SUPPLEMENTARY INFORMATION

Supplementary Table 1: Rates of PZMs across ASC datasets, with the median depth and mode allele fraction of the *de novos* (Group A) in each dataset. The asterisk (*) denotes the datasets where the median allele fraction was calculated instead of the mode allele fraction.

Dataset	Trios	Median	Mode	All de	Candidate	High-
		depth	allele	novos	PZMs	confidence
			fraction	(Group A)	(Group B)	PZMs
						(Group C)
BCH	251	92	0.50	215	46 (21.4%)	26 (12.1%)
Broad_v8	643	75	0.50	586	113 (19.3%)	51 (8.7%)
Broad_v11	282	76	0.47	323	101 (31.3%)	56 (17.3%)
Finnish	51	93	0.50	57	16 (28.1%)	7 (12.3%)
Frankfurt	353	72	0.50	337	59 (17.5%)	19 (5.6%)
MSSM	11	45	0.40*	6	1 (16.7%)	1 (16.7%)
Sanger	67	75	0.40	48	2 (4.2%)	1 (2.1%)
UPenn	35	88	0.45	26	3 (11.5%)	2 (7.7%)
VU	37	70	0.50	31	9 (29.0%)	6 (19.4%)
SSC_Probands	2299	67	0.50	1832	436 (23.8%)	169 (9.2%)
ASC_Siblings	161	67	0.50	126	40 (31.7%)	17 (13.5%)
SSC_Siblings	1757	62	0.50	1259	287 (22.8%)	113 (9.0%)
Total	5947			4846	1113 (23.0%)	468 (9.7%)

Supplementary Table 2: Information of all probands and unaffected siblings in the study.

Supplementary Table 3: List of all *de novo* mutations found in the probands and unaffected siblings.

Supplementary Table 4: List of all *de novo* mutations that were validated using the different resequencing approaches.

Supplementary Table 5: Quantitative RT-PCR results for assaying copy number variants.

Supplementary Table 6: There is a strand bias towards the anti-sense (- strand) for PZMs in Groups B and C compared to the variants found only in Group A. The odds ratios and 2-tailed Fisher's Exact Test P-values are calculated with respect to the number of *de novo* variants found only in Group A.

	- strand	+ strand	Odds ratio with 95% confidence intervals	P-value
Group A	2438 (50.3%)	2408 (49.7%)		
Group B	600 (53.9%)	513 (46.1%)	1.21 [1.05, 1.38]	6.3×10 ⁻³
Group C	263 (56.2%)	205 (43.8%)	1.30 [1.07, 1.58]	7.5×10 ⁻³

Supplementary Table 7: There is an excess of A-C and T-G mutations (in yellow) among the post-zygotic mutations in Groups B and C.

Group A:

Mutant	Α	С	G	Т
Reference				
Α	-	145 (3.0%)	516 (10.6%)	98 (2.0%)
С	214 (4.4%)	-	240 (5.0%)	1181 (24.4%)
	, ,		, ,	, ,
G	1229 (25.4%)	221 (4.6%)	-	216 (4.5%)
	, ,	, ,		, ,
Т	97 (2.0%)	518 (10.7%)	171 (3.5%)	-
	,	,	, ,	

Group B:

Mutant	Α	С	G	Т
5.6				
Reference	-	54 (4.9%)	98 (8.8%)	22 (2.0%)
7.		01 (11070)	00 (0.070)	== (=:0 /0)
С	52 (4.7%)	-	58 (5.2%)	249 (22.4%)
G	273 (24.5%)	66 (5.9%)	-	47 (4.2%)
T	27 (2.4%)	104 (9.3%)	63 (5.7%)	-

Group C:

Mutant	Α	С	G	Т
Deference				
Reference A	-	29 (6.2%)	34 (7.3%)	10 (2.1%)
С	23 (4.9%)	-	20 (4.3%)	102 (21.8%)
G	110 (23.5%)	27 (5.8%)	-	24 (5.1%)
т	13 (2.8%)	42 (9.0%)	34 (7.3%)	_
	. 5 (2.676)	.= (3.070)	0 : (: 10 70)	

Supplementary Table 8: The excess of A-C mutations (in blue) among the post-zygotic mutations in Groups B and C is predominantly found on the sense (+) strand, whereas the excess of T-G mutations (in pink) is predominantly found on the anti-sense (-) strand. Group A + strand (2408 mutations):

Mutant	Α	С	G	Т
Reference				
A	-	84 (3.5%)	290 (12.0%)	68 (2.8%)
С	103 (4.3%)	-	133 (5.5%)	588 (24.4%)
G	643 (26.7%)	105 (4.4%)	-	112 (4.7%)
Т	39 (1.6%)	171 (7.1%)	72 (3.0%)	-

Group B + strand (513 mutations):

Mutant	Α	С	G	Т
Reference				
A	-	31 (6.0%)	47 (9.2%)	18 (3.5%)
С	19 (3.7%)	-	26 (5.1%)	109 (21.2%)
G	138 (26.9%)	30 (5.8%)	-	23 (4.5%)
Т	8 (1.6%)	40 (7.8%)	24 (4.7%)	-

Group C + strand (205 mutations):

Mutant	Α	С	G	Т
Reference				
A	-	19 (9.3%)	16 (7.8%)	8 (3.9%)
С	9 (4.4%)	-	7 (3.4%)	37 (18.0%)
G	53 (25.9%)	14 (6.8%)	-	12 (5.9%)
T	3 (1.5%)	16 (7.8%)	11 (5.4%)	-

Group A - strand (2438 mutations):

Mutant	Α	С	G	Т
Reference				
A	-	61 (2.5%)	226 (9.3%)	30 (1.2%)
С	111 (4.6%)	-	107 (4.4%)	593 (24.3%)
G	586 (24.0%)	116 (4.8%)	-	104 (4.3%)
Т	58 (2.4%)	347 (14.2%)	99 (4.1%)	-

Group B - strand (600 mutations):

Mutant	A	С	G	Т
Reference				
A	-	23 (3.8%)	51 (8.5%)	4 (0.7%)
С	33 (5.5%)	-	32 (5.3%)	140 (23.3%)
G	135 (22.5%)	36 (6.0%)	-	24 (4.0%)
Т	19 (3.2%)	64 (10.7%)	39 (6.5%)	-

Group C - strand (263 mutations):

Mutant	Α	С	G	Т
Reference				
A	-	10 (3.8%)	18 (6.8%)	2 (0.8%)
С	14 (5.3%)	-	13 (4.9%)	65 (24.7%)
G	57 (21.7%)	13 (4.9%)	-	12 (4.6%)
Т	10 (3.8%)	26 (9.9%)	23 (8.7%)	-

Supplementary Table 9: Association of PZMs in Groups B and C with late replication timing, but not early replication timing. The odds ratios and 2-tailed Fisher's Exact Test P-values are calculated with respect to the number of *de novo* variants found only in Group A.

	Number of	Early replication	Odds ratio with 95%	P-value
	variants	(Z≥1)	confidence intervals	
Group A	4846	2691 (55.5%)		
Group B	1113	597 (53.6%)	0.91 [0.79,1.04]	0.15
Group C	468	246 (52.6%)	0.88 [0.72, 1.07]	0.19

	Number of	Late replication	Odds ratio with 95%	P-value
	variants	(Z≤-1)	confidence intervals	
Group A	4846	183 (3.8%)		
Group B	1113	47 (4.2%)	1.17 [0.81, 1.66]	0.37
Group C	468	23 (4.9%)	1.36 [0.83, 2.14]	0.20

Supplementary Table 10: Number of *de novo* germline and mosaic mutations on the paternal or maternal haplotypes.

	Paternal	Maternal	Ratio (Paternal/Maternal)	Binomial P
Group A	1321	781	1.69	1.50×10 ⁻³²
Group B	285	179	1.59	4.92×10 ⁻⁷
Group C	90	78	1.15	0.2

Supplementary Table 11: Distribution of functional categories between probands and siblings.

All Probands:

	LoF	Missense	Silent	Total
Group A	265 (7.7%)	2386 (68.9%)	810 (23.4%)	3461
Group B	50 (6.4%)	521 (66.3%)	215 (27.4%)	786
Group C	16 (4.7%)	231 (68.3%)	91 (26.9%)	338

All Siblings:

	LoF	Missense	Silent	Total
Group A	61 (4.4%)	958 (69.2%)	366 (26.4%)	1385
Group B	15 (4.6%)	233 (71.3%)	79 (24.2%)	327
Group C	6 (4.6%)	95 (73.1%)	29 (22.3%)	130

SSC Probands:

	LoF	Missense	Silent	Total
Group A	148 (8.1%)	1261 (68.8%)	423 (23.1%)	1832
Group B	24 (5.5%)	299 (68.6%)	113 (25.9%)	436
Group C	6 (3.6%)	122 (72.2%)	41 (24.3%)	169

SSC Sibings:

	LoF	Missense	Silent	Total
Group A	57 (4.5%)	862 (68.5%)	340 (27.0%)	1259
Group B	14 (4.9%)	202 (70.4%)	71 (24.7%)	287
Group C	6 (5.3%)	79 (70.0%)	28 (24.8%)	113

Supplementary Table 12: Distribution of predicted deleterious missense mutations in probands and siblings. The P-values are calculated using a 1-tailed Fisher's Exact Test.

	Predicted	Total	Predicted	Total	P-value
	deleterious	missense	deleterious	missense	
	missense	mutations in	missense	mutations in	
	mutations in	probands	mutations in	siblings	
	probands		siblings		
Group A	872 (61.1%)	1428	317 (56.1%)	565	0.024
Group B	178 (59.9%)	297	67 (50.4%)	133	0.041
Group C	70 (55.1%)	127	27 (50%)	54	0.32

Supplementary Table 13: Gene-specific mutation rates for post-zygotic mutations estimated from the rare inherited variants.

Supplementary Table 14: Recurrent non-synonymous PZMs in probands, with genes that are expressed in the brain in red text.

	Expected	Observed	Hypergeometric P
KLF16	0/84448	2/571	<1×10 ⁻⁶
MSANTD2	1/84448	2/571	<1×10 ⁻⁶
POLA2	2/84448	2/571	4.6×10 ⁻⁵
SMARCA4	11/84448	3/572	4.9×10 ⁻⁵
AZGP1	4/84448	2/571	2.7×10 ⁻⁴
CNGB3	5/84448	2/571	4.5×10 ⁻⁴
HNRNPU	5/84448	2/571	4.5×10 ⁻⁴
SCN2A	5/84448	2/571	4.5×10 ⁻⁴
EPPK1	58/84448	4/571	6.6×10 ⁻⁴
CARD11	7/84448	2/571	9.4×10 ⁻⁴
SYNJ1	8/84448	2/571	1.2×10 ⁻³
MEGF11	10/84448	2/571	2.0×10 ⁻³
SASH1	10/84448	2/571	2.0×10 ⁻³
MYO5C	14/84448	2/571	3.9×10 ⁻³
TECTA	14/84448	2/571	3.9×10 ⁻³
MUC12	233/84448	6/571	5.3×10 ⁻³
DYNC1H1	21/84448	2/571	8.8×10 ⁻³
PRKDC	30/84448	2/571	0.018
USH2A	35/84448	2/571	0.023
RP11-1407O15.2	39/84448	2/571	0.029
DNAH17	40/84448	2/571	0.030
NBPF10	70/84448	2/571	0.082
NBPF1	77/84448	2/571	0.096
HRNR	115/84448	2/571	0.18
AHNAK2	221/84448	3/571	0.19
FLG	200/84448	2/571	0.39
MUC4	471/84448	4/571	0.39

Supplementary Table 15: Recurrent non-synonymous PZMs in siblings, with genes that are expressed in the brain in red text.

	Expected	Observed	Hypergeometric P
TRPS1	5/84448	2/248	8.5×10 ⁻⁵
MYCBP2	26/84448	2/248	2.7×10 ⁻³

Supplementary Note: List of Autism Sequencing Consortium members.

Aleksic Branko¹, Anney Richard², Barbosa Mafalda^{3,4,5,6}, Barrett Jeffrey⁷, Betancur Catalina⁸, Bishop Somer⁹, Brusco Alfredo^{10,11}, Buxbaum Joseph D. ^{3,4,5,12,13,14}, Carracedo Angel^{15,16}, Chiocchetti Andreas G.¹⁷, Chung Brian H.Y.¹⁸, Cook Edwin¹⁹, Coon Hilary^{20,21}, Cutler David J.²², Daly Mark^{23,24,25}, De Rubeis Silvia^{4,12}, Doan Ryan²⁶, Fernández-Prieto Montserrat¹⁵, Ferrero Giovanni Battista¹⁰, Freitag Christine M.¹⁷, Fromer Menachem^{5,12,27}, Gargus Jay^{28,29,30}, Geschwind Dan^{31,32,33}, Gill Michael², Gómez-Guerrero Lorena¹⁵, Hansen-Kiss Emily³⁴, He Xin³⁵, Herman Gail³⁴, Hertz-Picciotto Irva³⁶, Hultman Christina³⁷, Iliadou Bozenna³⁷, Ionita-Laza Iuliana³⁸, Jugessur Anil³⁹, Knudsen Gun Peggy³⁹, Kolevzon Alexander^{4,12,40}, Kosmicki Jack²⁷, Kushima Itaru¹, Lee S.L.¹⁸, Lehner Thomas⁴¹, Lennertz Savannah^{4,12}, Lim Elaine²⁶, Maciel Patricia⁴², Magnus Per³⁹, Manoach Dara²³, Minshew Nancy⁴³, Morrow Eric⁴⁴, Mulle Jennifer²², Neale Benjamin²⁵, Ozaki Norio¹, Palotie Aarno^{27,45,46,47}, Parellada Mara⁴⁸, Passos-Bueno Maria Rita⁴⁹, Pericak-Vance Margaret⁵⁰, Persico Antonio^{51,52}, Pessah Isaac³⁶, Reichenberg Avi^{4,12,53}, Reichert Jennifer^{4,12}, Renieri Alessandra⁵⁴, Robinson Elise^{23,24,25}, Samocha Kaitlin^{25,27,45,55}, Sanders Stephan⁹, Sandin Sven^{4,12,37}, Santangelo Susan L.⁵⁶, Schafer Chad⁵⁷, Schellenberg Gerry⁵⁸, Scherer Stephen^{59,60}, Senthil Geetha⁴¹, Silva Marisol³⁶, Singh Tarjinder⁷, Siper Paige M.^{4,12}, Soares Gabriela⁶¹, Stevens Christine²⁵, Stoltenberg Camilla³⁹, Surén Pål³⁹, Sutcliffe James S.^{62,63}, Szatmari Peter⁶⁴, Tassone Flora^{36,65}, Thurm Audrey⁴¹, Walsh Christopher²⁶, Weiss Lauren⁹, Werling Donna⁹, Willsey Jeremy⁹, Xu Xinyi^{4,12}, Yu Tim²⁶, Yuen Ryan⁵⁹, Zwick Michael E.²²

¹Department of Psychiatry, Graduate School of Medicine, Nagoya University, Nagoya, Japan. ²Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland. ³The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA. ⁴Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA. 5Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA. ⁶Instituto Gulbenkian de Ciência, Oeiras, Portugal. ⁷The Wellcome Trust Sanger Institute, Cambridge, United Kingdom. Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine – Institut de Biologie Paris Seine, Paris, France. 9Department of Psychiatry, University of California at San Francisco, San Francisco, California, USA. 10 University of Torino, Department of Medical Sciences, 10126, Turin, Italy. ¹¹Città della Salute e della Scienza University Hospital, Medical Genetics Unit, 10126, Turin, Italy. 12 Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA. ¹³Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA. 14 Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA. ¹⁵Universidade de Santiago de Compostela, Spain. ¹⁶Fundacion Publica Galega de Medicina Xenomica-SERGAS, Santiago de Compostela, Spain. ¹⁷Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University Frankfurt, Frankfurt, Germany. ¹⁸Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China. ¹⁹Institute for Juvenile Research, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA. 20 Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA. ²¹Department of Psychiatry, University of Utah, Salt Lake City, Utah, USA. ²²Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA. ²³Harvard Medical School, Boston, Massachusetts, USA. ²⁴Center for Human Genetic Research, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA. 25The Broad Institute of MIT and Harvard. ²⁶Division of Genetics, Boston Children's Hospital, Boston, Massachusetts, USA. ²⁷Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA. ²⁸Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA. ²⁹Center for Autism Research and Translation, University of California, Irvine, California, USA. 30 Division of Human Genetics &Genomics, Department of Pediatrics, School of Medicine, University of California, Irvine. California, USA. 31 Center for Autism Research and Treatment and Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles,

Los Angeles, California 90095, USA. 32 Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, California 90095, USA. ³³Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA. 34 Institute for Genomic Medicine, Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA. 35 Department of Human Genetics, University of Chicago, Chicago, Illinois, USA. ³⁶The MIND (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California, Davis, Davis, CA. 37 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE- 171 77 Stockholm, Sweden. ³⁸Department of Biostatistics, Columbia University, New York, New York, USA. ³⁹Norwegian Institute of Public Health, Oslo, Norway. ⁴⁰Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA. ⁴¹National Institute of Mental Health, Bethesda, MD, USA. 42Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal. ⁴³Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA. 44Department of Molecular Biology, Cell Biology and Biochemistry and Department of Psychiatry and Human Behavior, Brown University, Providence, Rhode Island, USA. 45 Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. 46 Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland. ⁴⁷Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA. ⁴⁸Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain. 49 Centro de Estudos do Genoma Humano, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, Sala 200 CEP 05508-900 São Paulo, SP, Brazil. ⁵⁰John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida, United States of America. ⁵¹Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy. 52 Unit of Child and Adolescent Neuropsychiatry, Gaetano Martino University Hospital, University of Messina, Messina, Italy. 53 Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA. 54 Medical Genetics, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy. 55 Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. ⁵⁶Maine Medical Center and Maine Medical Center Research Institute, Tufts University School of Medicine, 66 Bramhall Street, Portland, ME 04102 USA. ⁵⁷Department of Statistics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA. ⁵⁸Geisinger Health System, Danville, Pennsylvania, USA. ⁵⁹Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada. ⁶⁰McLaughlin Centre, University of Toronto, Toronto, Ontario M5S 1A1, Canada. ⁶¹Center for Medical Genetics Dr. Jacinto Magalhãe, Porto Hospital Center, Porto, Portugal. ⁶²Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, USA. ⁶³Department of Molecular Physiology and Biophsysics and Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA. 64 Department of Psychiatry and Behavioural Neurosciences, Offord Centre for Child Studies, McMaster University, Hamilton, Ontario L8S 4K1, Canada. ⁶⁵Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, CA, USA.