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Understanding and managing the health effects of ambient temperature (Ta) in a warming, urbanizing world requires spatially-and temporally-resolved Ta at high resolutions. This is challenging in a large area like France which includes highly variable topography, rural areas with few weather stations, and heterogeneous urban areas where Ta can vary at fine spatial scales. We have modeled daily Ta from 2000 -2016 at a base resolution of 1 km 2 across continental France and at a 200 x 200 m 2 resolution over large urban areas. For each day we predict three Ta measures: minimum (Tmin), mean (Tmean), and maximum (Tmax). We start by using linear mixed models to calibrate daily Ta observations from weather stations with remotely sensed MODIS land surface temperature (LST) and other spatial predictors (e.g. NDVI, elevation) on a 1 km 2 grid. We fill gaps where LST is missing (e.g. due to cloud cover) with additional mixed models that capture the relationship between predicted Ta at each location and observed Ta at nearby weather stations. The resulting 1 km Ta models perform very well, with ten-fold cross-validated R 2 of 0.92, 0.97, and 0.95, mean absolute error (MAE) of 1.4 °C, 0.9 °C, and 1.4 °C, and root mean square error (RMSE) of 1.9 °C, 1.3 °C, and 1.8 °C (Tmin, Tmean, and Tmax, respectively) for the initial calibration stage. To increase the spatial resolution over large urban areas, we train random forest and extreme gradient boosting models to predict the residuals (R) of the 1 km Ta predictions on a 200 x 200 m 2 grid. In this stage we replace MODIS LST and NDVI with composited top-of-atmosphere brightness temperature and NDVI from the Landsat 5, 7, and 8 satellites. We use a generalized additive model to ensemble the random forest and extreme gradient boosting predictions with weights that vary spatially and by the magnitude of the predicted residual. The 200 m models also perform well, with ten-fold cross-validated R 2 of 0. 79, 0.79, and 0.85, MAE of 0.4, 0.3, and 0.3, and RMSE of 0.6, 0.4, and 0.5 (Rmin, Rmean, and Rmax, respectively). Our model will reduce bias in epidemiological studies in France by improving Ta exposure assessment in both urban and rural areas, and our methodology demonstrates that MODIS and Landsat thermal data can be used to generate gapfree timeseries of daily minimum, maximum, and mean Ta at a 200 x 200 m 2 spatial resolution.

Introduction

Ambient or near-surface air temperature (Ta) is increasingly recognized as an important health risk. High or low Ta is associated with increased morbidity and mortality across regions and climates [START_REF] Gasparrini | Mortality risk attributable to high and low ambient temperature: A multicountry observational study[END_REF][START_REF] Guo | Global variation in the effects of ambient temperature on mortality: A systematic evaluation[END_REF][START_REF] Song | Impact of ambient temperature on morbidity and mortality: An overview of reviews[END_REF], and recent work suggests that high Ta may exacerbate the effect of exposure to particulate matter (PM), another major health hazard [START_REF] Li | Modification of the effects of air pollutants on mortality by temperature: A systematic review and meta-analysis[END_REF]. Ta exposure is a growing concern in cities, which are often warmer than the surrounding countryside due to increased heat accumulation and slower heat diffusion [START_REF] Arnfield | Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island[END_REF]. Urban areas are now home to more than half the world's population, and this share is projected to increase to almost 70% by 2050 [START_REF] United Nations | World Urbanization Prospects: The 2018 Revision. USGS, 2018a. Landsat 4-7 Surface Reflectance (LEDAPS) Product Guide[END_REF]. Health effects of Ta are also seen in rural populations [START_REF] Lee | Study on the association between ambient temperature and mortality using spatially resolved exposure data[END_REF], although fewer studies have examined these due to the difficulty of estimating Ta exposure. Meanwhile climate change is increasing Ta and the frequency of extreme events such as heat waves in both urban and rural areas (IPCC, 2013). The health burden of Ta exposure is expected to grow as climate change and urbanization continue [START_REF] Gasparrini | Projections of temperature-related excess mortality under climate change scenarios[END_REF][START_REF] Wang | Accounting for adaptation and intensity in projecting heat wave-related mortality[END_REF].

Understanding, monitoring, and managing Ta health effects requires spatiotemporally-resolved Ta at high resolutions. Weather station networks measure Ta at high temporal resolution, but rarely capture spatial variation at the scales needed for epidemiological studies (e.g. across a region, within a city). Failure to account for spatial variation in Ta can introduce error in exposure assessment, which tends to bias health effect estimates towards the null [START_REF] Zeger | Exposure measurement error in time-series studies of air pollution: Concepts and consequences[END_REF]. Some recent epidemiological studies have addressed this issue by using spatiotemporally-resolved Ta estimates from numerical weather prediction models such as WRF (Ha et al., 2017b(Ha et al., , 2017a)), but computational limitations currently restrict these models to medium spatial resolutions (e.g. 4 km) or small geographic areas (e.g. a single city). In urban areas, studies have used weather model Ta estimates or indicators such as sky view factor, vegetation abundance, and land surface temperature to create indexes that identify warmer and cooler areas within a city [START_REF] Goggins | Effect modification of the association between short-term meteorological factors and mortality by urban heat islands in Hong Kong[END_REF][START_REF] Ho | Delineation of spatial variability in the temperature-mortality relationship on extremely hot days in greater Vancouver, Canada[END_REF][START_REF] Laaidi | The impact of heat islands on mortality in Paris during the August 2003 heat wave[END_REF][START_REF] Milojevic | Methods to estimate acclimatization to urban heat island effects on heat-and cold-related mortality[END_REF][START_REF] Smargiassi | Variation of daily warm season mortality as a function of micro-urban heat islands[END_REF]. Studies to date have focused on the typical spatial distribution of Ta during a specific time period (e.g. a single heat wave, the hot season) as the limited temporal variability of the indicator variables and cost of numerical weather prediction have precluded consideration of changes in the pattern of warmer and cooler areas over time.

Other recent studies have used Ta estimates from hybrid land use regression models that predict Ta based on remotely sensed 1 km land surface temperature (LST) and spatial and spatiotemporal variables such as elevation and normalized difference vegetation index (NDVI) [START_REF] Kloog | Using Satellite-Based Spatiotemporal Resolved Air Temperature Exposure to Study the Association between Ambient Air Temperature and Birth Outcomes in Massachusetts[END_REF]Shi et al., 2016b[START_REF] Shi | Impacts of temperature and its variability on mortality in New England[END_REF]. This approach takes advantage of the growing body of satellite earth observation data and the fact that LST is a good indicator of spatiotemporal variation in Ta [START_REF] Oyler | Remotely sensed land skin temperature as a spatial predictor of air temperature across the conterminous United States[END_REF]. In particular, a technique that uses linear mixed models to calibrate the relationship between daily 1 km LST from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument and Ta has been shown to perform well over large, heterogeneous areas including the northeastern USA (root mean square error

[RMSE] 2.2 °C) [START_REF] Kloog | Predicting spatiotemporal mean air temperature using MODIS satellite surface temperature measurements across the Northeastern USA[END_REF], the southeastern USA (RMSE 1.4 °C) (Shi et al., 2016a), France (RMSE 1.7 °C) [START_REF] Kloog | Modelling spatio-temporally resolved air temperature across the complex geo-climate area of France using satellite-derived land surface temperature data[END_REF], and Israel (RMSE 1.2 °C) [START_REF] Rosenfeld | Estimating daily minimum, maximum, and mean near surface air temperature using hybrid satellite models across Israel[END_REF].

These models are parsimonious compared to numerical weather prediction, which allows them to capture both spatial and temporal variation in Ta over large areas and long time periods. Their spatial resolution suffices for areas where Ta varies little at scales of less than 1 km and for studies where subjects' locations are only approximately known. But finer spatial resolution estimates are needed for studies with address-level location data, particularly in urban areas where Ta can vary markedly within a square kilometer. Very high spatiotemporal resolutions would also benefit studies that have time-location data (e.g. GPS tracks).

In this study we extend the mixed modeling approach to predict daily minimum, mean, and maximum Ta (Tmin, Tmean, Tmax, respectively) at a 1 km resolution across continental France and at a 200 m resolution across 103 urban areas in continental France. We improve performance at the 1 km resolution by allowing the daily Ta ~ LST relationship to vary between climatic regions, and we consider both daytime and nighttime MODIS LST, which allows us to predict diurnal (Tmax) and nocturnal (Tmin) temperature in addition to Tmean. This is useful both for studies of urban heat islands, which exhibit different spatial patterns and intensities during day vs. night [START_REF] Arnfield | Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island[END_REF], and for studies of Ta variability, which recent work suggests may independently affect health [START_REF] Guo | Temperature variability and mortality: A multi-country study[END_REF][START_REF] Molina | The perils of climate change: In utero exposure to temperature variability and birth outcomes in the Andean region[END_REF][START_REF] Shi | Impacts of temperature and its variability on mortality in New England[END_REF].

We also add a local stage that uses an ensemble of machine learning algorithms to predict the residuals of the 1 km model in urban areas based on higher spatial resolution predictors including thermal data from the Landsat 5, 7, and 8 satellites. This allows us to predict daily Ta over 17 years at a 200 m spatial resolution which better captures intra-urban Ta variation across 103 urban areas.

Data and methods

Study area and period

Our study area is continental France, comprising all French territory in Europe except Corsica.

It covers 542,973 km 2 of topographically and climatically diverse terrain with elevations that range from -10 to 4,809 m. [START_REF] Joly | Les types de climats en France, une construction spatiale[END_REF] classify France into eight climatic regions based on the magnitude, variability, and seasonality of temperature and precipitation (Fig. 1). The north and west coasts have a wet, temperate oceanic climate, which transitions to a drier, cooler modified oceanic climate in the north center. The mountainous east, south center, and southwest have variable montane and semi-continental climates with cold winters. In the southeast, the Mediterranean coast has hot, dry summers with mild wet winters; the inland southeast and isolated segments of the west coast are similar but cooler. The southwest basin resembles the inland southeast but with drier winters. The estimated population on January 1, 2018was 64,388,583 (INSEE, 2018). About 80% of the population is urban, and this share is projected to grow to 88% by 2050 [START_REF] United Nations | World Urbanization Prospects: The 2018 Revision. USGS, 2018a. Landsat 4-7 Surface Reflectance (LEDAPS) Product Guide[END_REF]. The largest urban area, Paris, has a population of 12.5 million (20% of the total) and the six next largest urban areas have a population of one to 2.3 million (combined 14% of total). A further 10% of the population lives in cities of one half to one million, and 37% live in urban areas with fewer than half a million residents (Fig. S1). Our study period is January 1, 2000 through December 31, 2016.

Meteorological observations

We use daily weather station observations from Météo France, the French national meteorological service. About 64% of the observations come from stations managed by Météo France; the remaining stations are managed by other entities. All observations are quality controlled by Météo France. We exclude stations with no metadata or that do not record hourly Ta, and for each month during the study period we exclude stations that were active for fewer than 21 days in the month. This leaves 1710 to 2314 stations on each day. The stations are distributed over the entire study region, but are denser in populous areas (e.g. Paris, the southeast) and the Alps (which has many ski resorts, hydroelectric dams, and avalanche monitors) (Fig. 1). Just 3% of the stations are located within large urban areas (as defined in section 2.7), 7% are in peri-urban areas (within 5 km of an urban area), and the remaining 90% are rural.

The stations calculate daily Tmin as the lowest Ta observed from 18 UTC the previous day until 18 UTC on the day; daily Tmax is the highest Ta observed from 6:00 UTC on the day until 6:00 UTC the following day. Most stations calculate Tmean as the mean of all (at least 24) Ta observations from 0 UTC on the day until 0 UTC the following day. However, about 40% of the Tmean observations were calculated as the average of Tmin and Tmax. We exclude these observations, meaning our final dataset has fewer observations for Tmean than for Tmin or Tmax.

Daily Ta at the included stations during the study period ranged from Tmin of -31.2 °C to Tmax of 44.1 °C; mean Tmean was 11.3 °C with a standard deviation of 7.1 °C (Table S1).

Land surface temperature and emissivity

We use version 6 of the widely-used MODIS daily 1 km land surface temperature and emissivity product from the Terra and Aqua satellites (MOD11A1 and MYD11A1, respectively) (Table 1). These products include daytime and nighttime LST derived using a split-window algorithm and land use classification-based emissivity and have been masked for clouds and validated to ± 2 K in clear-sky conditions across 47 sites on all seven continents [START_REF] Wan | New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product[END_REF]. We use the quality assessment band to exclude pixels with LST error > 2 K. As LST retrieval error increases over snow and water, we also exclude pixels with NDVI < 0 or where the corresponding 1 km grid cell has land cover of > 33% water. 

Top-of-atmosphere brightness temperature

For large urban areas, we composite 30 m top-of-atmosphere brightness temperature (Tb) from the Landsat 5, 7, and 8 satellites (Table 1). Tb is the kinetic temperature a perfect blackbody would have if it emitted the quantity of thermal radiation measured by the satellite instrument.

Converting Tb to LST requires correcting for atmospheric effects and accounting for the emissivity of the earth's surface. This is difficult in the case of the Landsat satellites because Landsat 5 and 7 have only a single thermal band and the USGS Landsat 8's second thermal band is contaminated by stray light, precluding the use of the split-window algorithm [START_REF] Li | Satellitederived land surface temperature: Current status and perspectives[END_REF]. A global Landsat LST product is under development but not yet available [START_REF] Malakar | An Operational Land Surface Temperature Product for Landsat Thermal Data: Methodology and Validation[END_REF], so for this study we use Tb from the USGS Landsat Collection 1 Level-2 surface reflectance products (USGS, 2018a(USGS, , 2018b)).

The 16-day revisit time of the Landsat satellites means that Tb is unavailable for many locations on many days. Cloud cover and sensor malfunctions also contribute to these data gaps and can increase error in Tb retrieval. To reduce error, we discard all scenes with cloud cover > 75%.

We also discard all scenes captured during periods of instrument malfunction, which we identified by checking summary statistics of each scene for unrealistic values (e.g. mean Tb > 100 °C). We then trim the edges of Landsat 5 scenes by 2.5 km to remove abnormalities [START_REF] Robinson | A dynamic landsat derived normalized difference vegetation index (NDVI) product for the conterminous United States[END_REF] and mask pixels identified as high-or medium-confidence cloud in the pixel quality assessment band. We mask any remaining pixels where Tb ≤ -25 °C or Tb ≥ 50 °C.

Finally, for each calendar month we composite all Tb retrievals during the entire study period (e.g. every January in 2000 -2016). This yields 12 gap-free Tb datasets representing the 17year mean Tb of each pixel in each calendar month.

NDVI

We use version 6 of the MODIS monthly composite 1 km NDVI product from the Terra and Aqua satellites (MOD13A3 and MYD13A3, respectively). For large urban areas we also composite 30 m NDVI from the Landsat 5, 7, and 8 Collection 1 Level-2 surface reflectance products. We use a similar quality assurance and compositing procedure as for Tb, first discarding all scenes with greater than 75% cloud cover or during periods of thermal sensor malfunction (as this results in unreliable cloud confidence scores in the pixel quality assessment band). We then trim the edges of Landsat 5 scenes by 2.5 km and adjust NDVI from Landsat 5 and Landsat 7 to match Landsat 8 using equation Eq. 1 [START_REF] Robinson | A dynamic landsat derived normalized difference vegetation index (NDVI) product for the conterminous United States[END_REF].

NDVI !" = 0.0235 + 0.9723 × NDVI #$,#&
Eq. 1

Similar to [START_REF] Robinson | A dynamic landsat derived normalized difference vegetation index (NDVI) product for the conterminous United States[END_REF], for each calendar month we create two 17-year mean composites, one using pixels marked as clear in the pixel quality assurance band (i.e. not cloud, cloud shadow, snow, or water) and a second using pixels marked as snow or water. Finally, we mosaic the two composites preferring the clear pixels composite.

Elevation, Population, Land Cover, and Climatic Regions

We thematic accuracy [START_REF] Bossard | CORINE land cover technical guide -Addendum[END_REF]. We aggregate the land cover classes into four groups:

artificial, vegetation, bare, and water (Table S2). Finally, we use the eight climatic regions of [START_REF] Joly | Les types de climats en France, une construction spatiale[END_REF], which are based on temperature and precipitation patterns (Fig. 1).

Model grids

For the 1 km model, we create a grid covering continental France by making a 1 km square buffer around the centroid of each MODIS 1 km LST pixel in the ETRS89-LAEA Europe (EPSG:3035) equal-area projection. We associate each 1 km grid cell with the MODIS LST and NDVI pixel having the same centroid and calculate the mean elevation, total population, percent area of each land cover group, and climate region with greatest spatial overlap.

For the 200 m model, we create a grid covering large urban areas. Starting from a 200 m grid in the ETRS89-LAEA Europe (EPSG:3035) equal-area projection, we select all cells in continental France containing "Urban fabric" or "Industrial or commercial units" in the 2012 CLC inventory. We associate each cell with the corresponding INSEE gridded population and select cells with 50 or more inhabitants as well as the eight surrounding cells (i.e. including diagonal neighbors). We define urban areas as four-wise contiguous (i.e. excluding diagonal neighbors) groups of cells and sum the population of all cells in each urban area. Finally, we eliminate urban areas with population < 50,000. This leaves 103 large urban areas ranging from greater Paris (9.4 million inhabitants) to Armentières (50,260 inhabitants). For each 200 m grid cell in a large urban area or that contains a weather station we calculate the mean 17-year composite Landsat Tb and NDVI for each calendar month, mean elevation, and percent area of each land cover group.

Statistical methods

We use a four-stage approach to predict Ta: stages 1 and 2 predict daily 1 km Ta across continental France and stages 3 and 4 predict daily 200 m Ta within large urban areas. We consider each year during the study period (2000 -2016) and each Ta measure (Tmin, Tmax, and Tmean) separately. Stages 1 and 2 are an extension of the method used in [START_REF] Kloog | Modelling spatio-temporally resolved air temperature across the complex geo-climate area of France using satellite-derived land surface temperature data[END_REF] and are detailed in Appendix A. Sections 2.8.1 to 2.8.2 detail stages 3 and 4; the following is a brief overview of all stages.

In stage 1 we calibrate Ta at each station as a function of daily 1 km LST and emissivity, monthly 1 km NDVI, and 1 km elevation, population, and land cover. We use a linear mixed model to allow the Ta ~ LST relationship to vary by day within each climatic region. We use this calibrated relationship to predict 1 km Ta (Tap_s1) for all cell-days where LST is available.

In stage 2, we fill gaps in Tap_s1 where 1 km LST was not available by calibrating Tap_s1 as a function of daily 1 km inverse distance weighting interpolated observed Ta (TIDW). We use a linear mixed model to allow the Tap_s1 ~ TIDW relationship to vary by location. We use this calibrated relationship to fill gaps in Tap_s1, producing gap-free daily 1 km predicted Ta (Tap_1km). This is the 1 km Ta model.

In In stage 4, we calibrate a generalized additive model that ensembles Rp_rf and Rp_gb. We use a tensor product smooth with interaction to allow the relative performance of the RF and GB models to vary by location and with the magnitude of the predicted residual. Finally, we add the ensemble predictions to Tap_1km to get daily 200 m predicted Ta for large urban areas (Tap_200m). This is the 200 m Ta model. Populationi is the population of cell i; xi and yi are the geographical coordinates of cell i; j is the Julian day; and eij is the error for cell i on day j.

We use the R packages ranger [START_REF] Wright | Ranger: A fast implementation of random forests for high dimensional data in C++ and R[END_REF], XGBoost (Chen and Guestrin, 2016), and mlr [START_REF] Bischl | Mlr: Machine learning in R[END_REF] to train the random forest and XGBoost models. We tune the models using the sequential model-based optimization of package mlrMBO [START_REF] Bischl | mlrMBO: A Modular Framework for Model-Based Optimization of Expensive Black-Box Functions[END_REF]. Briefly, mlrMBO estimates optimal hyperparameter values by iteratively training and evaluating a model using hyperparameter values that are chosen based on the performance of previous iterations. We use a fixed number of iterations and evaluate performance as the mean RMSE of two random 80% holdouts (i.e. we train the model on a 20% random sample of the data, predict and calculate RMSE for the held-out 80%, repeat, and take the mean of the two RMSEs). Initial exploration showed that this resampling approach produced stable estimates of RMSE at a lower computational cost than cross-validation.

For the random forest, we use 400 trees and a minimum of 5 observations per node, and tune mtry (the number of variables to consider for each split) from 3 to 12 (25% to 100% of the explanatory variables) using 6 mlrMBO iterations. Initial exploration showed that using more than 400 trees only marginally increased performance and had a high computational cost. For the XGBoost model, we use the gbtree booster with 100 rounds and set gamma (the minimum loss reduction for a split) to 5. We use 24 mlrMBO iterations to tune eta (the learning rate) from 0.1 to 0.3, the maximum tree depth from 5 to 20, the minimum number of observations per node from 3 to 30, and the fraction of features used in each tree from 0.75 to 1.

We evaluate the performance of the stage 3 models using 5-fold cross-validation with nested tuning. We use the final stage 3 random forest and XGBoost models to predict the residual of the 1 km Ta model (Rp_rf and Rp_xgb, respectively) for all 200 m cell-days. 

Performance assessment

We use 10-fold out-of-sample cross-validation to assess the overall performance of the models.

For the random forest and XGBoost model we use nested tuning (i.e. within each crossvalidation fold we tune the model as described in section 2.8.1). To evaluate the models' ability to capture both spatial and temporal patterns in Ta, we also calculate the spatial and temporal components of the errors. The spatial component is the difference at each station between the annual mean of daily observed Ta (T ) ), and the annual mean of daily predicted Ta (T )* ). The temporal component is the difference at each station between DTa and DTap where DTa is the difference between daily observed Ta and T ) and DTap is the difference between daily predicted Ta and T )* . We use Google Earth Engine [START_REF] Gorelick | Google Earth Engine: Planetary-scale geospatial analysis for everyone[END_REF] to quality assure and composite Landsat Tb and NDVI and aggregate them to the 200 m grid cells. For all other data processing and analyses we use R version 3.4.4 (R Core Team, 2018).

Results

Table 2 presents the mean 10-fold cross-validated performance of the stage 1 models (predicting daily 1 km Ta from LST) across all years. The models perform very well, with R 2 of 0.92 or higher, RMSE of less than 2 °C, and mean absolute error (MAE) of less than 1.5 °C.

All models have very low bias: the slope of observed vs. predicted Ta is 1.00 while the intercept ranges from 0.01 to 0.02. The Tmean models perform best overall (MAE 0.94), followed by the Tmax (MAE 1.35) and Tmin (MAE 1.43) models. The models capture both spatial and temporal variation in Ta and show little variation in performance between years, although overall Tmean performance decreases slightly after 2010, possibly reflecting degradation of the Terra MODIS instrument (Table S4). Consistent with previous studies, nighttime LST is the best predictor of Tmin and Tmean while daytime LST is the best predictor of Tmax [START_REF] Oyler | Remotely sensed land skin temperature as a spatial predictor of air temperature across the conterminous United States[END_REF][START_REF] Rosenfeld | Estimating daily minimum, maximum, and mean near surface air temperature using hybrid satellite models across Israel[END_REF][START_REF] Yoo | Estimation of daily maximum and minimum air temperatures in urban landscapes using MODIS time series satellite data[END_REF]. Aqua LST is a better predictor of Tmin and Tmax while Terra LST is a better predictor of Tmean. This is expected as the Aqua overpasses (approximately 1:30 and 13:30 local solar time) are closer to the time at which Tmin and Tmax typically occur in France.

However, Aqua LST is only available since July 2002, so we use Terra LST for all models prior to 2003. 4 presents the performance by climatic region and urban vs. rural locations. The Tmin and Tmean models perform slightly less well in winter months, possibly due to higher LST missingness from more frequent cloud cover. The Tmax model performs best in late winter, early spring, and fall. The models perform less well in the mountain, semi-continental, and modified Mediterranean climates. These climates occur in mountainous areas where large contrasts in topography and land cover make modelling particularly challenging; other factors not included in the model may also reduce performance in these areas. The models perform slightly better in peri-urban areas than in urban and rural areas, possibly due to the higher density of weather stations (peri-urban areas have the most stations per km 2 ). On the hot summer day of Aug 10, 2012, predictions ranged from a Tmin of 3 °C in parts of the Alps to a Tmax of 39 °C in the southeast and southwest. On the Tmin map, the southwestern cities of Toulouse and Bordeaux stand out as hotspots, while Paris and Rouen are faintly visible as warm spots in the north. The north is colder than the Vosges mountains in the northeast and the Pyrenees in the southwest are warmer than the alps. The warmest areas are the southern Rhone river valley in the southeast and a patch of the southwestern Atlantic coast. On the Tmean map, Paris and Rouen are still visible, Lyon stands out in the east, and a few northwestern cities appear. Much of the southwest is as warm as the southeast, and the southwestern cities are harder to distinguish from the countryside. On the Tmax map, Lyon, Rouen, and some northwestern cities remain faintly visible, Pau and Tarbes appear in the southwest, and the north is warmer than the Vosges. 6 presents the performance by climatic region and urban vs. rural locations. These models also perform well, with overall R 2 of 0.79 to 0.85, RMSE of 0.41 to 0.63, and MAE of 0.26 to 0.39 (residual scale). As with the stage 1 models, the RTmean predictions are slightly better than the RTmin or RTmax predictions and the models perform least well in the mountain, semi-continental, and modified Mediterranean climates. The RTmin model performs slightly worse in late summer; otherwise performance is quite consistent across months and seasons.

The models have low bias, with a slope of observed vs. predicted of 1.00 and intercept of zero for every year. Performance is consistent across years except for the RTmin model, which performs slightly better in 2000 -2002, and the RTmean model, which performs best in 2004 (Table S6). Spatial location and elevation are generally the most important features in the random forest and XGBoost models (Fig. S2 -S3). Day of year and predicted 1 km Ta were equally or even more important in some models but less important in others. Landsat Tb and NDVI and population also contributed to the models, particularly for RTmean. The land cover and climatic region variables were the least important. Tmin was cool and capture the Garonne river in the center. The northwestern and northeastern suburbs have greater contrast with some areas slightly cooler than in the 1 km predictions and others slightly warmer. In the small city of Nancy, at 1 km both the city center and an area of ponds to the southeast have Tmin about 2 °C warmer than the surroundings. The 200 m predictions show warmer Tmin throughout most of the built-up area with sharp contrasts between built and open areas: compared to the 1 km predictions, Tmin is up to 2 °C higher in the center, north, and west of the built-up area and up to 2 °C lower over parks and over fields abutting the eastern edges of the city. 

Discussion

Spatiotemporally-resolved Ta at high resolutions is essential to understanding, monitoring, and managing the health effects of Ta, a pressing issue in a warming, urbanizing world. We have developed the longest (2000 -2016), highest spatial resolution (1 km) model of daily Ta available for continental France aimed at public health research. Furthermore, our model provides an unprecedented spatial resolution of 200 m over large urban areas.

A key feature of our model is its ability to capture spatial variation in Ta. Previous epidemiological research in France linked geographical variation in mortality risk to both typical [START_REF] Laaidi | Temperature-related mortality in France, a comparison between regions with different climates from the perspective of global warming[END_REF] and extreme Ta [START_REF] Le Tertre | Impact of the 2003 heatwave on all-cause mortality in 9 French cities[END_REF]) using weather stations.

Recent studies in the USA showed that a daily 1 km Ta dataset similar to ours was needed to detect associations with low birth weight [START_REF] Kloog | Using Satellite-Based Spatiotemporal Resolved Air Temperature Exposure to Study the Association between Ambient Air Temperature and Birth Outcomes in Massachusetts[END_REF] and mortality [START_REF] Shi | Impacts of temperature and its variability on mortality in New England[END_REF]. Our model will allow future studies in France to include participants in rural areas far from weather stations and will also improve exposure estimates in urban areas.

Another key feature is our model's 200 m spatial resolution over urban areas. Estimating Ta exposure in cities is particularly challenging due to complex built environments and the scarcity of representative Ta measurements, as weather stations tend to be located outside cities (e.g. at airports) or in large parks. Consequently, few epidemiological studies have examined intraurban variation in Ta. In Milan, Italy, de'Donato et al. (2008) found that on hot summer days temperature measured at a nearby airport tended to be higher and more strongly associated with mortality than temperature measured in the city center, but in Turin and Rome there was little difference in temperature or its association with mortality between the city center and a nearby airport. In Paris, France, [START_REF] Laaidi | The impact of heat islands on mortality in Paris during the August 2003 heat wave[END_REF] used 1 km LST as a proxy for Ta and found an association between minimum LST and mortality during the August 2003 heatwave. In Brisbane, Australia, [START_REF] Guo | Spatiotemporal model or time series model for assessing citywide temperature effects on mortality?[END_REF] found no significant difference in the mortality ~ Ta relationship when estimating Ta exposure using a central weather station vs. kriging, but noted that there was little spatial variation in temperature across the city. In Seattle, USA, [START_REF] Ho | Delineation of spatial variability in the temperature-mortality relationship on extremely hot days in greater Vancouver, Canada[END_REF] found a significant association between spatial variation in mortality on extremely hot days and modeled humidex (a measure of both Ta and humidity). Our model will help future studies clarify the health effects of intra-urban Ta variation. Our model's unique combination of lower spatial resolution (1 km) predictions over a large geographical extent and higher spatial resolution (200 m) predictions over more densely populated areas will be particularly helpful for epidemiological studies. Broad geographical coverage is essential to including rural residents which have often been excluded from epidemiological studies, especially in France where the 103 largest urban areas covered by our 200 m Ta model contain less than half of the population. At the same time, high spatial resolution is important in dense urban areas where Ta can vary at fine spatial scales and the effect of spatial Ta variation is less well understood. Limiting the 200 m resolution predictions to large urban areas reduces computational effort while still covering a large portion of the population.

A fourth feature of our model is its ability to predict daily Tmin, Tmean, and Tmax. While Tmean suffices for many health studies [START_REF] Barnett | What measure of temperature is the best predictor of mortality?[END_REF], certain research questions may benefit from having Tmin and Tmax. For example, heatwave studies may wish to use heatwave definitions that refer to Tmin or Tmax [START_REF] Xu | Impact of heatwave on mortality under different heatwave definitions: A systematic review and meta-analysis[END_REF] or explore whether certain populations are sensitive to Tmin or nighttime Ta [START_REF] Laaidi | The impact of heat islands on mortality in Paris during the August 2003 heat wave[END_REF][START_REF] Murage | Effect of night-time temperatures on cause and age-specific mortality in London[END_REF]. Tmax might also be of interest because it tends to occur in the afternoon when people are more likely to be outside and active [START_REF] Guo | Heat wave and mortality: A multicountry, multicommunity study[END_REF]. Tmin and Tmax also allow calculating diurnal Ta range for studies of Ta variability and delineating diurnal and nocturnal urban heat islands for urban climate studies.

We demonstrate that allowing the relationship between 1 km LST and Ta to vary by climatic region as well as by day slightly improves performance: our stage 1 Tmean model achieves overall R 2 of 0.97 with RMSE of 1.29 whereas an initial version achieved R 2 of 0.96 with RMSE of 1.52 [START_REF] Kloog | Modelling spatio-temporally resolved air temperature across the complex geo-climate area of France using satellite-derived land surface temperature data[END_REF]. We also demonstrate that a GAM ensemble of machine learning models can use higher spatial resolution predictors including Landsat thermal data to account for some of the residual error in our daily 1 km Ta predictions. Adding this local stage both increases the spatial resolution of our model and improves performance.

One limitation of our method is its reliance on historical satellite thermal data. Our model is restricted to the MODIS period of record, which starts in 2000. Older thermal data is available from other satellites (e.g. Landsat), but not with a twice-daily revisit time. In the USA, [START_REF] Oyler | Creating a topoclimatic daily air temperature dataset for the conterminous United States using homogenized station data and remotely sensed land skin temperature[END_REF] showed that an anomaly-climatology approach could model daily Tmin and Tmax since 1948 from 8-day composite MODIS LST, although their approach may have smoothed spatiotemporal Ta trends.

Our model can estimate past Ta but, unlike numerical weather prediction models, cannot forecast future Ta. However, our model is much simpler, which allows us to run it at relatively high spatial resolutions (1 km and 200 m). In comparison, Météo France's weather prediction model has run at a spatial resolution of 1.3 km only since 2015, and the ECMWF's most recent ERA5 reanalysis has a spatial resolution of just 30 km. And recent studies suggest that incorporating LST from geostationary satellites might allow us to estimate close to real-time Ta [START_REF] Bechtel | Towards a satellite based monitoring of urban air temperatures[END_REF][START_REF] Keramitsoglou | An online system for nowcasting satellite derived temperatures for urban areas[END_REF], or possibly forecast next-day Ta from presentday MODIS LST [START_REF] Yoo | Estimation of daily maximum and minimum air temperatures in urban landscapes using MODIS time series satellite data[END_REF].

Another limitation of our approach is the temporal misalignment between observations of LST and Ta in the stage 1 model: the satellite overpass does not always coincide with the time that Tmin or Tmax occurs. Our model's low MAE (typically less than 1.5 °C) suggests that it produces good Ta estimates despite this; incorporating high temporal-resolution (e.g. hourly) LST from geostationary satellites might improve performance.

A fourth limitation of our model is the need to fill gaps in satellite thermal data. This can introduce error and may make modelling impossible in some areas or time periods. Landsat data is particularly challenging due to the satellites' 16-day revisit time; parts of France have no usable Landsat observations during some winters. The few previous studies that used Landsat thermal data to model Ta limited their analysis to days and locations where Landsat data was available [START_REF] Pelta | Spatiotemporal estimation of air temperature patterns at the street level using high resolution satellite imagery[END_REF] or used a few scenes that were deemed typical of hot summer days [START_REF] Ho | A comparison of urban heat islands mapped using skin temperature, air temperature, and apparent temperature (Humidex), for the greater Vancouver area[END_REF][START_REF] Ho | Mapping maximum urban air temperature on hot summer days[END_REF][START_REF] Wicki | Evaluation and Modeling of Urban Heat Island Intensity in Basel, Switzerland[END_REF]. We fill gaps in Landsat Tb by compositing all scenes for each calendar month across 17 years. This smooths spatial patterns and means we rely entirely on MODIS to capture short-term temporal variation in LST.

Combining data from Landsat 5, 7, and 8 may also introduce error as the sensors operate at different wavelengths and spatial resolutions (Table 1). Future studies may benefit from the forthcoming Landsat Surface Temperature product [START_REF] Malakar | An Operational Land Surface Temperature Product for Landsat Thermal Data: Methodology and Validation[END_REF] which might be more consistent, and would allow using LST as a predictor rather than brightness temperature.

Future studies could also make use of high spatial-resolution LST from forthcoming satellites. Landsat 9 will have a spatial resolution and revisit time similar to the previous Landsat satellites, but should offer better LST retrieval thanks to the correction of the stray light contamination that affects Landsat 8 [START_REF] Hair | Landsat 9 thermal infrared sensor 2 architecture and design[END_REF]. HyspIRI aims to provide a 60 m spatial resolution with a revisit time of 5 days [START_REF] Lee | An introduction to the NASA Hyperspectral InfraRed Imager (HyspIRI) mission and preparatory activities[END_REF], while MISTIGRI aims for 50 m spatial resolution with a daily revisit, but with coverage only within 15 ground tracks [START_REF] Lagouarde | The MISTIGRI thermal infrared project: Scientific objectives and mission specifications[END_REF]. If these satellites improve LST retrieval and reduce missingness then they could improve our method's ability to capture Ta over urban areas.

MODIS LST also contains gaps, which we do not fill. Rather, we predict daily 1 km Ta only where MODIS LST is available and fill gaps in the predictions based on nearby Ta observations. [START_REF] Li | Developing a 1 km resolution daily air temperature dataset for urban and surrounding areas in the conterminous United States[END_REF] achieved similar performance (RMSE 2.1 °C Tmin, 1.9 °C Tmax) for urban and surrounding areas in the USA by first filling gaps in MODIS LST using spatiotemporally nearby LST observations and then predicting daily Ta using geographically weighted regression. These approaches both assume that the spatial distribution of Ta or LST is similar on clear and cloudy days. [START_REF] Zhu | Retrievals of all-weather daytime air temperature from MODIS products[END_REF] used the MODIS atmospheric profile and cloud cover products to estimate instantaneous Ta in parts of China and the USA. Their approach had the additional advantage of not requiring any weather station Ta observations to calibrate the model, but it produced larger errors (RMSE 3.4 °C China, 2.9, USA). Despite these limitations, our model provides very good predictions of historical daily Ta for continental France at a 1 km or finer spatial resolution. These predictions may help compare rural and urban populations, identify and monitor urban heat islands, and better understand health effects. More broadly, our methodology and predictions may be useful in other geographical areas and for any application where Ta is a key variable.
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Fig. 1 .

 1 Fig. 1. Climatic regions of France according to Joly et al. (2010) and METEO-FRANCE stations used in the current study.

  use version 1.1 of the European Digital Elevation Model (EU-DEM) from the Copernicus Land Monitoring Service. These data have a 25 m spatial resolution and vertical RMSE of ±7 m (Tøttrup, 2014). We also use 200 m gridded 2010 population from INSEE, the French national statistics agency (INSEE, 2017). We use the 100 m Corine Land Cover (CLC) inventory for 2000, 2006, and 2012. The 2000 edition has been validated to better than 85%

  stage 3, we calculate the daily 200 m residuals of the 1 km Ta model (R) and train random forest (RF) and extreme gradient boosting (GB) models to predict R based on latitude, longitude, Julian day, climatic region, 200 m composite Tb and NDVI, and 200 m elevation, population, and land cover. We use each of these models predict the residual for all 200 m celldays (Rp_rf and Rp_gb, respectively).

2. 8 . 1 .

 81 Stage 3: increasing spatial resolution to 200 m across large urban areas In stage 3 we increase the spatial resolution of our predictions over large urban areas. We start by associating each 200 m grid cell with Tap_1km (Ta predicted in stage 2 by the final 1 km model) from the 1 km grid cell that contains the 200 m grid cell. Next, we calculate the residuals (R) for all 200 m grid cell-days with a weather station Ta observation by subtracting observed Ta from Tap_1km. The number of cell-days with a weather station observation varies by year; on average there are about 462 thousand for Tmean and 789 thousand for each of Tmin and Tmax. We use these cell-days to train a random forest and an extreme gradient boosting (XGBoost) model with the equation: R '( = 𝑓 1 T )*_,-.'( , T /'0 , NDVI '0 , Land Cover '12 , Climate ' , Elevation ' , Population ' , x ' , y ' , j I + 𝜀 '( Eq. 2 where Rij is the residual of the 1 km Ta model associated with 200 m grid cell i on day j; f designates the random forest or extreme gradient boosting function; Tap_1kmij is the 1 km Ta model prediction associated with 200 m grid cell i on day j; Tbim is the Landsat top-ofatmosphere brightness temperature of cell i for the calendar month m in which day j falls;NDVIim is the Landsat NDVI of cell i for the calendar month m in which day j falls; Land Coverily is the fraction of cell i occupied by each land cover group l in the CLC inventory year y closest to day j; Climatei is the climatic region of cell i; Elevationi is the elevation of cell i;

2. 8

 8 .2. Stage 4: improving 200 m predictions In stage 4 we improve the stage 3 predictions by ensembling. We use all 200 m grid cell-days with a weather station Ta observation to calibrate a generalized additive model (GAM) with the formula: R '( = 𝑡(x ' , y ' , ) × R *_34'( + 𝑡(x ' , y ' ) × R *_5/'( + 𝜀 '( Eq. 3 where Rij is the residual of the 1 km Ta model associated with 200 m grid cell i on day j; t(xi, yi) is a tensor product smooth of the x and y coordinates of cell i; Rp_rfij and Rp_gbij are the predicted residuals of the 1 km Ta model from the stage 3 random forest and XGBoost model, respectively, for cell i on day j; and eij is the error for cell i on day j. The GAM averages the random forest and XGBoost predicted residuals using weights that vary both by location and with the magnitude of each model's predicted residual. Finally, we add the ensemble-predicted residuals for all 200 m grid cells to Tap_1km (Ta predicted in stage 2 by the final 1 km model) to obtain daily 200 m predicted Ta (Tap_200m) across large urban areas.

Fig. 2

 2 Fig. 2 shows the spatial pattern of the daily 1 km Ta predictions of the stage 2 model on selected winter and summer days. On the cold winter day of Feb 18, 2003, predictions range from Tmin of -17 °C in parts of the Alps, the Massif Central, and the Pyrenees to Tmax of 11 °C on the Mediterranean coast. The urban heat island of Paris is faintly visible in the north center of the Tmin and Tmean maps but disappears on the Tmax map. Spatial contrasts corresponding to terrain features are well resolved, and the spatial pattern of Tmin vs. Tmean vs. Tmax varies most in the north, northeast, and southwest.
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 2 Fig. 2. Predicted 1 km Ta from the stage 2 model on selected days: Feb 18, 2003 (top row) and Aug 10, 2012 (bottom row).

Fig. 3

 3 Fig. 3 shows the spatial pattern of predicted 1 km Tmin from the stage 2 model and predicted 200 m Tmin from the stage 4 model for the Paris metropolitan area (northern France, population 12.5 million), the Toulouse metropolitan area (southwestern France, Population 1.3 million), and the Nancy metropolitan area (northeastern France, population 250,000) on the cold winter day of Feb 18, 2003. In the large city of Paris, an urban heat island is clearly visible centered over the large urban core where Tmin is about 5 °C warmer than the rural surroundings. The 200 m predictions are slightly higher than the 1 km predictions in the peripheral built-up areas and capture fine details such as the warmer Seine river and cooler parks. In the midsize city of Toulouse, the 1 km predictions capture an urban heat island over the dense city center and the suburbs to the northwest and southeast, with Tmin about 3 °C warmer than the rural surroundings. The 200 m predictions show warm Tmin in the southwestern suburbs where 1 km

Fig. 3 .

 3 Fig. 3. Predicted 1 km Tmin from the stage 2 model alone (top row) and with predicted 200 m Tmin from the stage 4 model overlaid (bottom row) on Feb 18, 2003 over the Paris, Toulouse, and Nancy metropolitan areas.

Table 1 .

 1 Satellite instruments used in this study.

	Instrument Satellite	Resolution Revisit time Overpass * Time period
	MODIS	Terra	1 km	12 hours	10:00 22:00	2000-02-02 -present
	MODIS	Aqua	1 km	12 hours	13:00 01:00	2002-07-04 -present
	TM	Landsat 5 120 m †	16 days	10:00	1984-03-01 -2011-11-18
	ETM+	Landsat 7 60 m †	16 days	10:00	1999-04-15 -present
	TIRS	Landsat 8 100 m †	16 days	10:00	2013-02-11 -present
	*Approximate local solar time; †Resampled to 30 m		

Table 2 .

 2 Stage 1 model (predicting daily 1 km Ta from LST): 10-fold cross-validated performance

	across all years (2000 -2016), overall, spatial, and temporal components.
			Overall		Spatial		Temporal
		N*	R 2	RMSE MAE	R 2	RMSE MAE	R 2	RMSE MAE
	Tmin	354	0.92 1.89	1.43	0.89 1.10	0.80	0.94 1.61	1.19
	Tmean	205	0.97 1.29	0.94	0.95 0.83	0.57	0.97 1.15	0.84
	Tmax	324	0.95 1.81	1.35	0.88 1.23	0.89	0.96 1.52	1.12
	* N = mean thousands of observations used to fit each annual model

Table 3

 3 presents the 10-fold cross-validated performance of the stage 1 models across all years by calendar month and season and Table

Table 3 .

 3 Stage 1 model performance (predicting daily 1 km Ta from LST): 10-fold cross-validated performance across all years (2000 -2016), by month and season.

		Tmin			Tmean			Tmax
		R 2	RMSE MAE	R 2	RMSE MAE	R 2	RMSE MAE
	Jan	0.83 2.16	1.60	0.89 1.54	1.11	0.86 1.87	1.37
	Feb	0.84 2.03	1.51	0.91 1.37	0.99	0.89 1.74	1.28
	Mar	0.80 1.92	1.46	0.91 1.22	0.91	0.89 1.72	1.28
	Apr	0.77 1.82	1.39	0.91 1.17	0.85	0.87 1.75	1.32
	May	0.80 1.75	1.33	0.92 1.20	0.86	0.85 1.85	1.39
	Jun	0.81 1.74	1.32	0.92 1.23	0.90	0.84 1.94	1.46
	Jul	0.79 1.71	1.30	0.92 1.19	0.88	0.84 1.90	1.44
	Aug	0.78 1.77	1.35	0.92 1.18	0.88	0.87 1.89	1.43
	Sep	0.79 1.83	1.40	0.92 1.12	0.84	0.87 1.70	1.29
	Oct	0.83 1.94	1.47	0.91 1.26	0.93	0.88 1.67	1.25
	Nov	0.82 2.02	1.52	0.89 1.42	1.03	0.88 1.69	1.25
	Dec	0.82 2.17	1.61	0.86 1.69	1.21	0.84 1.94	1.39
	Winter	0.83 2.12	1.57	0.89 1.55	1.11	0.86 1.86	1.35
	Spring	0.86 1.83	1.40	0.94 1.20	0.87	0.91 1.77	1.33
	Summer	0.80 1.74	1.32	0.92 1.20	0.89	0.86 1.91	1.44
	Fall	0.87 1.92	1.46	0.95 1.26	0.92	0.93 1.69	1.27

Table 4 .

 4 Stage 1 model performance (predicting daily 1 km Ta from LST): 10-fold cross-validated performance across all years (2000 -2016), by climatic region and urban vs. rural locations.

		Tmin			Tmean			Tmax
		R 2	RMSE MAE	R 2	RMSE MAE	R 2	RMSE MAE
	Mountain	0.90 2.22	1.71	0.95 1.69	1.25	0.93 2.26	1.73
	Semi-continental	0.91 2.11	1.61	0.96 1.44	1.07	0.95 2.00	1.52
	Modified oceanic	0.94 1.53	1.16	0.98 0.98	0.73	0.98 1.33	1.01
	Transitional oceanic 0.92 1.81	1.37	0.97 1.20	0.88	0.95 1.74	1.31
	Oceanic	0.90 1.79	1.33	0.96 1.20	0.88	0.94 1.83	1.36
	Mod. Mediterranean 0.90 2.22	1.71	0.96 1.43	1.07	0.94 2.03	1.55
	Southwest basin	0.94 1.60	1.22	0.98 1.04	0.76	0.97 1.40	1.04
	Mediterranean	0.93 1.81	1.40	0.98 1.11	0.84	0.96 1.62	1.25
	Urban	0.93 1.85	1.35	0.97 1.32	0.96	0.95 1.79	1.35
	Peri-urban*	0.93 1.71	1.29	0.97 1.18	0.87	0.96 1.71	1.27
	Rural	0.92 1.90	1.44	0.97 1.30	0.94	0.95 1.82	1.36
	* non-urban locations within 5 km of a large urban area	

Table 5 .

 5 Stage 4 model performance (predicting daily 200 m residuals with an ensemble): 10-fold cross-validated performance across years (2000 -2016), overall and by month and season (residual scale).

		RTmin			RTmean			RTmax
		R 2	RMSE MAE	R 2	RMSE MAE	R 2	RMSE MAE
	Overall	0.79 0.63	0.39	0.79 0.41	0.26	0.85 0.51	0.31
	Jan	0.84 0.56	0.34	0.82 0.40	0.24	0.85 0.48	0.27
	Feb	0.82 0.59	0.36	0.81 0.39	0.24	0.84 0.49	0.28
	Mar	0.80 0.63	0.39	0.79 0.40	0.26	0.83 0.50	0.30
	Apr	0.77 0.63	0.40	0.76 0.39	0.25	0.83 0.51	0.31
	May	0.77 0.60	0.37	0.76 0.38	0.24	0.84 0.51	0.31
	Jun	0.77 0.62	0.40	0.79 0.39	0.25	0.87 0.52	0.33
	Jul	0.76 0.66	0.43	0.77 0.42	0.28	0.86 0.55	0.35
	Aug	0.77 0.67	0.44	0.78 0.41	0.28	0.87 0.54	0.34
	Sep	0.77 0.69	0.46	0.75 0.42	0.29	0.84 0.54	0.34
	Oct	0.78 0.65	0.41	0.76 0.42	0.27	0.82 0.52	0.32
	Nov	0.80 0.61	0.37	0.79 0.41	0.25	0.81 0.50	0.29
	Dec	0.83 0.60	0.37	0.84 0.43	0.27	0.84 0.52	0.31
	Winter	0.83 0.58	0.36	0.83 0.41	0.25	0.84 0.50	0.28
	Spring	0.78 0.62	0.39	0.77 0.39	0.25	0.84 0.51	0.31
	Summer	0.76 0.65	0.42	0.78 0.41	0.27	0.86 0.54	0.34
	Fall	0.78 0.65	0.41	0.77 0.42	0.27	0.82 0.52	0.32

Table 6 .

 6 Stage

		RTmin			RTmean			RTmax
		R 2	RMSE MAE	R 2	RMSE MAE	R 2	RMSE MAE
	Mountain	0.83 0.67	0.42	0.83 0.46	0.30	0.88 0.58	0.36
	Semi-continental	0.81 0.66	0.42	0.79 0.43	0.28	0.86 0.55	0.34
	Modified oceanic	0.75 0.54	0.33	0.76 0.33	0.21	0.81 0.40	0.23
	Transitional oceanic	0.77 0.62	0.39	0.78 0.39	0.25	0.84 0.50	0.30
	Oceanic	0.75 0.62	0.40	0.77 0.39	0.26	0.83 0.50	0.30
	Mod. Mediterranean	0.82 0.73	0.47	0.78 0.47	0.31	0.84 0.62	0.41
	Southwest basin	0.75 0.59	0.36	0.69 0.38	0.24	0.78 0.48	0.29
	Mediterranean	0.77 0.67	0.44	0.73 0.42	0.28	0.80 0.57	0.39
	Urban	0.79 0.53	0.32	0.82 0.37	0.23	0.84 0.46	0.27
	Peri-urban*	0.76 0.58	0.36	0.78 0.37	0.24	0.83 0.47	0.28
	Rural	0.79 0.63	0.40	0.79 0.41	0.26	0.85 0.52	0.32
	* non-urban locations within 5 km of a large urban area		

4 model performance (predicting daily 200 m residuals with an ensemble): 10-fold cross-validated performance across all years (2000 -2016), by climatic region and urban vs. rural locations (residual scale).
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