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Towards a reduced in silico model predicting
biochemical recurrence after radiotherapy in

prostate cancer
Carlos Sosa-Marrero, Renaud de Crevoisier, Alfredo Hernández, Pierre Fontaine, Nathalie Rioux-Leclercq,

Romain Mathieu, Alain Fautrel, François Paris and Oscar Acosta

Abstract—Objective: Purposes of this work were i) to develop
an in silico model of tumor response to radiotherapy, (ii) to per-
form an exhaustive sensitivity analysis in order to iii) propose a
simplified version and iv) to predict biochemical recurrence with
both the comprehensive and the reduced model. Methods: A mul-
tiscale computational model of tumor response to radiotherapy
was developed. It integrated the following radiobiological mech-
anisms: oxygenation, including hypoxic death; division of tumor
cells; VEGF diffusion driving angiogenesis; division of healthy
cells and oxygen-dependent response to irradiation, considering,
cycle arrest and mitotic catastrophe. A thorough sensitivity
analysis using the Morris screening method was performed on 21
prostate computational tissues. Tumor control probability (TCP)
curves of the comprehensive model and 15 reduced versions were
compared. Logistic regression was performed to predict biochem-
ical recurrence after radiotherapy on 76 localized prostate cancer
patients using an output of the comprehensive and the reduced
models. Results: No significant difference was found between
the TCP curves of the comprehensive and a simplified version
which only considered oxygenation, division of tumor cells and
their response to irradiation. Biochemical recurrence predictions
using the comprehensive and the reduced models improved those
made from pre-treatment imaging parameters (AUC = 0.81 ±
0.02 and 0.82 ± 0.02 vs. 0.75 ± 0.03, respectively). Conclusion:
A reduced model of tumor response to radiotherapy able to
predict biochemical recurrence in prostate cancer was obtained.
Significance: This reduced model may be used in the future to
optimize personalized fractionation schedules.

Index Terms—Biochemical recurrence, multiscale modeling,
prostate cancer, radiotherapy, sensitivity analysis, tumor control
probability

I. INTRODUCTION

EXTERNAL beam radiotherapy (EBRT) is the most com-
mon treatment for localized prostate cancer. A total dose

between 70 and 80 Gy is typically prescribed and delivered in
several fractions during 7 or 8 weeks from Monday to Friday,
in order to allow healthy tissues to recover while preventing tu-
mor from complete repair [1]. Tumor local control is achieved
in 60% to 90% of cases, depending on the D’Amico prostate
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cancer risk group [2]. The conception of modified patient-
specific therapies that may help to increase these percentages
is hindered by the complexity of the biological mechanisms
characterizing cancer and the response to irradiation of both
tumor and surrounding healthy tissues.

Numerous radiobiological mechanisms have been consid-
ered to participate in tumor survival after radiotherapy and
later recurrence. In particular, those related to the 5 R’s
(reoxygenation, repopulation, DNA repair, radiosensitivity and
redistribution in the cell cycle) have been thoroughly studied
[3]. Modulation of tumor radiation resistance is thought to
be related, at least, to hypoxia and abnormal angiogenesis
resulting in the reoxygenation of the tissue [4]–[6], a high rate
of proliferation/repopulation of tumor cells [7]–[9] and a low
intrinsic radiosensitivity of tumor cells [10]–[12], associated
with a preponderant cell cycle distribution in the radioresistant
phase S [13]. Mitotic catastrophe [14], considered to be the
main type of cell death after irradiation, may also play a major
role in tumor control [15], [16].

In silico modeling [17], [18] emerges as a powerful tool to
integrate these radiobiological mechanisms and predict their
behavior on hypothetical scenarios. Computational models
make it possible to create, at a limited cost, infinite virtual
tumors with different vascular architectures on which various
irradiation schedules can be simulated. The long-term aim is
to personalize the decision making process in the radiotherapy
workflow.

According to their spatial scale, in silico models can be
classified into 3 categories. Microscopic models [19], [20]
consider the stochastic behavior of individual cells and the
interactions between them. They can reflect cell heterogeneity
but may not reproduce a realistic tumor microenvironment and
the link to the image is not clear. Harting et al. [20] proposed
a single-cell-based model that integrated tumor proliferation,
oxygenation and radiation response. It also included angiogen-
esis, considering the diffusion of tumor angiogenesis factors
(TAF) emitted by hypoxic cells.

Macroscopic models [21]–[25], in contrast, describe spa-
tiotemporal changes in tumor cell density using differential
equations at the tissue scale, which makes them susceptible to
be validated with clinical data. Belfatto et al. [24] proposed
a computational model based on Gompertzian growth and
fitted with uterine cervical cancer CBCT scans. It included
oxygenation and a response to irradiation that considered both
its instantaneous effect and its delayed cell killing capability,
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which may be associated with mitotic catastrophe.
Hybrid or multiscale models arise to combine the advan-

tages of the 2 previous approaches in a single framework.
Numerous multiscale in silico models of tumor response
to radiotherapy already exist in the literature. For the vast
majority of them, the response to irradiation is based upon
the widely-used linear-quadratic formalism [26]–[28]. Titz et
al. [29] developed a model of tumor growth and response to
radiation that incorporated cell cycle distribution. This allowed
to consider phase-dependent radiosensitivity. Espinoza et al.
[30] proposed a voxel-based multiscale model to simulate the
radiation response of hypoxic tumors. Precalculated oxygen
histograms for each voxel were used to simulate hypoxic-
induced angiogenesis and oxygen-dependent response to ir-
radiation. Paul-Gilloteaux et al. [31] developed a 2D and
3D cellular automaton that was validated on human prostate
tumors transplanted in mice and then used to generate tumor
control probability (TCP) curves for different radiotherapy
protocols. It introduced mitotic catastrophe instead of arbitrary
delayed cell death. Apeke et al. [32] proposed another in
silico model considering cell cycle distribution at a mesoscopic
scale. Realistic static oxygenation maps were obtained from
FDG PET images.

Several issues are intrinsic to multiscale modeling. Firstly,
multiscale models integrate complex radiobiological mecha-
nisms occurring at different spatial and temporal scales (from
cell to tissue and from milliseconds to months, respectively).
This constitutes a serious challenge from a mathematical and
computational point of view. Simulations must have adapted
time-steps and spatial resolutions in order to capture changes
while limiting redundant iterations. They must be synchro-
nized at a reasonable frequency to be able to reflect the
numerous interactions existing among them. Computational li-
braries like M2SL (Multi-formalism Modeling and Simulation
Library) [33] have been developed to facilitate the integration
of different multiscale processes in the modeling task.

Secondly, hybrid models may contain a large number of
parameters. Some of them are difficult to measure in vivo or
even in vitro, which hampers model calibration and validation.
Sensitivity analysis can be used to study the impact of all the
parameters of a model on a given output, identify the most
relevant ones and determine which ones could be negligible
[34], [35]. Variance-based analysis, like the Sobol method
[36], give a quantitative expression of the importance of all
the parameters of a model. However, they are computationally
expensive. Screening analysis, like the Morris method [37],
provide a qualitative view of the hierarchy of parameters with
a reduced computational cost. Multiple examples of sensitiv-
ity analysis allowing subsequent parameter identification and
model dimension reduction can be found in the biomedical
literature [38]–[40].

Overall, a large number of in silico models combining
some of the most important biological processes characterizing
cancer and the response to radiotherapy have already been pro-
posed in the literature. However, some of these mechanisms,
which may play a major role in tumor control, have never
been included in a single comprehensive model. In particular,
no work of the literature has simultaneously integrated, to

our knowledge, dynamic oxygenation, mitotic catastrophe and
cell cycle distribution allowing the simulation of a phase-
dependent radiosensitivity for tumor cells. Moreover, although
the independent contribution of different radiobiological mech-
anisms has been evaluated for some of the models through
TCP or tumor density curves [20], [30], [31], a thorough
sensitivity analysis to precisely identify the impact of each
radiobiological parameter has not been performed yet for any
of the models.

Objectives of the present work were: i) to develop a compre-
hensive in silico model of tumor response to radiotherapy inte-
grating the major radiobiological mechanisms, taking place at
different spatial and temporal scales, ii) to perform a thorough
sensitivity analysis of the model in order to reduce the number
of parameters and iii) propose a more compact equivalent
version and finally, iv) to demonstrate its clinical usefulness
in prediction of biochemical recurrence after prostate cancer
radiotherapy. A preliminary version of this work has been
reported [41].

The paper is structured as follows: in section II, the model
of tumor response to radiotherapy, the principles of the Morris
screening method and the reduction and validation experiments
are described. The results of the comprehensive model, the
sensitivity analysis, the reduced version and the preliminary
validation are presented and discussed in sections III and IV,
respectively. Finally, conclusions are drawn in section V.

II. MATERIAL AND METHODS

A. Description of the model of tumor response to radiotherapy
1) General description: The in silico model of tumor

response to radiotherapy considered either a 2D or a 3D
prostate computational tissue (Fig. 2) where each pixel (20
µm × 20 µm) or voxel (20 µm × 20 µm × 20 µm)
corresponded to a cell of one of the following 6 types: healthy
(fibroblasts, macrophages, epithelial, smooth muscle, etc.),
undamaged or lethally damaged tumor, pre-existing or neo-
created endothelial and dead.

The model considered the following radiobiological mech-
anisms, happening at different temporal and spatial scales: (i)
oxygenation of the tissue, (ii) division of tumor cells, (iii)
angiogenesis, (iv) division of healthy cells and (v) response
to irradiation. A functional diagram of the model is presented
in Fig. 1. The model was implemented in C++ based upon
the Multiformalism Modeling and Simulation Library (M2SL)
[33]. This in-house library previously developed in other
biomedical modeling contexts [42], allows the integration of
different processes arising at different temporal and spatial
scales expressed with various formalisms (algebraic equations,
partial differential equations and cell automata). In this work,
we extended the functionalities to 2D and 3D arrays allowing
fast simulations of multiple simultaneous processes. Further
details about model implementation can be found in supple-
mentary material.

2) Oxygenation (Reoxygenation): Oxygenation of the tissue
was modeled, as in [43], using the reaction-diffusion equa-
tion (1)

∂u(xxx, t)

∂t
= DO2∆u(xxx, t) − r(u(xxx, t)), (1)
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Fig. 1. Functional diagram of the model. The different types of simulated cells
are represented with a gray ellipse. The different mechanisms are represented
with a rectangle. The same color code as in Table I is used. Correspondences
to the 5 R’s are indicated in italics. Endothelial cells diffuse O2 (1). Healthy
and tumor cells divide (2) and consume O2 (3). As a result, they may become
hypoxic, in which case they diffuse VEGF (vascular endothelial growth factor)
(4), or, if the O2 levels are extremely low, severely hypoxic, which provokes
their death (4’). VEGF is consumed by endothelial cells (5), resulting in their
division (6). Tumor cells irradiated with a dose of 2 Gy per fraction are
arrested (7). According to their intrinsic response to radiation (8), if their
DNA can be repaired, they resume their division. If the damage caused by
irradiation is lethal, they die at the next mitosis (mitotic death) (9).

where u(xxx, t) is the oxygen concentration; DO2 , the oxygen
diffusion coefficient and r(u(xxx, t)), the oxygen consumption,
calculated, for healthy and tumor cells, with the Michaelis-
Menten equation (2)

r(u(xxx, t)) = V O2
max

u(xxx, t)

u(xxx, t) +KO2

M

(2)

where V O2
max is the maximum oxygen consumption ratio and

KO2

M , the Michaelis constant. Dead cells were considered to
consume no oxygen.

Henry’s law states that, at a constant temperature, the
amount of gas dissolved in a liquid is proportional to the partial
pressure that the gas applies to the liquid (3),

p = KHu, (3)

with p, the partial pressure and KH , the Henry’s constant that
depends on the gas, the liquid and the temperature. Using
this relationship and redefining KO2

M as KO2

M := KO2

M KH and
V O2
max as V O2

max := V O2
maxKH , the oxygenation of the tissue

could be expressed as a function of the partial pressure of
oxygen (4) [43]

∂pO2(xxx, t)

∂t
= DO2∆pO2(xxx, t) − r(pO2(xxx, t)), (4)

with r(pO2(xxx, t)) calculated for healthy and tumor cells as (5)

r(pO2(xxx, t)) = V O2
max

pO2(xxx, t)

pO2(xxx, t) +KO2

M

. (5)

Pre-existing and neo-created endothelial cells were supposed
to have fixed pO2 values pOpreEnd

2 and pOneoEnd
2 , respec-

tively. The steady state solution was obtained numerically
using the finite differences method (see section A in supple-
mentary material for further details). Healthy and tumor cells
having a pO2 lower than a threshold, pOnec

2 , were considered
to die instantaneously due to hypoxia.

3) Division of tumor cells (Repopulation): The tumor cell
cycle was implemented like in the models proposed in [29] and
[32]. It had a duration Ttum and was composed of 4 phases:
G1 (gap 1), S (synthesis), G2 (gap 2) and M (mitosis). In our
model, there existed a fifth phase, called G0 and placed out of
the cycle, in which cells were quiescent. When an undamaged
tumor cell arrived at the end of its cycle, it divided, replacing
a healthy or dead cell of its Moore neighborhood of order N
with a new tumor cell. If there was no adjacent healthy or
dead cell, then it entered the phase G0.

Tumor cells with no available place in their Moore neigh-
borhood were initialized in phase G0. Cycling cells were
supposed to be distributed at the beginning of the simulation
according to the following percentages: 60% in phase G1;
25%, in S; 7.5%, in G2 and 7.5%, in M [29].

4) Angiogenesis (Reoxygenation, repopulation): The model
of angiogenesis was based on the VEGF (vascular endothelial
growth factor) diffusion. This protein, consumed by endothe-
lial cells, is emitted by hypoxic cells to provoke the creation
of blood vessels that satisfy their oxygen needs. The VEGF
distribution was assumed to be given by the reaction-diffusion
equation (6)

∂v(xxx, t)

∂t
= DV EGF ∆v(xxx, t) − r(v(xxx, t)), (6)

where DV EGF is the diffusion coefficient and r(v(xxx, t)), the
VEGF consumption, calculated, for endothelial cells, with the
Michaelis-Menten equation

r(v(xxx, t)) = V V EGF
max

v(xxx, t)

v(xxx, t) +KV EGF
M

, (7)

where V V EGF
max is the maximum VEGF consumption ratio and

KV EGF
M , the Michaelis constant. Hypoxic cells (with a pO2

value lower than a given threshold, pOhyp
2 ) were supposed

to have a fixed v value, vhyp [20]. The finite differences
method was used to obtain the numerical steady state solution
(see section A in supplementary material for further details).
A cycle duration, Tend, was defined for both pre-existing
and neo-created endothelial cells. If at the end of its cycle,
the VEGF concentration of an endothelial cell whose DNA
had not been lethally damaged by irradiation exceeded a
predetermined value v̄, the cell in question divided. If not,
it entered the quiescent phase G0, where it remained until a
potential augmentation of v(x, t). The new endothelial cell
was placed in the most hypoxic direction [20].
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5) Division of healthy cells: The duration of the healthy
cell cycle Theal was defined. When a cell whose DNA had
not been lethally damaged by irradiation arrived at the end
of its cycle, it divided, replacing a dead cell of its Moore
neighborhood of order N with a new healthy cell. If there
was no adjacent dead cell, then it entered the phase G0.

6) Response to irradiation (Redistribution in the cell cycle,
radiosensitivity, DNA repair): The response of every cell to
irradiation was modeled as the survival fraction (SF) following
the linear-quadratic equation and adjusted to consider the
influence of the pO2 (8) [20], [29]–[31]

SF = exp

(
− α

m
d OER(pO2) − β

m2
d2OER2(pO2)

)
,

(8)
where α and β are the radiosensitivity parameters; d, the
administered dose per session and OER, the oxygen enhance-
ment ratio given by (7)

OER(pO2) =
m pO2 + k

pO2 + k
, (9)

with m, the maximum value of the OER (set to 3 [15]) and
k, the partial pressure of oxygen such that OER = (m+1)/2
(3 mmHg). The radiosensitivity of tumor cells was supposed
to vary throughout the cycle. Thus, cells were more sensitive
in phases G2 and M and more resistant to irradiation in
phase S [13]. Healthy and endothelial cells, significantly more
radioresistant, had constant values of α and β throughout their
cycle. Irradiated cells were arrested for a duration Tarrest at
checkpoints located in transitions between phases G1/S and
G2/M [31]. Cells lethally damaged by irradiation died by
mitotic catastrophe.

B. Morris screening method

The Morris screening method [37] offers an overall view
of the influence of the parameters xxx = x1, ..., xK of a model
y = f(xxx) on its outputs yyy = y1, .., yL with a low compu-
tational cost. Additionally, it provides information about the
nature of the impact (linear or non-linear or having interactions
with other parameters). It explores a K-dimensional cube
regularly divided in p levels. In this space, for an output yj ,
N elementary effects, given by (10) are calculated for each
factor xi. A clever experimental plan taking ∆, the discrete
variation of the parameter, equal to p

2(p−1) with p even, is
used. It requires, in total, N(K+ 1) evaluations of the model.

EEi =
f(x1, ..., xi, ..., xK) − f(x1, ..., xi + ∆, ..., xK)

∆
.

(10)
The mean and standard deviation (µ∗

i ± σi) over the absolute
values [44] of the elementary effects are computed for each
parameter. The Euclidean distance of each point (µ∗

i , σi)
to the origin, Si =

√
µ∗2
i + σ2

i , can be calculated as an
indicator of the impact of the parameter in question [39]. The
prostate-specific ranges presented in Table I were considered
for the K = 33 parameters of the model. They were obtained
calculating, respectively, 0.7 and 1.3 of the minimum Pmin

and maximum Pmax values extracted from the literature
or our radiobiological expertise. Ranges of the angiogenesis

parameters were based on the global results of our previous
study of vasculature in orthotopic mouse prostate cancer [45].

C. Tumor control probability curves

Tumor control probability (TCP) curves, typically used in
clinical trials [1], [50], were generated as virtual endpoints in
the simulations. A tumor was supposed to be controlled when
the computational tissue did not contain any undamaged tumor
cell [20], [31]. Using this definition, TCP curves can be fitted
by the sigmoid function (11)

TCP (D) =
1

1 + exp(−a(D − b))
, (11)

where D is the total dose; a, the tangent at the inflection point
and b, its shift. It can be noticed that a value of D equal to b
leads to a TCP of 50% (TCP50). Thus, b can be interpreted
as the dose necessary to have a tumor control probability of
50% (TCD50).

D. Simplification of the model

Based on the results of the sensitivity analysis, the initial
comprehensive model was contrasted, through TCP curves,
with simplified versions where different mechanisms or sub-
mechanisms were progressively removed. Firstly, the complete
model was compared with 4 reduced versions that did not
consider angiogenesis, healthy cell division, cycle arrest or
the response to irradiation of healthy and endothelial cells.
Then, the differences between the comprehensive model and
simplified versions that did not include 2-and-3-element com-
binations of these mechanisms were studied. Finally, the
complete model was contrasted with a reduced version that
integrated neither angiogenesis, nor healthy cell division nor
cycle arrest, nor the response to irradiation of healthy and
endothelial cells.

E. Initialization of the model from prostate histological cuts

In order to perform simulations on realistic configurations of
tumor and vascular cells, HES and CD31 prostate histological
cuts from 7 patients treated with radical prostatectomy were
used to initialize the model for the sensitivity analysis and the
simplification experiments. Tumor foci were delineated on the
HES axial slides (Fig. 3a) and a CD31 staining (Fig. 3b) was
carried out to identify the blood vessels. Twenty-one regions of
interest (ROI) of approximately 2 mm × 1.2 mm (100 pixels
× 60 pixels) were selected from the tumor foci to create 21
initial computational tissues with different tumor and vascular
densities. An example of ROI and the corresponding virtual
tissue are presented in Fig. 3c and d, respectively.

F. Validation of the model. Biochemical recurrence prediction

A first clinical validation of both the comprehensive and the
reduced model in terms of biochemical recurrence prediction
was performed. A cohort of 76 localized prostate cancer pa-
tients having undergone EBRT [51] was used for this purpose.
Patient, tumor and treatment characteristics are presented in
Supplementary Table I. Patients were followed up by means
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Fig. 2. Example of a 40 × 2 Gy treatment on a synthetic tissue. Tumor density at (a) the beginning of the simulation (t = 0 weeks); (b) the end of a 40 ×
2 Gy treatment (t = 8 weeks) and (c) t = 12 weeks after the beginning of the treatment; (d) evolution of tumor density (the integral of tumor density can be
deduced); corresponding distribution of tumor cells in the cycle at (e) t = 0 weeks, (f) t = 8 weeks and (g) t = 12 weeks; (h) evolution of the distribution of
tumor cells in the cycle; pO2 map at (i) t = 0 weeks; (j) t = 8 weeks and (k) t = 12 weeks; (l) evolution of the median pO2 of the tissue; VEGF concentration
map at (m) t = 0 weeks; (n) t = 8 weeks and (o) t = 12 weeks and (p) evolution of the median VEGF concentration of the tissue.

of clinical examination and PSA analysis every 6 months for
5 years after the end of irradiation. Nine patients suffered
biochemical recurrence, defined according to the Phoenix
criteria [52]. Our IRB approved this retrospective study.

The logistic model (stratified 3-fold cross-validation, 1000

repetitions) was used to predict biochemical recurrence. A first
prediction was made from 3 pre-treatment imaging parameters,
namely maximal tumor area and average ADC and T2w,
obtained from 3.0 T MRI.

Biochemical recurrence was then predicted using the tumor
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TABLE I
RANGES AND REFERENCE VALUES OF THE 33 PARAMETERS OF THE

COMPREHENSIVE MODEL, CLASSIFIED BY RADIOBIOLOGICAL
MECHANISM

Oxygenation
Factor Range Reference value

pOnec
2 (mmHg) 0 - 1.3 [29], [31] 0.7

DO2 (µm2/ms) 1.02 - 2.87 [43] 1.84
V O2
max (mmHg/ms) 0.006 - 0.029 [43] 0.015
KO2

M (mmHg) 0.119 - 7.67 [43] 3.04
pOpreEnd

2 (mmHg) 8.4 - 93.6 [46] 42
pOneoEnd

2 (mmHg) 8.4 - 93.6 [46] 42

(a)

Division of tumor cells
Factor Range Reference value
Ttum (h) 85 - 1310 [30], [47] 565

N 1 - 3 [31] 1

(b)

Angiogenesis
Factor Range Reference value
Tend (h) 1680 - 3120 2400

DV EGF (µm2/ms) 1.4 - 2.6 2
V V EGF
max (mol/µm2ms) 0.005 - 0.007 0.006
KV EGF

M (mol/µm2) 1.75 - 3.25 2.5
pOhyp

2 (mmHg) 3.5 - 6.5 [31] 5
v̄ (mol/µm2) 10.5 - 19.5 15

vhyp (mol/µm2) 14 - 26 20

(c)

Division of healthy cells
Factor Range Reference value
Theal (h) 171 - 2620 1130

(d)

Response to irradiation
Factor Range Reference value

αheal (Gy−1) 7 · 10−4 - 1.3 · 10−3 0.001
α/βheal (Gy) 0.7 - 13 5.5
αtumG1 (Gy−1) 0.024 - 0.356 [48], [49] 0.154
α/βtumG1 (Gy) 0.7 - 13 [48], [49] 5.5
αtumS (Gy−1) 0.017 - 0.256 [48], [49] 0.111
α/βtumS (Gy) 0.7 - 13 [48], [49] 5.5
αtumG2 (Gy−1) 0.025 - 0.381 [48], [49] 0.165
α/βG2 (Gy) 0.7 - 13 [48], [49] 5.5

αtumM (Gy−1) 0.028 - 0.425 [48], [49] 0.184
α/βtumM (Gy) 0.7 - 13 [48], [49] 5.5
αtumG0 (Gy−1) 0.105 - 0.195 [48], [49] 0.15
α/βtumG0 (Gy) 0.7 - 13 [48], [49] 5.5
αpreEnd (Gy−1) 7 · 10−4 - 1.3 · 10−3 [31] 0.001
α/βpreEnd (Gy) 0.7 - 13 [31] 5.5
αneoEnd (Gy−1) 7 · 10−4 - 1.3 · 10−3 [31] 0.001
α/βneoEnd (Gy) 0.7 - 13 [31] 5.5
Tarrest (h) 4.2 - 39 18

(e)
Parameters ranges, used for the sensitivity analysis, were extracted from the
literature and our radiobiological expertise. Reference values were defined

as intermediate values within the ranges.

area at t = 8 weeks output given by the comprehensive and

(a) (b)

(c) (d)

Fig. 3. Example of (a) HES staining of a prostate histological cut with tumor
focus delineated by an anatomopathologist; (b) corresponding CD31 staining;
(c) CD31 staining region of interest where vessels can be identified in brown
and (d) initial computational tissue, where healthy cells are represented in
white; undamaged tumor, in light blue and pre-existing endothelial, in red.

reduced in silico models. For this purpose, 76 virtual tissues
analogous to the 76 patients of the cohort were built from
their respective average ADC and T2w values, correlated
with cell density [53], and maximal tumor areas observed
before treatment. The radiotherapy protocol administered to
each patient of the cohort (a total dose of 74 - 80 Gy
delivered in 2 Gy fractions from Monday to Friday) was
then simulated on the corresponding virtual tissue. Reference
values given in Table I were taken for every parameter except
for the highly influential hypoxic death threshold pOnec

2 , for
which a low value was fixed. An initial vascular density of
3.8% [31], within the ranged observed in our histological
cuts, was considered for every virtual tissue. Endothelial cells
were supposed to be randomly distributed forming a poorly-
vascularized tumor core. Given the stochastic component of
the model, each simulation was repeated 5 times and the mean
output value was taken.

III. RESULTS

A. Integrative model of tumor response to radiotherapy

As a proof of concept, a 40 × 2 Gy treatment, typically
applied in prostate cancer, was tested on a synthetic tissue.
Results are presented in Fig. 2. Tumor density, cell cycle,
pO2(x, t) and v(x, t) maps at the beginning of the simulation
(t = 0 weeks), t = 8 weeks (end of the treatment) and t
= 12 weeks are shown. Curves of tumor density, cell cycle
distribution and median pO2 and v evolution through time are
also presented.

B. Sensitivity analysis

The sensitivity analysis using the Morris method was per-
formed on the 21 computational tissues obtained from the
prostate histological cuts, considering a treatment of 40 ×
2 Gy, administered every 24 h from Monday to Friday. The
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tumor density 12 weeks after the beginning of the treatment
and its integral over time were used as endpoints. The value of
∆, considering p = 20, was normalized for each parameter as

∆
1.3Pmax−0.7Pmin . In order to ensure convergence, N = 100
was taken. A total of 21×100×(33+1) = 71400 simulations
were thus performed. The Euclidean distances Si of the 33
parameters of the complete model for the 2 outputs considered
are presented in Fig. 4.

The duration of the tumor cell cycle, Ttum, and the radiosen-
sitivity parameter of tumor cells in the phase G1, αtumG1,
were identified as the factors having the highest impact on the
tumor density at t = 12 weeks (Fig. 4a). Other radiosensitivity
parameters of tumor cells (αtumG2, α/βtumG1, αtumM and
αtumS) and oxygenation factors, like pOnec

2 , KO2

M , pOpreEnd
2

and V O2
max, had a considerable impact on this output as well.

Ttum was also the most influential parameter on the integral
of tumor density (Fig. 4b). The hypoxic death threshold,
pOnec

2 , had the second most important effect. Other factors
of the oxygenation mechanism, like pOpreEnd

2 , V O2
max, KO2

M

and DO2 and the radiosensitivity parameters of tumor cells,
especially those of the phase G1, also had a significant impact
on the integral of tumor density.

In contrast, these results suggest that parameters associated
with angiogenesis (in red), the division of healthy cells (in or-
ange) and the response to irradiation of healthy and endothelial
cells (in purple) were negligible for both the tumor density at
t = 12 weeks and the integral of tumor density endpoints.

The impact of parameters located to the right of the dashed
lines in Fig. 4 was indistinguishable from the uncertainty due
to the stochastic nature of the model.

To better illustrate the impact of the most important param-
eters of the model, TCP curves are presented in Fig. 5 for 6
different values of Ttum, αtumG1, αtumG2 and pOnec

2 within
the ranges specified in Table I. Reference values indicated in
the same table were taken for the constant parameters. A 2 Gy
fractionation administered every 24 h from Monday to Friday
was considered. The experiment was repeated 10 times for
each of the 21 computational tissues (a total of 210 simulations
per curve).

It can be noticed that a small value of Ttum (85 h)
complicated tumor control. There seemed to be no major
variation between TCP curves for the other values of Ttum
(Fig. 5a). Tumor control probabilities increased with the ra-
diosensitivity parameters of tumor cells in phases G2, αtumG2,
and especially G1, αtumG1, (Fig. 5c and b, respectively).
Finally, the threshold of hypoxic death pOnec

2 (Fig. 5d) also
had a significant effect on the TCP curves. Low values of
this parameter, especially 0 mmHg (no hypoxic death at all),
considerably complicated tumor control.

C. Simplification of the model
The TCP curves obtained for the comprehensive model and

the reduced versions are presented in Fig. 6. The reference
parameter values presented in Table I and a 2 Gy fractionation
were used for every repetition. As in Fig. 5, each TCP curve
was built from 21 × 10 = 210 simulations.

The exclusion of angiogenesis from the model slightly
complicated tumor control, whereas somewhat higher TCP

values were obtained when the division of healthy cells was
not considered. There seemed to be no major difference when
the cycle arrest or the response to irradiation of healthy and
endothelial cells were not included in the model (Fig. 6a).

The TCP curve obtained when angiogenesis, healthy cell
division, cycle arrest and the response to irradiation of healthy
and endothelial cells were simultaneously excluded is shown in
Fig. 6b. No significant difference with respect to the reference
TCP curve could be observed. It can be thus concluded that
a simplified version of the model which considers neither
angiogenesis nor healthy cell division nor cycle arrest nor
the response to irradiation of healthy and endothelial cells
(Fig. 7) is equivalent to the complete model integrating these
mechanisms and sub-mechanism in terms of TCP. This re-
duced version includes only 18 parameters against 33 of the
comprehensive model.

The TCP curves of the intermediate reduced versions ex-
cluding 2 and 3 mechanism or sub-mechanism combinations,
as well as the values and the absolute and relative variations
of the sigmoid constants a and b for every TCP curve can be
found in Supplementary Fig. 3.

D. Validation of the model. Biochemical recurrence prediction

Results of the biochemical recurrence predictions are pre-
sented in Fig. 8. Mean ROC curves and confidence intervals
obtained after 1000 repetitions for the 3 different sets of
features are shown. The corresponding mean AUC values are
indicated. Biochemical recurrence predictions based on the
tumor area at t = 8 weeks output of the comprehensive (AUC
= 0.81 ± 0.02) and reduced (AUC = 0.82 ± 0.02) in silico
models were significantly better than those obtained from the
pre-treatment maximal tumor area and average ADC and T2w
values (AUC = 0.75 ± 0.03). Furthermore, no major difference
could be found between predictions made from the output of
the comprehensive and the reduced versions of the model.

IV. DISCUSSION

The developed comprehensive model of tumor response to
irradiation included the most relevant radiobiological mech-
anisms, which have been considered separately in previous
multiscale approaches of the literature [29]–[32]. In particular,
this is the first model simultaneously integrating, to our knowl-
edge, mitotic catastrophe and cell cycle distribution, including
checkpoints between phases G1/S and G2/M and a quiescence
phase G0 affecting the radiosensitivity of tumor cells. This
singularity offers a more realistic response to irradiation and
opens doors to simulations considering cell cycle inhibitors or
synchronizers [54]. In addition, this work introduced a novel
approach of modeling angiogenesis, based on the calculation
of dynamic VEGF distributions using a reaction-diffusion
equation. Dynamic pO2 maps were obtained, as in the works
of Espinoza et al. [43] and others [20], [55], using partial
differential equations. The stochastic intrinsic radiosensitivity
of tumor, endothelial and healthy cells was given by the linear-
quadratic formalism, adjusted to consider the influence of O2,
as in [20], [24], [29]–[32].
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Fig. 4. Sensitivity analysis results. Euclidean distances to the origin, Si, of the 33 parameters in descending order of importance taking as output: (a) the
tumor density at t = 12 weeks and (b) the integral of tumor density. Twenty-ones computational tissues obtained from prostate histological cuts of 7 patients
were used for this analysis. Error bars represent the heterogeneity of Si among the different tissues. The same color code as in Table I is used. The effect of
parameters to the right of the dashed lines is indistinguishable from the uncertainty caused by the intrinsic stochastic component of the model
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Fig. 5. TCP curves considering different values of (a) Ttum, (b) αtumG1, (c) αtumG2 and (d) pOnec
2 , identified with a red star as the most important

parameters in Fig. 4. A 2 Gy fractionation from Monday to Friday was used for every simulation. Six equidistant values within the ranges presented in Table
I were considered for each studied factor. Reference values defined in the same table were used for the other parameters. A total of 210 simulations (10
repetitions × 21 computational tissues) were performed to build each TCP curve.

The complexity of the model lay, thus, in the integra-
tion of all these different mathematical formalisms, includ-
ing stochastic and deterministic, as well as continuous and
discrete approaches using a single computational framework
based on M2SL. Furthermore, it must be remarked that the

considered radiobiological mechanisms take place at different
timescales. Tumor, healthy and endothelial cell division and
response to irradiation were simulated with a time-step in
the order of hours while oxygenation and VEGF diffusion
and consumption are much faster processes happening at the
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Fig. 6. TCP curves excluding (a) one and (b) 4 mechanisms or sub-mechanisms. A 2 Gy fractionation from Monday to Friday was simulated. The reference
parameter values presented in Table I were considered. A total of 210 simulations (10 repetitions × 21 computational tissues) were performed to build each
TCP curve. The same color code as in Table I is used.
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Fig. 7. Functional diagram of the reduced model. The different types of cells
are represented with a gray ellipse. The different mechanisms are represented
with a rectangle. The same color code as in Table I is used. Correspondences
to the 5 R’s are indicated in italics. Endothelial cells diffuse O2 (1). Tumor
cells divide (2). Healthy and tumor cells consume O2 (3). As a result, if the
O2 levels are extremely low, they become severely hypoxic, which provokes
their death (4). According to their intrinsic response to radiation (5), tumor
cells irradiated with a dose of 2 Gy per fraction resume their division, if their
DNA can be repaired, or die at the next mitosis (mitotic death) (6), if the
damage caused by irradiation is lethal.

scale of milliseconds. M2SL provided the tools to couple all
the simulations at adapted frequencies without unnecessary
computational burden.

The described model allowed in silico simulations of a
complete radiotherapy protocol (40 × 2 Gy). The obtained
oxygenation maps (Fig. 2) showed that cells situated in the

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R Imaging parameters

(AUC = 0.75 ± 0.03)
Tum. area at 8 w. from
comprehensive model
(AUC = 0.81 ± 0.02)
Tum. area at 8 w. from
reduced model
(AUC = 0.82 ± 0.02)

Fig. 8. ROC curves of biochemical recurrence predictions based on the
maximal tumor area and average ADC and T2w values observed before
treatment (blue) and the tumor area at t = 8 weeks outputs given by the
comprehensive (gray) and reduced (brown) in silico models. Mean AUC
values are indicated.

poorly vascularized tumor core presented low pO2 values. As
O2 diffusion is limited to a certain range, vessels located in the
tumor rim could not fully oxygenate too distant cells situated
in the central region, which therefore developed hypoxia and,
in severe cases, necrosis. Consequently, since VEGF is emitted
by hypoxic cells, a higher concentration of this protein was
found in the tumor core. All these results are in line with the
literature consensus [15], [56], [57].

Furthermore, TCP curves could be obtained. It must be
noticed that the tumor was supposed to be controlled when
there were not any undamaged tumor cells in the tissue.
This consideration might prove to be too strict in clinical
cases as the immune system, which was not integrated in the
model, may be capable of destroying small quantities of tumor
cells remaining after a radiotherapy treatment, assuring tumor
control [50].

As far as we can tell, this is the first work presenting the
results of an exhaustive sensitivity analysis (71400 simula-
tions) of an integrative in silico model of tumor response to
irradiation. Other studies of the literature [20], [30], [31] have
only performed partial approaches to individually evaluate the
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impact of certain mechanisms or parameters. Those one-at-
a-time analysis provide a preliminary view of the effect of a
given factor with very few evaluations of the model. However,
they prove to be insufficient and their results must be taken
cautiously since these approaches cannot detect interactions
between parameters. The Morris screening method used in
this work provided qualitative information about the effect
of the 33 parameters, including their interactions. This made
it possible to rank, for the first time to our knowledge, all
the parameters of an integrative model of tumor response to
radiotherapy in order of importance. These results allowed to
better assess the importance of the different radiobiological
mechanisms and were used to reduce the dimension of the
comprehensive model. Numerous examples of model reduction
based on sensitivity analysis can be found in the biomedical
literature [34], [35], [38].

Prostate histological cuts from 7 patients were used to
initialize computational tissues for the sensitivity analysis and
the model reduction simulations. These represent a large vari-
ability of tumor configurations. Results presented in this work
are thus based on realistic tumor and vascular architectures.

The duration of the tumor cell cycle, Ttum, was identified as
the parameter having the highest impact on tumor density at t
= 12 weeks and its integral. This is in agreement with previous
partial results of the literature. Harting et al. [20] also noted
that the mechanism of division of tumor cells had an important
effect on TCP. Espinoza et al. [30] explored the effect of
different values of the doubling time of tumor cells. This
parameter, comparable to the Ttum of our model, was found to
have a significant influence on tumor cell density. Furthermore,
the impact was higher when the value was decreased, which
resulted in an increased division of tumor cells. All this is in
consonance with results presented in our Fig. 5a in the form
of TCP curves.

The impact of Ttum can be interpreted as the sum of 2
contributions that apparently affect tumor density in opposite
directions. On the one hand, it has an obvious effect on the
proliferation of tumor cells. A low value of Ttum results in
a fast division of this kind of cells. On the other hand, as
tumor cells die by mitotic catastrophe, Ttum also impacts on
their response to irradiation. A low value provokes a slow
destruction of tumor cells.

Our parameters of dynamic oxygenation also had a signifi-
cant effect on the studied outputs. In particular, hypoxic death
had a great impact on tumor control. It can be suggested that,
when this mechanism was not considered (pOnec

2 = 0 mmHg),
extremely hypoxic cells, which are very radioresistant, did
not die due to this lack of oxygen but had to be killed by
irradiation, therefore at the expense of tumor control. The
importance of oxygenation on tumor control was already
illustrated by TCP curves presented by Harting et al. and Paul-
Gilloteaux et al. [31].

In contrast, angiogenesis parameters had a negligible effect
on both tumor density at t = 12 weeks and its integral.
When the whole angiogenesis mechanism was excluded, tumor
was slightly more difficult to control. It can be hypothesized
that the tissue was less oxygenated and, consequently, more
radioresistant. However, the difference was not enormous. On

this matter, Espinoza et al. showed that versions of their model
considering an increased angiogenesis or no angiogenesis at all
presented no significant differences in terms of tumor density.

The duration of the healthy cell cycle, Theal, also had a
negligible effect on the tumor density at t = 12 weeks and its
integral. When the whole mechanism was not considered, tu-
mor control was slightly easier to achieve. It can be suggested
that, in this case, the tissue contained more dead cells, which
did not consume O2. Consequently, it was better oxygenated
and, therefore somewhat less radioresistant. Nevertheless, the
difference was not substantial. This is in agreement with
the results of Espinoza et al. The analogous mechanism of
resorption of dead tumor cells of their model was found to
have no influence on tumor density.

The impact on tumor control of the 3 radiobiological mech-
anisms retained in the reduced model (oxygenation, division of
tumor cells and their response to irradiation) has been largely
reported in the literature [7]–[12]. In particular, the relationship
between hypoxia and tumor response to irradiation has been
widely discussed [56], [58]–[60]. Hypoxic regions, situated at
a certain distance from blood vessels, are known to be more
resistant to irradiation that well-oxygenated areas. To consider
this heterogeneity, in this work, as in most of the previous
in silico models [20], [30], we included, at the cell scale, the
oxygen enhancement ratio (OER). This factor establishes a
relation between the doses administered under hypoxic and
aerobic conditions producing the same biological effect [15].
It can be expressed in alternative ways [24], [29], [31], [32].

Biochemical recurrence predictions made with the tumor
area at t = 8 weeks output of the comprehensive and the
reduced versions of the model significantly improved those
based on pre-treatment imaging parameters. These results
show a potential application of the model as a useful tool
in a clinical context. In addition, they corroborate the equiv-
alence of the comprehensive and the reduced model, already
suggested by the sensitivity analysis and demonstrated in terms
of TCP curves, as no major difference was observed between
the predictions made from the outputs of the 2 versions.

It must be remarked that this preliminary validation was
performed taking the intermediate reference values of Table I
for every parameter of the model, except for the highly influen-
tial hypoxic death threshold, pOnec

2 . Future model calibration,
especially of the other parameters having an important impact
on tumor area at t = 8 weeks, should improve the quality of the
predictions. Furthermore, an initial vascular density of 3.8%
[31] was supposed for the 76 virtual tissues. Individual values
for each sample deduced from PET images, may also lead
to better biochemical recurrence predictions, as the sensitivity
analysis showed that oxygenation parameters had an important
impact on tumor regression.

As a first step, the presented results were obtained con-
sidering only a dose per fraction of 2 Gy, typically applied
in prostate cancer. However, the flexible implementation of
the model with MS2L will allow to simulate hypo-and-
hyperfractionated treatments [48], [61]–[63] in the future.
Using optimization algorithms [64], [65], the total dose, the
dose per fraction and the interval between sessions maximizing
tumor control will be identified.
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This work presents several limitations which will be tackled
in the future. Firstly, the comprehensive model intended to
integrate the most relevant biological mechanisms of the
literature, in particular those described by the 5 R’s [3].
Nevertheless, some mechanisms which may also play a role
on tumor regression, such as the immune response [50], were
not included as only short-term evolution was considered.
Furthermore, it must be remarked that the linear-quadratic
equation, almost universally used to model the response to
irradiation, may not be valid for every value of dose per
fraction. The applicability of this formalism to high doses
(more than 6 Gy) remains controversial [66].

Secondly, it must be borne in mind that the validity of the
conclusions of the sensitivity analysis can only be guaranteed
within the studied prostate-specific limit values of the parame-
ters. The definition of appropriate ranges is, thus, a key aspect
of the Morris method. Due to ethical or technical reasons,
the vast majority of the parameters of cancer models have
never been measured in vivo and, for many of them, a panoply
of in vitro values exists [30], [31], [43], [46]–[49]. Ranges
in this work were defined from maximum and minimum
values of the literature and our radiobiological expertise.
This should assure the significance of the obtained results.
Nevertheless, to complement this approach, a more precise,
but also more computationally expensive, sensitivity analysis
using, for example, the Sobol method will be performed in the
future on the reduced model, including only the most relevant
parameters identified by the Morris analysis.

Thirdly, the results of the first validation of the model at
the population scale need to be corroborated on an external
cohort including a larger number of patients. Furthermore,
although each mechanism has been previously considered
in the literature, the model should still be validated at the
microscopic and macroscopic scales. Several options to cope
with this issue may be considered. Time-lapse imaging of
prostate tumor cells cultured in vitro and irradiated with
different fraction schedules can be used to carry out a rough
validation of tumor cells division and response to irradia-
tion at the microscopic scale. Cells can be tracked using
detection strategies [67]. Nevertheless, a cell-based approach
presents several limitations, the most important being the lack
of consideration of realistic tumor microenvironment. At a
macroscopic scale, several mechanisms can also be validated.
Using longitudinal mpMRI [68], CBCT [24] and PET images
[32] of irradiated patients, tumor volumes and cell densities
can be obtained and compared with the results of in silico
simulations. Additionally, PET images can be used to validate
the oxygenation of the tissue [69], [70].

V. CONCLUSION

An original multiscale in silico model of tumor response
to radiotherapy (33 parameters) integrating 5 radiobiological
mechanisms (oxygenation, division of tumor cells, angiogene-
sis, division of healthy cells and phase-and-oxygen-dependent
response to irradiation, considering cycle arrest and mitotic
catastrophe) was developed. A thorough sensitivity analysis
(71400 simulations) using the Morris method, applied for the

first time to a whole integrative model of tumor response
to radiotherapy, allowed to obtain a reduced version (18
parameters), equivalent in terms of tumor control probability
and biochemical recurrence prediction. This simplified model
included only 3 radiobiological mechanisms: oxygenation,
given by a reaction-diffusion equation, division of tumor
cells, considering their cycle, and cycle-phase-and-oxygen-
dependent response to irradiation of tumor cells, based on
the linear-quadratic formalism. Biochemical recurrence predic-
tions obtained with the reduced model were significantly better
than those performed from pre-treatment imaging parameters.
The reduced model should still be thoroughly validated at the
microscopic and macroscopic scales using experimental data.
Other radiobiological mechanisms, such as the radio-induced
tissue inflammation provoking neovascularization and immune
cell recruitment, should be explored and potentially integrated.
In the future, the model will be used to simulate different ra-
diotherapy fractionation schedules (hypo/hyper fractionation),
paving the way for the clinical optimization of patient-specific
treatments.
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