143]I-albumin core led to subcuta-
neous breast tumor shrinkage when co-administered
either with liposomes containing a photosensitizer or
with an anti-PD-L1 antibody [204]. In a very different
strategy, OVs coding for the human sodium-iodine sym-
porter (NIS) have been used to enhance the specific in-
take of [143]I in OV-infected tumor cells [99, 205–207];
OV-NIS are injected several days before [143]I and in-
directly mediate the vectorization of the radioelement to
tumors neo-expressing NIS.
As for chemotherapy, the different subfamilies of

nanoparticles have been massively investigated to im-
prove the efficacy of radiotherapy, but the low biocom-
patibility and biodegradability of inorganic nanoparticles
called for the development of alternatives. Successful de-
livery of radiosensitizing molecules was achieved with
organic nanoparticles and bio-inspired vectors such as
EVs, while engineered VLPs can be chemically coupled
to radionuclides. Viruses and other bio-derived vectors
are also expected to define original approaches to exploit
precise biological mechanisms that are involved for
instance in the cellular response to radiations.

Delivery of nucleic acids
Malignant transformation results from gene alterations
(e.g. deletions, amplifications, mutations, translocations,
epigenetic or viral dysregulations) that displace the equi-
librium between oncogene and tumor-suppressor gene
expression. These alterations can be corrected or com-
pensated using nucleic acids (DNA or RNA) for gene
editing (over-expression or knock-out), direct induction
of cell death by expression of toxic genes or by modulat-
ing gene expression. As free nucleic acids are rapidly
degraded in the bloodstream and do not cross cell
membranes, clinical translation of cancer gene therapy
requires proper vectorization [208]. Viruses are par-
ticularly suited for this as they are naturally designed
to deliver genes in targeted cells (Table 2). Transgenic
viruses are also relatively simple to generate and they
ensure a high level of transgene expression. Many
studies were conducted with retrovirus-like particles
(RLPs) [209], non-replicative adenoviruses [210] and
AAVs [211], whereas other VLPs used for both their
capacity to package DNA and their easy retargeting
achieved lower transduction efficacy [68, 82, 212].
Despite several limitations – the main one being the
cytoplasmic delivery of cargos initially addressed to
the nucleus – nanoparticles (mainly lipid-based) have
been extensively used for nucleic acid delivery [213–
215]. Some strategies are developed to increase
nanoparticle-mediated gene expression in tumor cells
[216], for instance by using nuclear localization sig-
nals (NLS) or by vectorizing messenger RNAs [217].

Gene therapy
The most frequent genetic alterations in cancer being
p53 mutations, most gene therapies consist in vectoriz-
ing a wild-type TP53. Restoring wild-type p53 functions
triggers cell death specifically in highly-dividing tumor
cells exhibiting genome instability. An example of a
nanovector exploiting this mechanism is Gendicin, a
p53-encoding adenoviral vector that was the first-in-class
gene therapy treatment for head and neck cancer
approved by the China Food and Drug Administration in
2003 [218]. While many years of clinical use demonstrated
its safety, its efficacy remains limited. However, the co-
vectorization of other tumor suppressors (e.g. ING4,
PTEN) in the same vector demonstrated synergistic
efficacy [83]. The enhanced vectorization potential and
intrinsic tumor cytotoxicity of OVs were also exploited to
transiently express tumor suppressors at high levels but
still lack clinical assessment [129]. Regarding nanoparti-
cles, liposomes containing p53-encoding plasmids are
being evaluated against different types of solid cancers
[219, 220], including in phase I/II clinical trials
(NCT02354547, NCT02340156, NCT02340117).
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Other studies focus on cancer gene editing to dis-
able key oncogenes. An oncolytic myxoma virus car-
rying a CRISPR cassette targeting the NRAS oncogene
demonstrated efficient gene editing in vivo along with
prolonged survival in a xenograft model of rhabdo-
myosarcoma [221]. Similarly, a CRISPR-Cas12a-carry-
ing oncolytic adenovirus efficiently edited EGFR
in vivo specifically in xenografted lung adenocarcin-
oma cells [222]. Transgene-free retroviral VLPs loaded
with Cas9-sgRNA ribonucleoproteins (“nanoblades”)
that demonstrated in vivo genome editing capacity
[223] and can be pseudotyped to modulate their cell
tropism may also have interesting applications for
cancer therapy. Alternatively, lipid-based nanoparticles
[224] and macromolecular nanoassemblies [225, 226]
have been successfully used to deliver CRISPR-Cas9-
encoding plasmids for oncogene edition. As an ex-
ample, tumor-targeted macromolecular nanoassem-
blies decorated with a NLS-containing peptide
specifically delivered a CRISPR-Cas9 plasmid to the
nuclei of lung cancer cells in vitro and efficiently
knocked out the Catenin beta-1 gene [227]. Neverthe-
less, the dysregulation of tumor suppressor genes in
cancer being frequently post-transcriptomic, this may
limit the actual efficacy of gene editing. In addition,
gene delivery mostly impacts the cells receiving the
transgene and will have limited bystander effects.
Other approaches may thus be more adapted to ad-
dress the heterogeneity of malignant diseases.

Induction of cell death
Gene therapies for triggering specific tumor cell death
include Gene-Directed Enzyme/Prodrug Therapy (GDEP
T) [228] and cytotoxic gene therapy [229, 230]. GDEPT
involves the tumor delivery of a transgene encoding an
enzyme able to convert a non-toxic prodrug into a
cytotoxic drug, the latter exerting its activity against the
modified tumor cells and its surrounding environment.
Such transgenes include the herpes simplex virus thymi-
dine kinase (HSV-TK) gene, converting ganciclovir into
ganciclovir-triphosphate and inhibiting DNA elongation
[231], and the cytidine deaminase that converts 5-
fluorocytosine into 5-fluorouracile [228]. VLPs (e.g. ade-
noviruses) are the most suitable and the more frequently
used nanovectors for suicide gene therapy due to their
high gene transfer potential [232, 233]. For OVs, HSV de
facto expresses HSV-TK [234] but this transgene has
also been vectorized by other viruses [235, 236]. Lipo-
somes were also used to actively deliver a mRNA or a
plasmid coding for the HSV-TK protein in a lung cancer
mouse model [237]. The authors showed that both
mRNA- and plasmid-carrying liposomes can mediate a
significant inhibition of tumor growth following ganciclovir
injection with a superiority of the mRNA formulation. In

another example, HSV-TK plasmid-bearing macromolecular
nanoassemblies demonstrated a significant therapeutic effect
against invasive orthotopic human glioblastoma multiforme
in mice [238].
Cytotoxic gene therapy on the other hand consists in

delivering a cell death-triggering gene to tumors. To
avoid off-target effects, the expression is generally
controlled by a cancer- or tissue-specific promoter [229].
The main focus has been on tumor necrosis factor
(TNF)-related apoptosis-inducing ligand (TRAIL)-based
cancer therapy, TNF-α and TRAIL being major media-
tors of death receptor-mediated apoptosis. Delivery of
TNF-α- or TRAIL-encoding genes for secretion of the
cognate proteins by tumor cells was reported with OVs
[239], VLPs [82, 240] or nanoparticles [241] with
evidence of a bystander effect. Interestingly, displaying
the TRAIL protein on the surface of nanovectors has
also demonstrated efficient TRAIL-mediated cell death
induction of circulating tumor cells in different studies
[242–244]. An alternative is the use of inducible suicide
genes, an elegant example being the vectorization by
adenoviral vectors [245] and AAVs [246] of the
AP20187-dependent inducible version of caspase 9,
activated after AP20187 treatment. Another example is
the AAV vectorization of a CRISPR system targeting
telomeres to induce tumor cell death [211]. Several
pathogen-derived toxins have also been studied as cell
death inducers for cancer cytotoxic gene therapy. An
example is the tumor-specific, apoptosis-triggering viral
protein apoptin that was encoded by lambda phage VLPs
[247] or OVs [248] and induced significant tumor
reduction in breast and lung cancer models, respectively.
A recent innovative study described the design of
macromolecular nanoassemblies loaded with a light-
switchable transgene coding for the diphtheria toxin A
inducible by blue laser light, a protocol that improved
survival in a melanoma model [249]. In parallel to these
gene delivery approaches, several groups also vectorized
the different toxins as proteins to trigger selective cancer
cell death with nanoparticles [250, 251], VLPs [131] and
bacterial minicells [252].

Modulation of gene expression
Cellular pathways and gene expression can be precisely
modulated by RNA interference (RNAi). This involves
different types of small RNAs such as microRNAs (miR-
NAs) and small interfering RNAs (siRNAs) that interact
with specific target mRNAs and stimulate their degrad-
ation or the inhibition of their translation [253]. The
targeted inhibition of oncogenic mRNAs or miRNAs
attracts attention but effective delivery of small RNAs
for cancer treatment requires appropriate vectorization,
in particular to reduce their degradation by nucleases.
To date, siRNAs and miRNAs have been mostly vectorized
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by chemically engineered nanoparticles, in particular
liposomes as extensively reviewed elsewhere [213, 254].
The safety of siRNA vectorization by liposomes – for in-
stance against genes coding for the Ephrin type-A receptor
2 or B-cell lymphoma 2 (BCL-2) – is under evaluation in
several ongoing clinical trials [125, 255]. SiRNAs directed
against oncogenes (e.g. MYC, BRAF, BCL-2) have also been
transported with macromolecular nanoassemblies or
inorganic nanoparticles [256] and, more recently, an anti-
survivin siRNA was efficiently vectorized with dendrimers
that were further entrapped in tumor-derived EVs for treat-
ing mice bearing prostate carcinoma [54].
MiRNAs are naturally transported by EVs throughout

the organism to modulate gene expression in neighboring
or distant cells, both in physiological and pathological
conditions [39]. This process was harnessed in several
studies to deliver miRNAs or anti-miRNAs to cancer cells
[47]. Human fibroblast-derived exosomes containing
KrasG12D-targeted siRNAs were thus shown to mediate a
better inhibition of tumor growth compared to liposomes
in pancreatic cancer models [257]; this difference of
efficacy was attributed to the lower immunogenicity and
decreased clearance of exosomes. Similarly, mesenchymal
stem cell-derived EVs were used to deliver several tumor-
suppressing miRNAs to malignant cells by exploiting both
their alleged natural tropism for tumors and immune
evasion abilities [254, 258, 259]. Another example is the
use of natural killer cell-derived exosomes loaded with a
Let-7a miRNA-coupled dendrimer that were efficiently
delivered in vivo to neuroblastoma cells [260]. However,
the natural miRNA content of EVs may mediate
unwanted effects in tumors and preclude clinical applica-
tions; one should carefully choose the EV donor cell type
or opt for alternatives such as artificial exosome–mimetic
nanoplatforms that simulate natural cell-derived exosomes
but with a controlled composition [261]. Micro-organism-
derived nanovectors are also a suitable alternative to
vectorize miRNAs. In a phase I clinical trial, patients with
malignant pleural mesothelioma were treated intraven-
ously with EGFR-targeted bacterial minicells containing
miRNA mimics [64]; the study concluded to treatment
safety associated with a disease control rate of 65%, but
the precise intake mechanism is still to be characterized.
MS2 bacteriophage VLPs can be loaded with siRNAs or
long non-coding RNAs and efficiently deliver their cargo
in targeted cells [131, 262], whereas RLPs can be used for
stable interfering RNA expression in cancer cells [263,
264]. Successful in vivo vectorization of siRNAs against
the epigenetic regulator HDAC1 [265] or the viral onco-
gene E6 [266] was also achieved with OVs and was associ-
ated with prolonged survival in models of metastatic
melanoma or cervical cancer, respectively.
To conclude, all nanovector families are investigated

either in preclinical studies or clinical trials for the

delivery of nucleic acids for cancer therapy (Table 3).
On the one hand, gene therapy approaches are domi-
nated by viral vectors (e.g. VLPs, OVs) (Table 2) due to
their natural abilities to deliver to the nuclear compart-
ment therapeutic transgenes that will be efficiently
expressed. On the other hand, the efficient delivery of
RNA molecules has been demonstrated for almost all
types of nanovectors described in this review. EVs natur-
ally transport small RNAs and present a high biocompati-
bility, but lipid-based nanoparticles, bacterial minicells
and viruses are also adapted to such vectorization. With
the expected boom of cancer gene therapies in the next
few years, upcoming clinical studies will provide critical
data to determine which vectors are the best compromise
when considering efficient nucleic acid delivery, biocom-
patibility and ultimately clinical efficacy.

Tumor microenvironment modulation & immunotherapy
In recent years, cancer treatment has rapidly evolved from
directly targeting malignant cells to treating the TME as a
whole [267, 268]. The stromal and immune compartments
that constitute this complex environment support cancer
growth, maintenance, resistance and recurrence and can
be targeted for destruction or reprogramming. New tech-
nologies like single-cell profiling continuously provide a
better understanding of this tumor heterogeneity and help
both deciphering the intertwined mechanisms involved
and developing new rationale-based therapies to target
them. This is perfectly illustrated by the breakthrough of
cancer immunotherapies that use either immune activat-
ing signals (e.g. cytokines, agonist antibodies) or inhibitors
of immunomodulating cues (e.g. immune checkpoint in-
hibitors). Nevertheless, limiting off-target toxicities and
moderate efficacies call for improved vectorization to fur-
ther refine these approaches. Nanovectors can modulate
the pharmacokinetics of immunotherapies, deliver lo-
cally combination therapies and sometimes display an
intrinsic therapeutic potential [269, 270] (Table 2).

a. Removing life support

Cancer-associated fibroblasts (CAFs) and tumor-
associated macrophages (TAMs) secrete immunomodula-
tory cytokines, growth factors and pro-angiogenic molecules
that participate in tumor maintenance [267, 268]. A valid
strategy would consist in eliminating these stromal cells, for
instance by using targeted nanoparticles to specifically
deliver chemotherapies and/or photosensitizers to
CAFs [271–274] or bisphosphonates and other cyto-
toxic molecules to TAMs [269, 275]. In these ap-
proaches, nanoparticles are actively targeted to CAFs
and TAMs, mostly with FAP- or αSMA-specific mole-
cules, or with mannose moieties, respectively. OVs have
also been used for anti-CAF bispecific T cell engagers
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(BiTEs) delivery to selectively mediate CAF death via T
cell activation [276, 277]. Interestingly, the use of OVs,
which infect malignant cells and replicate in the TME,
allows for continuous local production of anti-CAF
BiTEs by infected tumor cells. OVs can also be
addressed directly to CAFs by exploiting CAF-specific
promoters [278] or receptors [279] as shown with an
adenovirus and measles virus, respectively.
Endothelial cells are other important actors of the

TME as they ensure nutrient and oxygen supply to
growing tumors. To induce tumor cell death, the tumor
vasculature can thus be impaired by vectorizing anti-
angiogenics, mostly VEGF inhibitors or anti-VEGF siR-
NAs. Those have been developed as single agents over
the last two decades but showed major side effects, such
as hemorrhages or thromboses [280]. Anti-angiogenics
have been vectorized efficiently with nanoparticles [280],
bacterial minicells [61] and OVs [281], either by active
targeting to the tumor endothelium (e.g. iRGD peptide)
or by relying on the EPR effect. As an example, untar-
geted liposomes were used to co-deliver an anti-VEGF
siRNA and etoposide and caused a significant inhibition
of tumor growth in an orthotopic non-small cell lung
cancer model compared to the combinations of either
free drugs or the separate liposomal formulations [282].
Similarly, the anti-VEGF antibody bevacizumab and er-
lotinib were co-vectorized in pH-sensitive lipid-polymer
hybrid nanoparticles and achieved significant inhibition
of non-small cell lung cancer growth in mice [283].

b. Reprogramming the environment

Normalizing the TME by modifying the phenotypes
and functions of its cellular components has become a
therapeutic strategy to beat cancer [284]. Since repro-
gramming myeloid cells toward anti-tumor phenotypes
can promote favorable immune responses, several strat-
egies aim at re-educating TAMs into pro-inflammatory
M1-like macrophages [285]. This can be achieved using
pro-inflammatory cytokines (e.g. IL-12), miRNAs or
TLR agonists which systemic delivery was shown to be
highly toxic unless vectorized by nanoparticles [285–288]
or VLPs [289]. Other types of immunosuppressive cell
types such as myeloid-derived suppressor cells or regulatory
T cells can also be targeted by engineered nanoparticles
[275] and OVs [290].
OVs display intrinsic properties (e.g. induction of

immunogenic tumor cell death (ICD), release of
damage- and pathogen-associated molecular patterns)
that make them perfectly suited for such reprogramming
approaches in cancer immunotherapy. Clinical trials re-
ported that OV-induced ICD can be sufficient to induce
an abscopal anti-cancer immune response and lead to
tumor eradication [94, 291, 292]. OV infection also

promotes T cell infiltration in the infected tumors and
could improve the efficacy of immune checkpoint inhibi-
tors [293]. The vectorization of immunomodulating
transgenes with OVs or VLPs turns cancer cells into
therapeutic factories within the TME [86, 294] as shown
with immune checkpoint inhibitors encoded from engi-
neered viruses [295, 296]. This changes the pharmacokinet-
ics of immunotherapies and enables the use of potent
immune activators (e.g. trimerized CD137L, IL-12) that are
toxic or even lethal when used systematically without
proper vectorization. It also facilitates combinations, for ex-
ample by inserting into large DNA virus genomes multiple
immunotherapeutic transgenes (e.g IL-12 + anti-PD-L1)
targeting different immune mechanisms for synergistic
effects with no additional toxicity [296–298].
To vectorize immunotherapies targeting the TME

[126], nanoparticles are generally combined with ICD in-
ducers (e.g. hyperthermia) on the same vector in order
to stimulate immune cell recruitment and activation
[269, 299–301]. Contrary to transgene vectorization by
OVs, nanoparticles usually transport proteins, which
does not allow spatial and temporal treatment amplifica-
tion. Nevertheless, inhibitors of IL-10, TGF-β, indolea-
mine 2,3-dioxygenase immunosuppressive molecules
[273], TLR agonists [302–304] or pro-inflammatory cy-
tokines (e.g. IL-2, IL-15, TNF-α, IFN-γ) [15, 305–308]
have been successfully addressed to the TME in preclin-
ical models using different types of nanoparticles [275,
309]. Those have also been used to vectorize anti-OX40
[310] and anti-CD137 [311] agonist antibodies or anti-
PD-1 [310] and anti-PD-L1 [312] antagonist antibodies
in mice to enable efficient T cell activation in the TME
[270, 299]. In an elegant study, a tritherapy consisting in
an immune checkpoint inhibitor (i.e. anti-PD-L1) and
two T cell activators (i.e. anti-CD3 and anti-CD28) con-
jugated on the same nanoparticle was shown to augment
the therapeutic index of the combination against murine
breast and colorectal cancers [313], which illustrates the
versatility of nanoparticles in this context.
Recent clinical advances in cancer immunotherapy and

TME reprogramming are yet to be enhanced efficiently
by appropriate vectorization approaches. Viruses display
natural abilities (e.g. transgene transport and expression,
intrinsic immunogenicity) for this, with OVs also
exhibiting replication and oncolysis properties that can
further improve their therapeutic efficacy. The develop-
ment of clinical-grade viruses may be however challen-
ging and organic nanoparticles, which are investigated in
numerous preclinical studies to deliver immunomodulat-
ing proteins to tumors, offer good alternatives when
considering their multiple engineering possibilities. The
most efficient designs are still to be identified in clinical
studies but advances in vaccination strategies using
nanoparticles, for instance regarding Covid-19, may
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accelerate these developments. As for VLPs, EVs and
bacterial minicells, their ability to vectorize biomolecules
to modulate the TME has been demonstrated but
clinical evidence is still missing.

Conclusion
The last three decades have seen the discovery of a tre-
mendous number of new anti-cancer molecules selected
for their tumor-specific cytotoxicity and, more recently,
for their ability to alter the TME. However, a large ma-
jority of the molecules identified on the bench fail in the
clinic because of a poor efficacy/safety ratio after sys-
temic administration. Despite personalized combinations
to strike tumors on different fronts, resistance and
toxicities are still major issues that limit many thera-
peutic applications. The advent of nanotechnologies
opened an entirely novel area of research around the
nanovectorization of anti-tumor therapeutics to both in-
crease treatment efficacy and reduce associated toxicities
by improving dramatically the specificity of tumor tar-
geting. Chemically engineered nanoparticles – highly
adaptable and for some relatively easy to manufacture –
were the first to enter the clinic but with the current
trend to improve the biocompatibility and to exploit pre-
cise biological mechanisms, bio-inspired nanovectors
(e.g. VLPs, bacterial minicells, EVs, OVs) are now rapidly
gaining interest. These different families of nanovectors
allow the vectorization of almost all anti-cancer thera-
peutics, including chemical drugs, radio-elements, nu-
cleic acids, toxins and immunotherapies (Table 2). To
this day, chemotherapies, radioelements and molecules
that sensitize tumors to radiotherapies have been more
efficiently vectorized with synthetic nanoparticles but
promising results have also been obtained with bacterial
minicells and VLPs. By their very nature, viral vectors
are the most suitable for gene therapy and nucleic acid
vectorization, yet lipid-based nanoparticles have been ex-
tensively studied for these applications and may be more
adapted – along with EVs or even bacterial minicells –
to the delivery of small RNAs. Finally, nanoparticles can
efficiently vectorize immunomodulatory proteins but
OVs are becoming a new standard thanks to their intrin-
sic immunogenic properties and their ability to sustain
local expression of immunomodulatory transgenes.
The field of nanovectorization is overly active and has

already provided important advances for cancer therapy,
with clinical approvals for several simple nanoformula-
tions (Table 3). Current developments however focus on
more complex structures including biological or bio-
inspired objects. This opens opportunities for the
advancement of personalized medicine by adapting
rationally the nanovectors to specific biological contexts
and clinical situations, but this also comes with several
hurdles on the way to clinical applications. Indeed, the

increasing complexity of synthetic nanoparticles, in par-
ticular for combination therapies, will necessitate radical
optimization of production methods. For the bio-
inspired nanovectors, the issues associated with the cost
and the technical difficulties of large-scale productions
still hinder their wider development. Moreover, the
nanovectorization of anticancer therapeutics also lacks
solid pharmacological and toxicological studies; im-
provements and solutions may come from advances in
parallel fields such as recombinant protein production,
conventional gene therapy or regenerative medicine.
These problems highlight the importance of integrating
the issue of therapeutic delivery in the process of drug
development and call for a closer relationship with the
field of drug discovery. As such, acknowledging the di-
versity of available delivery systems may act as a lever in
drug discovery and reveal numerous therapeutic mole-
cules that would have been rejected because of alleged
unfavorable properties (e.g. poor solubility, high tox-
icity), thereby expanding the therapeutic arsenal against
cancer.
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