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Abstract. The relationship between asbestos exposure and malignant mesothe-
lioma is established since the middle of the 20th century. From this time, scientific 
researches have progressed investigating the mechanism of action of asbestos on 
mesothelial cells, and more intensively during the beginning of the 21th century 
the analysis of the molecular changes in mesothelioma. Indeed, asbestos fibers 
were reported to induce chromosomal and genetic damage in mammalian cells. 
Mesothelioma is characterized by chromosomal alterations, which include numer-
ous chromosome rearrangements, gene mutations and gene deletions. Recent stud-
ies have enhanced our knowledge of the molecular landscape of mesothelioma, 
emphasizing mutations targeting more specifically tumor suppressor genes, differ-
ential gene expression and DNA methylation in comparison with normal cells and 
between mesotheliomas, expression of non coding RNAs and alterations of regu-
latory pathways. Researches also provided knowledge of susceptibility factors in 
malignant mesothelioma families and relationships with asbestos exposure. It is 
time to review on the recent advances on asbestos-induced molecular changes re-
lated to mesothelial carcinogenesis. 

Introduction 

The role of asbestos exposure in human mesothelial carcinogenesis is well es-
tablished, but our knowledge on the mechanism of mesothelial carcinogenesis 
needs to be enhanced, as well as on the link between the molecular changes in ma-
lignant mesothelioma (MM) and the mechanism of action of asbestos on mesothe-
lial cells. Over about ten last years, progresses have made in the field of MM mo-
lecular characterization. Some pathological and molecular changes were 
ascertained and other established. These findings encouraged us to review on the 
recent advances on asbestos-induced molecular changes related to mesothelial 
carcinogenesis. 
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Researches on malignant mesothelioma 

Molecular characteristics of malignant mesothelioma 

Our knowledge of the molecular characteristics of MM and its pleural form has 
recently progressed. Earlier, chromosome rearrangements, and mutations in tumor 
suppressor genes were reported in MPM. Rearrangements concerned numerous 
chromosomes, especially chromosomes 9 (9p21), 3 (3p21) and 22q, with more 
frequent losses than gains. Gene mutations, especially in the tumor suppressor 
genes CDKN2A, CDKN2B and NF2 mostly occur via partial or complete dele-
tions, and low rates of mutations were detected in TP53, one gene frequently mu-
tated in other cancers [1, 2]. Further studies confirmed these findings and in-
creased the list of frequently mutated genes, especially adding BAP1 (BRCA1-
associated gene) and other genes with a lower rate of mutations such as SETD2 
(SET domain containing 2) and LATS2 (large tumor suppressor kinase 2) [3-6]. A 
few genes have been inconsistently reported as altered in mesothelioma, CUL1 
[7], or at a lower rate such as DDX3X, ULK2, RYR2, CFAP45, SETDB1 and 
DDX51, or genes from the SMARC family (SWI/SNF Related, Matrix Associated, 
Actin Dependent Regulator Of Chromatin, Subfamily C), PBRM1, COPG1, 
MLRP1, INPP4A, SDK1 and SEMA5B [8-10, 4]. 

Gene expression profiles in MPM revealed the differential expression of specif-
ic genes in comparison with normal mesothelial cells or lung tissues, or other tho-
racic cancers and provided a variety of information on the mechanism of mesothe-
lioma carcinogenesis and the prognostic value of the expression level of specific 
genes [11, 12, 4, 13-15].  

Recently, three comprehensive genomic studies demonstrated the molecular 
heterogeneity of MPM, and allowed to distinguish molecular subtypes of MPM 
according to their gene expression profiles [4, 16, 6]. The molecular classifications 
were partially related to the histological types. Although MPM is classically de-
fined at the histological level as epithelioid, mixed and sarcomatoid types, the 
gene expression profiles allowed to define histology-independent or partly de-
pendent subtypes, discriminating especially within epithelioid morphologies. Im-
portantly, molecular subtypes were linked to patients’ survival [4, 16, 6]. 

MPM heterogeneity was further investigated by transcriptome analyses using 
deconvolution methods [17]. This approach allowed to define a set of genes that 
define epithelioid-like and/or sarcomatoid-like types of MPM. Then, a MPM tu-
mor can be decomposed as epithelioid-like and sarcomatoid-like components, and 
can be defined by a E- and S-score, which refers to the proportion of these com-
ponents. Interestingly, the S-score is strongly associated with prognosis [17]. Be-
sides, this study also revealed that markers of the adaptive immune response were 
predominant in tumors with a high S-score, whereas markers of the innate immune 
response are found in tumors with a high E-score, consistent with an impact of the 
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tumor micro-environment on survival [17]. The interest of associating molecular 
investigations and histological analysis was later proposed in a review recom-
mending to update the histologic classification of MPM by a more multidiscipli-
nary approach to support clinical practice, research investigation and clinical trials 
[18]. An influence of the micro-environment on patients’ outcome was further 
suggested using deep learning based on MPM histology slides [19]. Contribution 
of histone methyl transferases can be illustrated by the overexpression of EZH2, a 
component of the polycomb complex PRC-2, which silent histone H3 by tri-
methylation [20]. Recent studies highlighted the strong contribution of epigenetic 
regulation through DNA methylation or miRNA expression deregulation in MPM. 
Integration of miRNome and methylome data revealed the contribution of epige-
netic regulation in the epithelioid-like and sarcomatoid-like components of the 
tumors [21, 17]. Some genes such as WT1 and PI3KR1, or RUNX1 and PBRM1 
were hypermethylated and underexpressed in tumors with a high E-score or S-
score, respectively [17]. Next generation sequencing analyses linked alterations of 
histone methylation pathway to inactivation of histone lysine methyltransferases, 
mainly SETD2 and SETDB1 [4]. 

Long non-coding RNAs (LncRNAs) also play a role in epigenetic regulation 
mechanisms. A number of LncRNAs have been identified as potential regulators 
of MPM, several of them being involved in EMT [22]. Their expression may be 
modulated by key genes in MPM, such as NEAT1, whose expression is dependent 
on BAP1 expression, or HOTAIR which regulates E-cadherin expression  through 
the recruitment of PRC2 chromatin remodeling complex [22]. 

A few data are available on protein expression in MM. Mass spectrometry 
analyses were carried out to compare differentially expressed proteins in biphasic 
MM and benign tumors [23]. Pathways analysis revealed decrease of activation 
state in pathways of reactive oxygen species (ROS), respiratory system and cell 
death, and increase of activation of phagocytes in MM tumors [23]. Große-
rueschkamp et al [24] compared epithelioid and sarcomatoid MM using a method 
integrating FTIR (Fourier Transform InfraRed spectroscopy) imaging and laser 
capture microdissection, and proteome analysis of the dissected tissue. Laser cap-
ture is interesting as it allows selection of specific regions within the tumor. Epi-
thelioid MM overexpressed calretinin (CALB2) and several cytokeratins (CKs), 
and collagen A1 was overexpressed in the sarcomatoid form, consistent with the 
EMT. CKs and CALB2 are markers of epitheliod MM [25]. 

Proteomic approaches were also used to characterize MM secretome and exo-
some. MM secretome was analyzed in six cell lines by iTRAQ® mass spectrome-
try, and compared to non-malignant cell lines. Results showed differential expres-
sion of proteins involved in metabolic energetic pathways, up-regulation of 
proteins involved in cancer invasion and metastasis, and down-regulation of pro-
teins involved in cell adhesion [26]. Protein content of MM-derived exosomes was 
investigated in the four MPM cell lines studied in the previously quoted paper. A 
majority of proteins detected is expressed in various types of cancer, but specific 
proteins were identified in MM, either shared with all MM of differential between 
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the MPM [27]. The proteomic findings correlated with gene expression reported in 
transcriptomic studies of MPM and identified biomarkers known to be expressed 
from immunohistochemical studies, as well as immunomodulatory components 
and tumor-derived antigens [27].  

State of signaling pathways in malignant mesothelioma  

Several signaling pathways are deregulated in human MM, leading to an un-
maintained mesothelial cell homeostasis. Pathways analyses from transcriptomic 
data have revealed alterations in cell proliferation control, apoptosis, differentia-
tion, cell migration and survival [28, 29]. In cancer, both the MAPKs and 
PI3K/AKT/mTOR pathways are often affected by activating oncogenic mutations 
in genes involved in these signaling pathways, but these mutations are rare in MM 
[30]. In MM, these pathways are activated as assessed with the use of specific in-
hibitors that reduce cell growth or cell viability, and their activation may result 
from overexpression of specific growth factors or receptors such as EGFR and 
MET [30, 29]. Pathway analyses carried out in recent comprehensive integrative 
genomic studies highlighted P53and mTOR pathways as deregulated in MPM [6, 
17, 4]. Other pathways were identified as differentially activated between MPM 
tumors, depending on the E/S-scores (angiogenesis, EMT, immune checkpoints 
and metabolic pathways) [17]. 

One prominent feature in MM is the deregulation of Hippo, an evolutionarily 
conserved pathway involved in development and control of organ size. When 
turned on, this pathway negatively controls cell proliferation, partly maintaining 
cell-cell contacts. Protein players of the pathway are merlin (NF2), LATS1 and 
LATS2 that silence YAP and TAZ by phosphorylation, and consequently avoid 
the transcription of downstream genes such as CTGF, CYR61 or c-MYC [31]. In 
MPM, several members (NF2, LATS2, LATS1, SAV1…) of Hippo pathway are in-
activated due to gene mutations and/or deletions [5, 32]. This pathway crosstalks 
with other pathways, Hedgehog, Wnt and P53. This last cross is of particular in-
terest regarding the different rate of mutations of NF2 and TP53 in MM, with a 
possible repercussion of alteration of one pathway on the other. A recent review 
sheds light in the interactions between Hippo and P53 pathways, which show both 
mutated member genes in MPM [33]. YAP and P53 can bind to the TP53 and YAP 
promoters, respectively. Moreover, LATS1/2 binds to MDM2, a negative regula-
tor of P53, and YAP1 can bind to mutant P53 and members of the P53 family 
[33]. Finally, these two pathways may coordinately maintain genomic stability in 
response to stress by the modulation of cell senescence, apoptosis and growth. 
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Gene susceptibility factors 

The possible role of genetic susceptibility in MM was suggested by recurrent 
familial MPM cases in cancer families. They reported increased susceptibility re-
lated to asbestos exposure [34, 35]. Some polymorphisms were found in genes in-
volved in oxidative metabolism such as GSTM1, or participating in base excision 
repair (BER) pathway, XRRCC1 and XRCC3 [36]. Two genome-wide association 
studies were carried out to identify the genetic risk factors that may contribute to 
the development of MPM. In an Australian study, no single nucleotide polymor-
phisms (SNPs) was of statistical significance when compared to Australian resi-
dent controls or asbestos-exposed control population without MM [37]. However, 
suggestive results for MPM risk were identified in the SDK1, CRTAM and RAS-
GRF2 genes, and in the 2p12 chromosomal region [37]. In a case-control Italian 
study, with known history of asbestos exposure, SNPs were identified in genes 
SLC7A14, THRB, CEBP350, ADAMTS2, ETV1, PVT1 and MMP14 in MPM cas-
es, but without significant threshold [38]. All these genes appeared as low risk-
predisposing factors for MPM, with possible synergistic effect with asbestos ex-
posure [39]. In contrast, BAP1 was reported as a high-risk genetic factor for MPM 
[39]. Germline BAP1 mutations were observed in families developing MM [40]. 
Although not occupationally exposed to asbestos, the family members were ex-
posed in their indoor environment [40].   

The frequency of germline mutations was also investigated in 198 MM pa-
tients, by targeted capture and NGS. Among 85 cancer susceptibility genes ana-
lyzed, mutations were identified in 12% of patients, and in 13 genes. A significant 
enhancement of the frequency of mutations in BAP1, BRCA2, CDKN2A, 
TMEM127, VHL and WT1 was found in MM cases in comparison with a non-
cancer control population (Exome Aggregation Consortium) [41]. This study, 
which collected MM from peritoneum, pleura and tunica vaginalis reported higher 
germline mutation frequencies in peritoneal MM, in patients with no known asbes-
tos exposure, with a second cancer, and in tumors of epithelioid histology, when 
compared to pleural MM, definite exposure, no cancer, and biphasic and sarcoma-
toid histology, respectively. Other studies identified germline mutations in MPM 
patients in genes such as PALB2, FANCI, ATM, SLX4, BRCA2, FANCC, FANCF 
and PMS1 [39, 42-44]. 

Although germline mutations in BAP1 are susceptibility factors in the induction 
of MM in individuals exposed to asbestos, they do not seem to lead to MM in the 
absence of exposure. This hypothesis is supported by experimental studies using 
heterozygous Bap1+/- mutant mice not treated with asbestos showing no or a low 
rate of spontaneous mesotheliomas, despite a high incidence of other types of ma-
lignant tumors, and an increased incidence Bap1+/- asbestos-exposed mice in com-
parison with their Bap1+/+ counterparts [45, 46]. Moreover, homozygous condi-
tional knockout mice Bap1-/- generated by the injection of Adeno-Cre in the 
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pleural cavity also developed a low rate of pleural mesothelioma (1/32 mice) [47, 
48].  

Asbestos fibers and mesothelial carcinogenesis 

Literature data have demonstrated that in addition to asbestos fibers, other 
types of fibers, erionite or fluoro-edenite induce MM due to environmental expo-
sure [11, 49]. Additionally, it should be mentioned that some synthetic fibers were 
classified as probably (carbon whiskers) or possibly carcinogenic (some type of 
carbon nanotubes) by IARC [50].  

Global mechanism of action of mineral fibers  

Many papers reviewed the mechanism of action of asbestos fibers. Schemati-
cally, they focused either on the physico-chemical properties of asbestos that may 
trigger toxic effects related to their fibrogenic and carcinogenic potency, or on the 
consequences on the cell state in terms of cytotoxicity (cell growth, cell death) and 
genotoxicity (see for review [51-56]. Important discriminating physico-chemical 
fiber parameters for asbestos effects are dimensions, surface reactivity and bioper-
sistence [56].  

Hypotheses on the mechanisms accounting for the asbestos effects are based on 
studies with in vitro cell systems and on animal experiments. They will be briefly 
reminded here. Following asbestos inhalation, the mechanism first includes the 
clearance mechanism, which  eliminates some fibers from the airways, leaving 
others to deposit in the lung and translocate to the pleura [57-60]. Early effects in 
the mesothelial microenvironment are suggested to be linked to an inflammatory 
reaction, as in the presence of foreign particles [61, 62, 58]. As reported in several 
publications, this reaction produces molecules deleterious for the cells and their 
microenvironment, and potentially carcinogenic such as ROS and nitrogen oxygen 
species (NOS). Endogenous ROS can be also produced by the normal cellular me-
tabolism [63]. Asbestos fibers also induce genomic damages such as DNA and 
chromosome alterations, chromosome missegregation and mitosis impairment 
[15]. Accordingly, fiber uptake, inflammation, DNA repair and cell death are pro-
cesses that play a role and modulate the effects and the consequences of asbestos-
cell interactions on cell homeostasis. At present, one can ask how the molecular 
features identified in MPM can be linked to the mechanism of action of asbestos. 
We will briefly suggest some clues. 
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Molecular features of MPM possibly related to the mechanism of 
action of mineral fibers 

Genetic damage in MPM 

Remembering that carcinogenesis is a multistep process, the effects observed 
on cultured cells, and in short-term animal experiments can tell us on the initial 
damages from early effects, inflammatory response of cells and genotoxicity of 
asbestos fibers. In that context, the production of ROS and NOS play a role, in-
ducing base oxidation and nitration [53]. Inflammation is thought to play a key 
role in genotoxicity, due to the production of ROS by macrophages and neutro-
phils. Based on studies of relationship between dose-dependent inflammation and 
genotoxicity of particles in animal lungs, no direct experimental evidence suggests 
that inflammation is a prerequisite for oxidative damage of DNA in the lung, but 
the association might be due to the use of high doses of particles [53]. In MPM, 
transversions C>A, which are lesions resulting from unrepaired 8-oxo-7,8-
dihydroguanine (8-oxoGua) oxidation by ROS are not the most frequent lesions, 
but C>T transitions occurring by deamination of 5-methylcytosine in CpG islands 
[4]. This does not demonstrate a predominant role of ROS to account for gene al-
terations. It is noteworthy that alterations of genes frequently inactivated in MPM, 
such as BAP1, CDKN2A, CDKN2B, SETD2, consist often in partial or complete 
large deletions of exons, likely linked to other type of damage and repair systems 
[6, 32]. DNA alterations may occur in later stages, as a result of chronic inflam-
mation, which can be induced by many physical and chemical [64]. 

DNA double strand breaks (DSB) are other forms of DNA damage that can be 
caused by different sorts of clastogenic agents, by mechanical stress on chromo-
somes or in case of replication stress, and also promoted by abnormal mitosis [65, 
66]. Several experimental works carried out with different types of cultured cells, 
including mesothelial cells, have shown that asbestos may interfere with mitosis 
[67-69]. Abnormal mitoses are revealed by various observations including the oc-
currence of aneuploidy, chromosome and chromatin damages, defects in spindle 
formation, lagging chromosomes, centrosome amplifications, multipolar mitoses 
and alterations of cytokinesis [70-72, 51, 73, 74, 36]. Cell cycle investigations 
have shown an accumulation of asbestos-treated cells in the G2/M phases of the 
cell cycle, consistent with a protracted mitosis [75-77]. It is known that mitosis 
impairment may promote chromosome missegregation, rearrangements and aneu-
ploidy, and delayed mitosis may promote DNA breakage, as shown with agents 
interacting with microtubule dynamics and other different conditions [66]. There-
fore, the impact of asbestos on mitosis, which is due to the fiber internalization 
and the interaction with cell, is also an important effect to consider in the mecha-
nisms of asbestos-induced carcinogenesis. 

Repair processes are very important to resolve DNA damages. They include 
homologous and non-homologous recombination that may result in error-prone 
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repair [78]. They may play a role in the genesis of MPM. In one hand, asbestos 
induces DNA breakage, as shown by the genotoxicity data in experimental assays. 
On the other hand, several publications reported pathogenic variants in DNA re-
pair systems including recombination repair genes [39, 42].  

Cell and molecular heterogeneity in MPM 

A second MPM feature stands in its heterogeneity revealed at the cell and mo-
lecular levels. Pathological observations of MPM demonstrated a great morpho-
logical heterogeneity of the tumors[79]. This may reflect cell differentiation or dif-
ferent cell origin, as two main types of normal mesothelial cells, flattened and 
cuboidal, are distinguished and differentially distributed on the pleural sheets ([80, 
81]. In the same vein, recent data suggested that a tumor can be composed as a 
combination of epithelioid-like and sarcomatoid-like components, so-called histo-
molecular gradients that encompass the tumor morphology and the molecular 
specificities [17]. This would be compatible with the in situ differences between 
normal mesothelial cells. Further analyses are needed to determine to what extent 
in situ normal mesothelial cell heterogeneity is pertinent to account for the origin 
of tumor heterogeneity.  

Molecular heterogeneity of MPM is attested both by mutations and deregula-
tion of signaling pathways. Molecular heterogeneity, in terms of mutations, is like-
ly linked to the polyclonal and sub-clonal evolution of tumor cells, as shown by 
the intra-tumor heterogeneity [82-84]. Hippo pathway inactivation is a characteris-
tic of some MPM. A role of Hippo pathway is possibly linked to the structure of 
the pleura and to the mechanism of action of asbestos fibers. First, normal meso-
thelial cells form a monolayer at the serosal surface and are joined by junctions, 
which assure cell-cell and cell-basal membrane contacts [85, 86]. Hippo pathway 
activity is regulated by mechano-transduction and cell-cell adhesion, and controls 
tight junctions [87, 31]. Its inactivation may abolish control of claudins, which are 
expressed in tight junctions, and differentially expressed in epithelioid compared 
to nonepithelioid MPM, and in MPM compared to healthy tissue [88, 89, 4, 90, 
17]. Second, asbestos fibers provoke numerical chromosome changes and altera-
tion of mitosis, especially abolishment of cytokinesis, leading to in aneuploid cells 
including tetraploid cells. Interestingly, Hippo pathway regulates the proliferation 
of tetraploid cells and blocks their proliferation. Asbestos fibers avoid cell abscis-
sion, and tetraploid and near-tetraploid cells are observed in asbestos-treated mes-
othelial cells and in MPM [91, 92]. Therefore, knockout of proliferation control 
may facilitate chromosome instability, and the appearance of hypo-tetraploid or 
hyperdiploid cells, and lead to neoplastic evolution. It may be paradoxical that 
NF2 seems more frequently mutated in non-exposed patients than in exposed pa-
tients, but NF2 mutations in asbestos-exposed cells would lead to catastrophic mi-
tosis [32]. Conversely BAP1, the most frequently mutated gene in MPM, might 
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prevent chromosome instability, by the regulation of γ-tubulin ubiquitination in 
BAP1 wild-type cells [93, 94].  

Conclusions 

MPM remains thoroughly associated to asbestos fibers exposure in human. For 
therapeutic purposes, numerous molecular studies have been carried out on human 
MPM to identify genomic alterations and activation state of signaling pathways. 
Experimental studies have been performed in knock-out mice to assess the role of 
genes altered in human MPM. BAP1 has been identified as a susceptibility gene in 
asbestos-exposed patients, and Hippo pathway is the noteworthy pathway in 
MPM, among other frequently altered pathways in cancer. 

Studies on human tumors have shown shared features between MPM tumors 
characterized by a high rate of chromosome rearrangements and recurrent muta-
tions in a limited number of genes. Oppositely, a heterogeneity was evidenced be-
tween MPM at the morphological and molecular levels. Transcriptomic and prote-
omic studies have defined the MPM heterogeneity by the identification of 
individual MPM characteristics highlighting acknowledged neoplastic evolution 
like EMT, but so far without well-established steps of progression. Nonetheless, 
original description of a histo-molecular continuum based on transcriptomic data 
linked to immunologic context and to patients’ outcome was established [21]. 

Toxicology studies have documented the chromosome damage and the occur-
rence of potentially DNA-damaging inflammatory processes linked to asbestos 
exposure. The causal relationship between MPM and the mechanism of action of 
asbestos was consolidated by the occurrence of MPM in asbestos-exposed mice 
deficient in genes representative of human MPM. 

Our present level of knowledge allows us to formulate hypotheses to link the 
identified MPM features to the mechanism of action of asbestos. In terms of ge-
netics, the generation of abnormal mitoses in asbestos-interacting cells is likely 
preponderant. Improvement of our knowledge on the inflammatory micro-
environment of the tumor cells should precise the role of inflammation in MPM 
evolution. Concerning heterogeneity, the pleural anatomy may account for the 
morphological heterogeneity, in addition to the neoplastic evolution. In terms of 
signal pathways alteration, an involvement of Hippo pathway is likely related to 
its role in the regulation of membrane dynamics and growth [95, 96]. At least two 
elements should be considered. First, Hippo pathway components localize at cell 
junctions, which are important structures of the mesothelium that is formed by a 
monolayer of tightly joined mesothelial cell. Second, Hippo pathway controls 
membrane junctions and cytoskeleton dynamics, and growth. The presence of sol-
id material inside or near mesothelial cells impairs the chromosome and mem-
brane dynamics during the mitotic process. Further studies will likely clarify the 
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relationships between mechanisms of action of asbestos and the molecular mecha-
nism of mesothelial carcinogenesis.  
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