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A B S T R A C T

Characterization of the “exposome”, the set of all environmental factors that one is exposed to from conception
onwards, has been advocated to better understand the role of environmental factors on chronic diseases.

Here, we aimed to describe the early-life exposome. Specifically, we focused on the correlations between
multiple environmental exposures, their patterns and their variability across European regions and across time
(pregnancy and childhood periods). We relied on the Human Early-Life Exposome (HELIX) project, in which 87
environmental exposures during pregnancy and 122 during the childhood period (grouped in 19 exposure
groups) were assessed in 1301 pregnant mothers and their children at 6–11 years in 6 European birth cohorts.

Some correlations between exposures in the same exposure group reached high values above 0.8. The median
correlation within exposure groups was> 0.3 for many exposure groups, reaching 0.69 for water disinfection by
products in pregnancy and 0.67 for the meteorological group in childhood. Median correlations between dif-
ferent exposure groups rarely reached 0.3. Some correlations were driven by cohort-level associations (e.g. air
pollution and chemicals). Ten principal components explained 45% and 39% of the total variance in the
pregnancy and childhood exposome, respectively, while 65 and 90 components were required to explain 95% of
the exposome variability. Correlations between maternal (pregnancy) and childhood exposures were high
(> 0.6) for most exposures modeled at the residential address (e.g. air pollution), but were much lower and even
close to zero for some chemical exposures.

In conclusion, the early life exposome was high dimensional, meaning that it cannot easily be measured by or
reduced to fewer components. Correlations between exposures from different exposure groups were much lower
than within exposure groups, which have important implications for co-exposure confounding in multiple
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exposure studies. Also, we observed the early life exposome to be variable over time and to vary by cohort, so
measurements at one time point or one place will not capture its complexities.

1. Introduction

A complex interplay between genetic and environmental factors is
assumed to contribute to the development of chronic diseases in hu-
mans (Willett, 2002). The World Health Organization (WHO) has at-
tributed nearly half of global mortality to a handful of environmental
exposures, illustrating the relevance of environmental factors for health
(Lim et al., 2012). To date, most research on environmental determi-
nants of disease has focused on single exposures, with the exceptions of
a few studies considering simultaneously more than a couple of families
of exposures, focusing on health outcomes such as birth weight
(Dadvand et al., 2014; Hystad et al., 2014; Lenters et al., 2015) or type
II diabetes mellitus (Patel et al., 2010). A more comprehensive ap-
proach, studying all environmental exposures that can influence health
from conception onward, defined as the “exposome”, has been ad-
vocated to better understand the role of environmental factors on multi-
factorial and chronic pathologies (Wild, 2005). Early life is a key
starting point for the development of a lifetime exposome, particularly
due to heightened vulnerability and potentially lifelong impact of

exposure during this period (Vrijheid et al., 2014). In utero and child-
hood exposures, including environmental contaminant exposures
(Vrijheid et al., 2016), but also factors in the urban and built en-
vironment (Gascon et al., 2016), can permanently change the body's
structure, physiology, and metabolism, predisposing individuals to the
development of chronic pathologies later in life, a hypothesis based on
the Developmental Origins of Health and Disease (DOHaD) paradigm
(Heindel et al., 2015).

The exposome potentially consists of hundreds of exposures, many
of which may be inter-related. An important challenge in studies as-
sociating the exposome with health is the simultaneous consideration of
these many correlated exposures (Slama and Vrijheid, 2015). Under-
standing what a typical exposome looks like, including the structure of
correlations between and within groups of exposures, is important for
multiple steps in exposome research, including the planning of which
exposures to measure and the development of statistical analysis pro-
tocols. Moreover, transparent knowledge of the correlation structure of
an exposome data set is required for interpretation of associations
(Patel et al., 2015; Robinson and Vrijheid, 2015). Additionally, the

Table 1
Overview of the exposure variables included in the pregnancy and childhood exposome.

Exposure group Individual exposure variables Number of variables

Pregnancy Childhood

Atmospheric pollutants NO2, PM2.5, PM10, PMabs at home address. Averaged over pregnancy and year before visit in childhood 4 4
UV Ambient ultraviolet radiation (UVR) levels at home address. Averaged over month before visit during childhood. Not

available during pregnancy.
0 1

Surrounding natural spaces Average Normalized Difference Vegetation Index (NDVI) within a 100m buffer; presence of a major green space in a
distance of 300m; presence of a major blue space in a distance of 300m. Home and school address during childhood.

3 6

Meteorology Temperature, humidity, pressure at home address. Pressure not available during childhood. Averaged over pregnancy and
month before visit during childhood.

3 2

Built environment Population density, building density, street connectivity, access to bus public transport (lines and stops), facility richness
(pregnancy only) and density, Land Use Evenness Index and walkability index in a 300m buffer. Home and school address
during childhood (walkability only at home address).

9 15

Traffic Total traffic load of roads in a 100m buffer (pregnancy and home), total traffic load of major roads in a 100m buffer
(home and school), traffic density on nearest road (pregnancy and home) and inverse distance to nearest road (pregnancy
and home).

3 5

Road traffic noise 24-hour road noise levels (pregnancy, and home and school during childhood). Night time noise levels for home during
childhood.

1 3

OCs Blood concentrations of DDE, DDT, HCB, PCB (118, 138, 153, 170, 180) 8 8
PBDE Blood concentrations of PBDE47, PBDE153 2 2
PFASs Blood concentrations of PFOA, PFNA, PFUNDA, PFHxS, PFOS 5 5
Metals and elements Blood concentrations of As, Cd, Co, Cs, Cu, Hg, Mn, Mo, Pb, Tl 10 10
Phthalate metabolites Urine concentrations of MEP, MiBP, MnBP, MBzP, MEHP, MEHHP, MEOHP, MECPP, OHMiNP, OXOMiNP 10 10
Phenols Urine concentrations of MEPA, ETPA, BPA, PRPA, BUPA, OXBE, TRCS 7 7
OP pesticide metabolites Urine concentrations of DMP, DMTP, DMDTP (childhood only), DEP, DETP 4 5
Tobacco smoking Urine concentration of cotinine (pregnancy and childhood), active/passive smoking during pregnancy, number of

cigarettes during pregnancy, parental smoking and passive smoking during childhood.
3 3

Water DBPs THM, chloroform, brominated THMs 3 0
Indoor air pollution NO2, TEX, Benzene, PM2.5, PMabs 0 5
Lifestyle Diet, physical activity, breastfeeding duration, alcohol consumption, sleep duration, pets 12 27
Socio-economic capital Family affluence score, social contact, social participation, house crowding 0 4

87 122

Abbreviations used: Home: childhood home address; School: childhood school address; NO2, nitrogen dioxide; PM2.5, particulate matter with an aerodynamic
diameter of< 2.5 μm; PM10, particulate matter with an aerodynamic diameter of< 10 μm; PMabs, absorbance of PM2.5filters; UV, ultraviolet; NDVI: Normalized
Difference Vegetation Index; DDE, 4,4′dichlorodiphenyl dichloroethylene; DDT, 4,4′dichlorodiphenyltrichloroethane; HCB, hexachlorobenzene; PCB, poly-
chlorinated biphenyl; PBDE, polybrominated diphenyl ether; PFOA, perfluorooctanoate; PFNA, perfluorononanoate; PFUNDA, perfluoroundecanoate; PHFxS,
perfluorohexane sulfonate; PFOS, perfluorooctane sulfonate; As, arsenic; Cd, cadmium; Co, cobalt; Cs, caesium; Cu, copper; Hg, mercury; Mn, manganese; Mo,
molybdenum; Pb, lead; Tl, thallium; MEP, monoethyl phthalate; MiBP, mono‑isobutyl phthalate; MnBP, mono‑n‑butyl phthalate; MBzP, mono benzyl phthalate;
MEHP, mono‑2‑ethylhexyl phthalate; MEHHP, mono‑2‑ethyl‑5‑hydroxyhexyl phthalate; MEOHP, mono‑2‑ethyl‑5‑oxohexyl phthalate; MECPP, mono‑2‑ethyl
5‑carboxypentyl phthalate; OHMiNP, mono‑4‑methyl‑7‑hydroxyoctyl phthalate; OXOMiNP, mono‑4‑methyl‑7‑oxooctyl phthalate; MEPA, methyl paraben; ETPA,
ethyl paraben; BPA, bisphenol A; PRPA, propyl paraben; BUPA, N‑butyl paraben; OXBE, oxybenzone; TRCS, triclosan; DMP, dimethyl phosphate; DMTP, dimethyl
thiophosphate; DMDTP, dimethyl dithiophosphate; DEP, diethyl phosphate; DETP, diethyl thiophosphate; THMs, trihalomethanes; TEX, toluene‑ethylbenzene‑x-
ylene.
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description of multiple exposure patterns can aid the identification of
population groups at highest environmental health risk.

A few studies have recently described correlation structures of a
large set of exposures, including the NHANES dataset (Patel and
Ioannidis, 2014; Patel and Manrai, 2015), the Spanish INMA birth co-
hort (Robinson et al., 2015), and the LIFE study (Chung et al., 2018).
However, the available information is still scarce. Wider studies, in-
cluding a broader range of measured exposures, multiple lifetime per-
iods of exposure assessment, and larger populations covering multiple
regions are needed to more fully understand the complexity of the
human exposome.

Here, we aim to describe the early-life exposome using data from
the Human Early-Life Exposome (HELIX) project, in which> 200 en-
vironmental exposures of concern for child health were assessed in
1301 pregnant women and their children at 6–11 years in 6 European
birth cohorts. Specifically, we focus on the description and analyses of
correlations between multiple environmental exposures, their patterns
and their variability across European regions and across time (preg-
nancy and childhood periods).

2. Material and methods

2.1. The study population

This study is part of the HELIX project, which aims to characterize
the exposome during early-life and evaluate its relationship to mole-
cular signatures and child health outcomes (Vrijheid et al., 2014).
HELIX is based on six European birth cohort studies: BiB (Born in
Bradford), United Kingdom (Wright et al., 2013); EDEN (Étude des
Déterminants pré et postnatals du développement et de la santé de
l'Enfant), France (Heude et al., 2016); INMA (INfancia y Medio Am-
biente), Spain (Guxens et al., 2012); KANC (Kaunus Cohort), Lithuania
(Grazuleviciene et al., 2009); MoBa (Norwegian Mother and Child Co-
hort Study), Norway (Magnus et al., 2016); and Rhea, Greece (Chatzi
et al., 2017). In this paper we used data from the HELIX subcohort of
1301 mother-child pairs (MoBa (272), KANC (204), BIB (205), EDEN
(198), INMA (223) and RHEA (199)) with information on environ-
mental exposures during pregnancy and between 6 and 11 years of age
(median 8.1 years; hereafter referred to as “childhood period”).

Follow-up visits of the children in the subcohort took place in 2014
and 2015 in the 6 study centers, and questionnaire information and
biological samples for biomarker determination were collected. More
details about the subcohort, including recruitment and data collection
methods, are available in Maitre et al. (2018). Approval was obtained
from the national ethics committees for every cohort. All participating
women provided informed, written consent.

2.2. Exposome variables

In the current analysis we included 87 environmental exposure
variables for the pregnancy period and 122 for the childhood period
(Table 1). Exposure assessment methods are described in detail for each
exposure group in Annex 1. More exposure variables were available in
the project (see Annex 1), but were not included in the current analysis
for the following reasons: they had<30 subjects in one exposure ca-
tegory without possibility to recode; they had a correlation of 0.9 or
higher with another similar variable that was likely measuring the same
thing (Annex 1, pg 3) (e.g., buffers for spatial variables, home and
school estimates for meteorological variables, erythemal UV, Vitamin-D
and DNA damaging UV variables, facility richness and density and di-
chotomous and location-specific ETS in childhood); or they were cal-
culated for several exposure windows and only the longest exposure
window was included (e.g. pregnancy average instead of trimester
averages). Exposure levels and distributions for these variables are
shown in Annex 2.

In brief, exposure to outdoor factors (atmospheric pollutants, ultra

violet radiation – UV-, surrounding natural spaces, meteorology, built
environment, traffic, and road traffic noise) was estimated using geos-
patial models, monitoring stations, satellite data and land use data-
bases, and was assigned to study participants according to their geo-
coded home and school addresses using GIS platforms (Annex 1 and
Robinson et al. (2018)). Chemical exposures were measured in serum,
plasma, blood or urine samples using maternal samples collected during
pregnancy or at birth stored by the cohorts and samples newly collected
from the children during childhood (Haug et al. (2018) and Annex 1).
Chemical biomarkers measured included organochlorine compounds
(OCs), polybrominated diphenyl eters (PBDEs), per- and poly-
fluoroalkyl substances (PFAS), metals and elements, phthalate meta-
bolites, phenols, organophosphate (OP) pesticide metabolites and co-
tinine. OCs and PBDEs were adjusted for serum lipid concentrations,
and phthalate metabolites, phenols, OP pesticide metabolites and co-
tinine were adjusted for urinary creatinine. Details on the laboratories,
limits of quantification, limits of detection and quality control can be
found in Haug et al. (2018). Table A1.5 in the Annex shows the percent
of quantifiable samples, which were higher than 90% for 77% of the
childhood exposures and for 82% of the pregnancy exposures. In-
formation on active and passive tobacco smoking was collected through
questionnaires. For the pregnancy period, we also assigned exposure to
water disinfection by-products (DBPs) based on measurements and
models for the water supply of the participant's residency (Jeong et al.,
2012). For the childhood period, we estimated exposure to indoor air
pollutants (NO2, benzene, and TEX-toluene, ethylbenzene, xylene) by
combining measurements in the homes of a subgroup of 150 children
during the two time periods with questionnaire data (Annex 1). During
childhood, questionnaire information was collected on socio and eco-
nomic capital of the family based on the Family Affluence Score (FAS)
and on social participation, social contact and house crowding data
(Annex 1). Finally, information on other lifestyle factors, including
maternal and child diet, breastfeeding, maternal and child physical
activity, alcohol consumption, pets, and child sleep duration, was col-
lected through questionnaires (Annex 1).

2.3. Statistical analysis

Missing values of exposures and adjustment variables were imputed
using the method of chained equations (White et al., 2011), using the
mice package in R (van Buuren and Groothuis-Oudshoorn, 2011). Prior
to imputation, skewed exposure variables were transformed to achieve
normality or categorized if no transformation worked (Annex 2).
Missing values, ranged from no missing values for some child phthalate
metabolites to 65% for fast-food intake during pregnancy (Annex 2).
The mean percentage of missing values per exposure was 12% (first
quartile 0.9% and third quartile 16.8%). None of the participants had
complete data on all exposures. Yet, for 98% of individuals< 30% of
exposure variables had missing values. Annex 3 includes a full de-
scription of the imputation process. As the analyses conducted in this
paper do not provide standard errors, confidence intervals or p-values,
a single imputed dataset was used, as single imputation can already
correct for potential biases (Donders et al., 2006).

2.3.1. Correlations between exposures
Given the multicentre design of our study and the potential influ-

ence of cohort in the correlations between exposures, we calculated
correlations firstly using the entire imputed entire dataset combining
the 6 cohorts (referred to as “overall” correlations) and secondly using
exposure variables centered and standardized within each cohort (re-
ferred to as “within–cohort” correlations). The latter were computed by
first centering each exposure by cohort, i.e. subtracting the cohort
means and dividing by the cohort-specific standard deviations, and then
computing the correlations. We calculated Pearson, polychoric or
polyserial correlations, as appropriate, between all pairs of exposures
using the polycor and rexposome R Packages (Hernandez-Ferrer and
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Gonzalez, 2018). Very similar correlation coefficients were obtained if
Spearman correlations were computed instead of Pearson correlations
(data not shown). Correlation matrices were calculated separately for
the pregnancy and childhood exposures. In order to characterize the
heterogeneity of correlations between exposures in the same exposure
group by cohort, we i) calculated correlation coefficients separately for
each cohort; ii) conducted a meta-analysis of the cohort-specific cor-
relations using the metacor command of the meta R package; and iii)
reported the I2 index of heterogeneity. Overall and within-cohort cor-
relation matrices were displayed and compared using heat maps. In
order to visualize the complex relations between exposures, we con-
ducted a network analysis based on the within-cohort correlation ma-
trix, separately for the pregnancy and childhood periods. Additionally,
we calculated Pearson's correlations between exposures of the mother
during pregnancy and the same exposures measured in the child at
6–11 years when available.

2.3.2. Dimensionality of exposome
We performed two different analyses using Principal Component

Analysis (PCA) to achieve two different goals. In the first analysis, the
aim was to compare the levels of exposures in the different cohorts.

Given the large number of exposures included in the analysis, we
first reduced the dimensionality by conducting a separate PCA within
each of the 19 pre-defined exposure groups, and retained only the first
principal component for all of them. This way, we created a composite
index variable (principal component scores) for each exposure group,
and then averaged the scores by cohort to compare the levels. We fol-
lowed this strategy instead of conducting a PCA with all exposures from
all exposure groups together in order to have a better interpretability of
the resulting principal components, and to ensure a better compar-
ability of the resulting components in the pregnancy and childhood
datasets.

In the second analysis, the aim was to quantify the underlying di-
mensionality of the data. In this case, we did include all the exposures
from the different exposure families in the same analysis (separately for
pregnancy and postnatal period), but we only focused on the number of
components needed to explain 70% or 95% of the variation. The second
analysis was conducted separately on the overall data and on the cen-
tered within-cohort data. In both analyses, we conducted PCA with
varimax rotation.

All statistical analyses were conducted in the R software environ-
ment (R3.3.0; http://www.r-project.org). The network analysis was
conducted using the Gephi software (Bastian et al., 2009).

3. Results

Table 2 shows the number of participants by cohort, as well as the
age and sex distribution. Mothers had an average age of 31 years at
child birth, with some variations by cohort. There were also variations
by cohort in the age of the children, with EDEN having the oldest
children (average age 11) and KANC the youngest (average age 6).

3.1. Exposure levels

Distributions of all exposure variables are detailed in Annex 2 by
individual cohorts (Fig. A2.1 for pregnancy and Fig. A2.2 for child-
hood). Further details on chemical exposure biomarkers are found in
Haug et al. (2018). In order to summarize these data, we computed a
single principal component separately for each exposure group. Details
on these principal component analyses are available in Annex 4, Tables
A4.1 and A4.2. Fig. 1 plots the principal component scores by cohort to
characterize the cohorts' profiles. The highest values for outdoor ex-
posures (i.e. high pollution, traffic and low greenness) were found in
the INMA cohort. In terms of chemicals, the highest exposure to OCs
and phthalates were found in the EDEN cohort during pregnancy and in
KANC and RHEA, respectively, during childhood; PBDEs were highest

in RHEA during pregnancy, while fewer differences by cohort were
observed during childhood; phenols were highest in MOBA during
pregnancy and in BIB during childhood; and metals were highest in
MOBA during pregnancy and in EDEN during childhood. Smoking was
highest in RHEA, and water DBPs were highest in INMA. In terms of
lifestyle, characterized mainly by consumption of fruit, MOBA showed
the highest levels.

3.2. Within- and between-exposure group correlations

Table 3 shows the correlations within exposure groups for the
pregnancy and childhood periods. Both overall and within-cohort cor-
relations are shown. Overall correlations tend to be higher than within-
cohort correlations, except for the atmospheric pollutants group. This is
because, in this case, cohort-level averages do not follow the same
correlation pattern than within-cohort correlations. For example, de-
spite the fact that PM10 and NO2 are positively correlated within each
cohort, the RHEA cohort had the highest levels of PM10 but the lowest
levels of NO2 (Robinson et al., 2018). The highest median overall cor-
relations within exposure groups were observed among water DBPs
(r= 0.69) and among meteorological variables in childhood (r= 0.67)
and in pregnancy (r= 0.54), followed by tobacco smoking exposure in
pregnancy (r= 0.54), PFASs in pregnancy (r= 0.49) and in childhood
(r= 0.45), and air pollutants in childhood (r= 0.44). All other ex-
posure groups showed median overall correlations below 0.42, with
metals, lifestyle and surrounding natural spaces showing the lowest
within-group correlations (below 0.12). In general, correlations within
exposure groups were quite heterogeneous by cohort, as shown by the
high I2 (Table 3), except for the metals, lifestyle and socio-economic
capital groups.

During pregnancy, the median absolute correlations between ex-
posure groups were much lower (0.08) than within exposure groups
(0.20). Fig. 2 shows the median within-group (diagonal) and between-
group (off-diagonal) absolute correlations for the pregnancy period. For
overall correlations (Fig. 1a), the highest absolute median correlations
between exposure groups were observed between noise and meteor-
ological variables (r= 0.45), between water DPBs and meteorological
variables (0.39), between water DBPs and atmospheric pollutants
(r= 0.32), and noise and traffic (r= 0.29). The rest of the median
absolute correlations between groups of chemical exposures were all
equal to or below 0.24. The maximum correlation of lifestyle variables
was with atmospheric pollutants (r= 0.19). Similar patterns were ob-
served for the within-cohort correlations (Fig. 1b), but the correlations
between groups were considerably reduced (r= 0.03 (0.01–0.03)).This
was especially the case for water DBPs, and for the correlations between
outdoor exposures and chemicals, which were very close to 0. All cor-
relations between noise and the other exposure groups were strongly
reduced, except for the correlation between atmospheric pollutants and
noise (r= 0.13).

The pattern of correlations between exposures measured during

Table 2
Population characteristics.

Cohort N Pregnancy Childhood

Maternal age, years Age, years Sex

Mean (25th; 75th
percentile)

Mean (25th; 75th
percentile)

% female

BiB 205 28.6 (25.0; 33.0) 6.6 (6.5; 6.8) 44.9
EDEN 198 30.5 (27.5; 34.0) 10.9 (10.4; 11.2) 42.9
INMA 223 32.0 (29.5; 34.8) 8.8 (8.4; 9.2) 46.2
KANC 204 29.2 (25.7; 32.3) 6.4 (6.1; 6.8) 45.6
MoBa 272 32.7 (30.0; 35.0) 8.5 (8.2; 8.8) 47.8
RHEA 199 30.8 (27.3; 33.5) 6.5 (6.4; 6.6) 44.2
Total 1301 30.8 (27.2; 34.0) 8.1 (6.5; 8.9) 45.4
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childhood was generally similar to the patterns observed during preg-
nancy (Annex 4, Fig. A4.1). One notable difference was that correla-
tions within meteorological variables were much stronger in the
childhood period, where the last month averages were used, compared
to the pregnancy period, where we used 9-month averages. Other in-
teresting correlations were found between PFAS and OCs (within: 0.20,
overall: 0.19) and between tobacco smoke and indoor air pollution
(within: 0.18, overall: 0.24) where within-cohort correlations remained
similar to overall correlations. Annex 4, Fig. A4.3 shows histograms and
cumulative density functions of all correlations.

Annex 4, Figs. A4.4–A.4.7 display the correlations within and be-
tween exposure groups by sex. No notable differences in correlations
were observed between the two sexes.

3.3. Network visualization

The exposome correlation structure, using individual exposures and
within-cohort correlations, is visualized as a network in Fig. 3. Ex-
posures that are close together in the network are more correlated than
more distant ones. The pregnancy network (Fig. 3A) shows a cluster
with the outdoor exposome variables, dominated by the built en-
vironment variables but also including air pollutants, traffic variables,
natural spaces, meteorological variables, and water DBPs. A few life-
style variables, such as meat consumption and physical activity, were
close to the outdoor exposome cluster. On the top-left part of the net-
work there is another cluster made of PFASs and OCs, with contribu-
tions from metals, PBDEs, tobacco smoke and diet variables. Phenols
and phthalate metabolites form separate clusters linked together by
BPA and MEP. A few variables, like folic acid and certain metals, are not
connected to other exposures. The childhood network (Fig. 3B) appears

more compact than the pregnancy network, with more links between
exposure families. The outdoor exposome still appears as a cluster. It is
connected to OCs via indoor air pollution and tobacco smoke. OCs
continue to be close to PFASs. Breastfeeding and some lifestyle vari-
ables such as physical activity and organic food consumption appear
close to OCs. Diet variables form their own cluster, with some con-
nections to OCs and PFASs. On the left hand side there is a cluster of
phenols, phthalate metabolites, meteorological variables and OP pes-
ticides. Meteorological variables in childhood represent last month
values, while in pregnancy they represent pregnancy averages. Thus, in
the childhood period meteorological variables represent recent ex-
posure, and this may explain why they are closer to phenols than in the
pregnancy period (phenols are present in cosmetics such as sunscreen,
and their use may be influenced by recent meteorology). The main
connections of the cluster formed by phenols, phthalate metabolites,
meteorological variables and OP pesticides are phthalate metabolites
and PBDEs with metals, and meteorology with indoor pollution.

3.4. Dimensionality of exposome

When conducting PCA analyses with all exposures together, 10
principal components explained 45% of the total variance in the
pregnancy exposome, while 26 components explained 70% and 65
components explained 95%. These numbers of principal components
represent 11%, 30% and 75% of the original dimensionality of the
pregnancy exposome (87). In the childhood exposome, 10 components
explained 39%, 42 explained 70% and 90 components explained 95%
of the total variance (Fig. A4.2). These numbers of principal compo-
nents represent 8%, 34% and 74% of the original dimensionality of the
childhood exposome (87), so the reduction in dimensionality is of

Fig. 1. Profile of pregnancy* (A) and childhood** (B) exposures in the 6 cohorts according to the first component identified by PCA applied separately to each
exposure group. Positive values indicate values above the overall mean, while negative values indicate values below the overall mean.
The loadings of each PCA analyses for all exposures are presented in Tables A.4.2 and A.4.3 in Annex 4. The exposures with highest loadings in each component were
the following:
*For the pregnancy period (exposure, loading): atmospheric pollutants (NO2, 0.95), surrounding natural space (green spaces, 0.99), meteorology (temperature, 0.94),
built environment (facility richness, 0.94), traffic (inverse distance, 0.99), OCs (PCB180, 0.93), PBDEs (PBDE47, 0.99), PFASs (PFHXS, 0.92), metals (As, 0.8),
phthalates (MEOHP, 0.93), phenols (ETPA, 0.95), OP pesticides (DMP, 0.93), tobacco smoking (Cotinine, 0.96), water DBPs (brominated THMs, 0.94), lifestyle (fruit
0.69).
**For the childhood period (exposure, loading): atmospheric pollutants (PM2.5 0.87), surrounding natural space (NDVI school, 0.92), meteorology (temperature
0.93), built environment (population density, 0.89), traffic (inverse distance, 0.95), road traffic noise (noise all day, 0.33), OCs (PCB180, 0.97), PBDEs (PBDE153,
0.98), PFASs (PFUNDA, 0.92), metals (As, 0.96), phthalates (MEHHP, 0.97), phenols (PRPA, 0.91), OP pesticides (DMP, 0.96), tobacco smoking (ETS, 0.96), lifestyle
(KIDMED score, 0.80), indoor air (indoor PM2.5, 0.96), socio-eco capital (social participation, 0.99).
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similar magnitude in the two periods. The percent of variance explained
was slightly lower when using the cohort-centered data (Fig. A4.2).

3.5. Correlations between pregnancy and childhood exposures

We calculated the correlation between the same exposure measured
during pregnancy (mother) and childhood. Fig. 4 shows that correlation
coefficients are high (> 0.6) for many of the exposures estimated at the
residential address, such as atmospheric pollutants, green space, noise,
traffic, and certain built environment variables (connectivity, building
density). Other built environment factors such as facility density had
lower correlations (r < 0.40). The correlation between pregnancy and
childhood estimates was also lower for meteorological variables

(r= 0.40 for temperature and r= 0.10 for humidity) because the
pregnancy period includes nine months while childhood period in-
cludes 1-month information and is therefore more subject to season-
ality. Within the exposures measured by biomarkers, DDE showed the
highest correlation (r= 0.62) between the pregnancy and childhood
period. Among OCs, DDE had the highest correlations while HCB
showed almost no correlation between pregnancy and childhood sam-
ples (r= 0.02). Among PFASs, PFHXS and PFOS showed correlations
above 0.4, while the correlation was lower (r < 0.25) for other PFASs.
Cs and Hg showed correlations> 0.4, but the other metals showed
lower correlations (r < 0.25), even negative in the case of Cd
(r=−0.05). Phthalate metabolites showed low correlation between
maternal and child sample (between −0.1 and 0.1). The correlations

Table 3
Median absolute correlation within exposure groups for the pregnancy and childhood periods. Overall and centered within-cohort correlations are provided.

Exposure group Pregnancy period Childhood period

N Overall
Median (min-max)

Within-cohort
Median (min-max)

I2

Median (min-max)
N Overall

Median (min-max)
Within-cohort
Median (min-max)

I2

Median (min-max)

All exposure variables 87 0.08 (0.00–0.99) 0.03 (0.00–0.94) 0.54 (0.00–0.99) 122 0.07 (0.00–0.98) 0.03 (0.00–0.98) 0.00 (0.00–0.99)
Atmospheric pollutants 4 0.30 (0.11–0.74) 0.53 (0.47–0.63) 0.96 (0.94–0.97) 4 0.44 (0.21–0.76) 0.55 (0.47–0.62) 0.97 (0.89–0.98)
UV 0 – – – 1 – – –
Surrounding natural spaces 3 0.07 (0.02–0.22) 0.05 (0.04–0.32) 0.51 (0.00–0.79) 6 0.11 (0.01–0.67) 0.09 (0.01–0.34) 0.26 (0.00–0.90)
Meteorology 3 0.54 (0.27–0.70) 0.11 (0.10–0.59) 0.95 (0.95–0.98) 2 0.67 (0.67–0.67) 0.47 (0.47–0.47) 0.97 (0.97–0.97)
Built environment 9 0.27 (0.01–0.89) 0.28 (0.01–0.89) 0.86 (0.00–0.98) 15 0.27(0.00–0.72) 0.17(0.00–0.68) 0.71 (0.00–0.97)
Traffic 3 0.26 (0.06–0.31) 0.21 (0.10–0.35) 0.84 (0.82–0.93) 5 0.20 (0.11–0.57) 0.13 (0.02–0.56) 0.70 (0.00–0.99)
Road traffic noise 1 – – 3 0.34 (0.23–0.59) 0.11 (0.05–0.32) 0.24 (0.00–0.99)
OCs 8 0.38 (0.01–0.97) 0.42 (0.11–0.95) 0.92 (0.63–0.99) 8 0.42 (0.05–0.96) 0.56 (0.18–0.94) 0.83 (0.00–0.97)
PBDE 2 0.21 (0.21–0.21) 0.11 (0.11–0.11) 0.87 (0.87–0.87) 2 0.36 (0.36–0.36) 0.34 (0.34–0.34) 0.37 (0.37–0.37)
PFASs 5 0.49 (0.12–0.67) 0.52 (0.29–0.73) 0.91 (0.54–0.94) 5 0.45 (0.30–0.60) 0.50 (0.26–0.55) 0.67 (0.00–0.92)
Metals and elements 10 0.07 (0.00–0.99) 0.03 (0.00–0.30) 0.00 (0.00–0.91) 10 0.06 (0.01–0.51) 0.09 (0.01–0.42) 0.07 (0.00–0.89)
Phthalate metabolites 10 0.23 (0.00–0.91) 0.21 (0.00–0.91) 0.65 (0.00–0.99) 10 0.25 (0.08–0.98) 0.25 (0.06–0.97) 0.23 (0.00–0.92)
Phenols 7 0.18 (0.01–0.57) 0.14 (0.03–0.53) 0.31 (0.00–0.99) 7 0.21 (0.07–0.64) 0.17 (0.07–0.58) 0.40 (0.00–0.95)
OP pesticide metabolites 4 0.32 (0.24–0.63) 0.33 (0.24–0.59) 0.85 (0.74–0.97) 5 0.26 (0.18–0.50) 0.27 (0.17–0.51) 0.61 (0.00–0.93)
Tobacco smoking 3 0.54 (0.27–0.62) 0.41(0.33–0.45) 0.91 (0.83–0.91) 3 0.42 (0.38–0.51) 0.43 (0.37–0.51) 0.88 (0.85–0.90)
Water DBPs 3 0.69 (0.39–0.76) 0.38 (0.19–0.39) 0.97 (0.86–0.99) 0 – – –
Indoor air pollution 0 – – – 5 0.20 (0.05–0.43) 0.14 (0.01–0.53) 0.60 (0.00–0.83)
Lifestyle 12 0.11 (0–0.42) 0.03 (0.00–0.14) 0.00 (0.00–0.58) 27 0.07 (0.00–0.59) 0.04 (0.00–0.70) 0.00 (0.00–0.91)
Socio-economic capital 0 – – – 4 0.06 (0.02–0.15) 0.04 (0.00–0.13) 0.00 (0.00–0.46)

N: number of compounds assessed in the exposure family. min-max: minimum and maximum values observed across all pairs of exposures in the exposure group.

Fig. 1. (continued)
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Fig. 2. Median absolute correlations within exposure groups (diagonal) and between exposure groups (off-diagonal) in the pregnancy period. Panel (A) shows overall
correlations and panel (B) shows within-cohort correlations.
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were also small for phenols and OP pesticides (between 0 and 0.20).
The temporal changes for chemicals in HELIX have been reported by
Haug et al. (2018), with slight differences due to different imputation
methods used. Diet variables showed low correlations (r < 0.1) with
the exception of fish and cereal intake with somewhat greater values
(r= 0.22 and 0.35 respectively).

Fig. A.4.8 displays the correlations between pregnancy and child-
hood exposures by sex. No notable differences were observed between
the two sexes.

4. Discussion

The HELIX project has measured exposure to many environmental
factors of concern for child health, allowing a detailed analysis of the
structure of the early life exposome, including its correlations, patterns
and variability. Some very high correlations (> 0.8) between particular
pairs of exposures were observed and some exposure groups included
exposures with high correlations between all exposures in the group
(e.g. reaching median correlations 0.69). Overall, however, the median

Fig. 3. Network visualization of the exposome. The size of the nodes is proportional to the number of correlations were> 0.5 outside the exposure group and the
length of the edges is proportional to the inverse of the correlation (the higher the correlation, the shorter the edge length) between exposures. The colour of the
nodes represents the pre-defined exposure groups. The minimum absolute correlation to create an edge was 0.10. Panel A shows the pregnancy exposome, and panel
B shows the childhood exposome. Networks were built using within-cohort correlations.
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correlation between exposures within the same exposure group was
only 0.2. Correlations were much lower between exposures from dif-
ferent exposure groups, with a median correlation of 0.08. Our results
show that the early life exposome is high dimensional and cannot be
summarized by a handful of principal components, and that it varies
spatially and temporally.

4.1. Correlation between exposures

Our results show that correlations within the same exposure group
can be high, but that correlations between exposures from different
groups were low. High correlations between exposures from the same
exposure group have been described previously (Lenters et al., 2015;
Patel and Ioannidis, 2014; Robinson et al., 2015). The correlations
found in our study are very similar than those reported in the U.S. for
similar exposure groups (e.g. OCs, phthalates, phenols, metals), even
though we reported higher correlations for OP pesticides (Patel and
Ioannidis, 2014). The finding of generally low correlations between
exposures from different groups, especially after removing cohort ef-
fects, is important as it would support the notion that, if this finding is
generalizable to all populations, epidemiological studies focusing on a
single family of exposures may not be confounded by exposures from
other groups. Thus, results from epidemiological studies that focus on a
single exposure or on a subset of exposures from the same group are not
expected to be greatly affected by not having included exposures from

other groups. However, one should be careful; although many between-
group correlations were low, they were not negligible. In addition, al-
though the median correlations between exposure groups were low, for
particular pairs of exposures, high correlations were observed (e.g.
between meteorology and road traffic noise or meteorology and water
DBPs).

Some of the high correlations may be due to exposures being
measured using a common methodology (e.g. GIS variables) or a
common biological medium (e.g. variables measured in urine) or be-
cause some variables were used to create others. We made efforts to use
the same procedures in all the different cohorts to maximize compar-
ability. Variables belonging to the outdoor exposome (i.e. atmospheric
pollutants, traffic noise, natural environments or built environment)
tended to be more correlated than others in our data. However, it
should be taken into account that some of these exposures were mod-
eled and estimated at a static point, i.e. at the residential and school
addresses, and they were capturing annual means. If instead one con-
siders personal measurements that account for time activity patterns or
estimates exposure for shorter time periods, correlations can vary. For
example, some of the correlations reported by a sub-study based on
personal measurements within the HELIX project found higher corre-
lations between urban exposures than the ones reported here (Donaire-
Gonzalez et al., unpublished results). The correlation between ex-
posures has important implications when one tries to identify a causal
factor for disease among a set of correlated exposures (Agier et al.,

Fig. 4. Correlation of exposures levels between the pregnancy and childhood periods.
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2016; Barrera-Gómez et al., 2017). A high correlation can drastically
reduce the sensitivity of the methods to identify the true exposure and
increases the probability of obtaining false positives. Thus, according to
our results, it will be more difficult to correctly identify the true ex-
posure causing a health effect among the outdoor exposome variables,
if such a true association exists.

It is important to note that despite some high correlations, re-
dundancy in our exposome data was still low. To capture 95% of the
total variance in the exposome set, 65 principal components were
needed and 72 if the cohort effects were removed. Thus, the early-life
exposome is complex and high-dimensional, and it is not easy to syn-
thesize it in a few exposure scores. Measurement errors affecting all
exposures can also contribute to the observed low correlations between
exposures and therefore to the fact that exposures cannot be summar-
ized using a handful of principal components. It is also noteworthy that,
in general, the correlations between environmental pollutant exposures
and other lifestyle variables were low after controlling for cohort. The
fact that exposures show low correlations with lifestyle factors means a
lower potential for confounding by lifestyle in studies on the effect of
environmental exposures on health.

Overall, it is recommended that investigators conducting exposome
research conduct a thorough exploration of the structure of the expo-
some before evaluating exposome-health associations. Then, even in a
context of a high dimensional exposome, there are several statistical
methods that can be useful to explore exposome-health relationships
(Agier et al., 2016; Stafoggia et al., 2017).

4.2. Cohort effects

When we summarized exposure groups by their first PCA score, we
observed strong differences in some of the exposures by cohort. For
example, BIB (UK) had the lowest values of OCs while EDEN (France)
had the highest, INMA (Spain) had the highest values on atmospheric
pollutants and water DBPs, RHEA (Greece) had the highest temperature
and lowest water DBPs, MOBA (Norway) had the highest metal values
and KANC (Lithuania) the lowest for the same variable. The geo-
graphical pattern of environmental exposures can be explained by
multiple factors, such as different meteorology, city configuration,
country-specific environmental policy or predominant diet. Multicenter
studies have the advantage of capturing more varied exposure patterns
and different ranges of exposure levels, but between-city differences
can also drive many of the correlations between variables. In our data,
we observed how, after removing the cohort effect, correlations be-
tween exposures from different exposure groups were reduced. Thus,
adjustment for cohort is very important in studies linking the exposome
with health outcomes, especially if the number of locations is small.
Analyses that do not adjust for cohort may be driven by ecological
associations obtained from a small number of locations, and although
they can reflect true associations, they are more prone to be driven by
confounding by other cohort or city level variables (Basagaña et al.,
2018). In addition, the distribution of exposures across SES (socio-
economic status) strata can be strongly city-dependent (Robinson et al.,
2015; Temam et al., 2017).

4.3. Mother-child correlations

One of the special characteristics of the exposome is that, unlike the
genome, it changes over time. This makes the characterization of the
exposome challenging. In our data, comparing two points that were 6 to
11 years apart, only one exposure (modeled PM10) had a correla-
tion>0.8, and a few others, also related to atmospheric pollutants or
the built environment, had correlations> 0.6. Chemical exposure can
have different half-life in the human body, which influence the tem-
poral correlations. As expected, concentration of persistent chemicals
(i.e., PBDEs, and PFASs) showed high temporal correlations whereas
non-persistent chemicals (i.e. phthalate metabolites, phenols and OP

pesticide metabolites), with a short biological half-life and large within-
subject variability (Casas et al., 2018), showed low temporal correla-
tions for phthalate metabolites, phenols and OPs were low. As a result,
to reliably estimate associations of these non-persistent chemicals with
disease we cannot rely on a measure taken at a single time period, as it
may not represent exposure in other periods of life.

Part of the observed variability between periods in our study may be
explained by how the exposures were measured. Variations in the
outdoor exposome can for example be due to the fact that we used the
nine months of pregnancy for the pregnancy period and monthly
averages for the childhood period. Moving residences is also a factor
introducing temporal variations in the outdoor exposome.

4.4. Missing data

Missing data is a common problem in most epidemiological studies.
Often, studies rely on complete case analyses, i.e. they discard partici-
pants with missing exposure data even if this approach only provides
valid results under the assumption that missing values occurred com-
pletely at random or else it may introduce selection bias (Donders et al.,
2006). An exposome paradigm provides additional complications as the
higher the number of variables that need to be examined jointly, the
lower the number of complete cases (in our data, there were no com-
plete cases). Thus, the use of techniques like multiple imputation,
which provides valid results under less restrictive assumptions (Donders
et al., 2006), is imperative, for example, to implement model selection
techniques to build regression models.

Applying multiple imputation to large datasets involves extra dif-
ficulties (Stuart et al., 2009). In general, it is recommended that im-
putation models should not include>25 variables, as adding more
predictors usually provides little gain and can bring problems of con-
vergence (van Buuren and Groothuis-Oudshoorn, 2011). To this end,
we built the imputation model for each variable by selecting a set
of< 25 predictors that avoided collinearity problems (Annex 3).

4.5. Limitations

Although we collected data on hundreds of variables there are many
unmeasured exposures that also conform the early-life exposome. E.g. a
2006 review paper reported 100,000 chemicals registered for com-
mercial use, 200 of them being neurotoxic for humans (Grandjean and
Landrigan, 2006). We only had data from a limited number of locations
and therefore our results are not generalizable, but they provide a good
picture of some of the variations of the early-life exposome in Europe.
Likewise, we only observed cross-sections of the exposome and only
assessed differences across two time points separated by at least 6 years,
leaving the early childhood period unexplored. Our childhood period
covered a wide age range, from 6 to 11, in which children go through
considerable growth. Previous studies have shown that body burdens of
exposure to persistent organic chemicals decrease with age mainly
because of an increase in dilution of these chemicals in the total blood
volume (Gascon et al., 2015). For non-persistent chemicals measured in
urine, such changes are less relevant, but behavioral changes over age
may of course lead to changes in exposure. In the present study it was
difficult to conduct analyses by age because the age ranges of the
children were strongly determined by cohort, which has a strong re-
lationship with levels of chemicals.

5. Conclusions

This multicenter study with over 200 single environmental ex-
posures measured showed the early life exposome to be high dimen-
sional in terms of having little redundancy. Correlations between ex-
posures from different exposure groups were much lower than within
exposure groups. This suggests that, in many cases, studies that focus on
a single exposure family should not suffer from strong unmeasured
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confounding by omitted exposures, although this can be different in
other geographical settings or age groups. In addition, the early-life
exposome varies strongly by region and by life periods, so measure-
ments at one time point or one place will not capture its complexities.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.envint.2018.11.067.
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