
HAL Id: inserm-03135336
https://inserm.hal.science/inserm-03135336

Submitted on 8 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Genome-wide Linkage Analyses of Quantitative and
Categorical Autism Subphenotypes

Xiao-Qing Liu, Andrew Paterson, Peter Szatmari, Catalina Betancur

To cite this version:
Xiao-Qing Liu, Andrew Paterson, Peter Szatmari, Catalina Betancur. Genome-wide Linkage Analyses
of Quantitative and Categorical Autism Subphenotypes. Biological Psychiatry, 2008, 64 (7), pp.561-
570. �10.1016/j.biopsych.2008.05.023�. �inserm-03135336�

https://inserm.hal.science/inserm-03135336
https://hal.archives-ouvertes.fr


G
C
X

B
e
s
A

M
a
s
f

R
w
w

C
v

K
a

T
a
s
s
i
f
d
(
c
i
r

o
m
a
d
D
b
b
f
o

F

A

R

0
d

enome-wide Linkage Analyses of Quantitative and
ategorical Autism Subphenotypes

iao-Qing Liu, Andrew D. Paterson, Peter Szatmari, and The Autism Genome Project Consortium

ackground: The search for susceptibility genes in autism and autism spectrum disorders (ASD) has been hindered by the possible small
ffects of individual genes and by genetic (locus) heterogeneity. To overcome these obstacles, one method is to use autism-related
ubphenotypes instead of the categorical diagnosis of autism since they may be more directly related to the underlying susceptibility loci.
nother strategy is to analyze subsets of families that meet certain clinical criteria to reduce genetic heterogeneity.

ethods: In this study, using 976 multiplex families from the Autism Genome Project consortium, we performed genome-wide linkage
nalyses on two quantitative subphenotypes, the total scores of the reciprocal social interaction domain and the restricted, repetitive, and
tereotyped patterns of behavior domain from the Autism Diagnostic Interview-Revised. We also selected subsets of ASD families based on
our binary subphenotypes, delayed onset of first words, delayed onset of first phrases, verbal status, and IQ � 70.

esults: When the ASD families with IQ � 70 were used, a logarithm of odds (LOD) score of 4.01 was obtained on chromosome 15q13.3-q14,
hich was previously linked to schizophrenia. We also obtained a LOD score of 3.40 on chromosome 11p15.4-p15.3 using the ASD families
ith delayed onset of first phrases. No significant evidence for linkage was obtained for the two quantitative traits.

onclusions: This study demonstrates that selection of informative subphenotypes to define a homogeneous set of ASD families could be
ery important in detecting the susceptibility loci in autism.
ey Words: Autism, genetic heterogeneity, IQ, language, linkage
nalysis, schizophrenia

 o meet the criteria for a diagnosis of autism (Mendelian
Inheritance in Man [MIM] 209850), a neurodevelopmental
disorder, a child must exhibit impairments in social inter-

ction and communication, as well as show restricted and
tereotyped patterns of behavior and activities (1,2). These
eparate criteria suggest that the diagnosis of autism is multivar-
ate in nature. To date, many linkage studies have been per-
ormed on the discrete diagnosis of autism or autism spectrum
isorders (ASD) with the aim of identifying susceptibility genes
3–11). Suggestive evidence for linkage has been found on
hromosomal regions 2q, 3q, 7q, and 17q in at least two
ndependent studies. However, very few of the above loci have
eached the level suggested for genome-wide significance (12).

In comparison, autism subphenotypes may have advantages
ver simply employing the diagnosis of autism for genetic
apping. Subphenotypes (13) are defined as the traits that are

ssociated with (or a part of) one of the three core autism
omains and can be measured by instruments such as the Autism
iagnostic Interview-Revised (ADI-R) (14). A subphenotype may
e under the control of fewer loci (and their genetic effects may
e larger) and quantitative subphenotypes may be more suitable
or genetic studies since autism is often conceived as a spectrum
f disorders composed of several dimensions (13,15).
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Family and twin studies have shown that the three core
autistic domains are heritable. Based on a study of 3400 twin
pairs from the general population, Ronald et al. (16) found high
heritabilities (.78 –.81) for autistic-like measurements in social-
communication impairments as well as restricted, repetitive
behaviors and interests using scores from the Childhood As-
perger Syndrome Test. Using scores from the ADI-R and sam-
pling affected sibships, MacLean et al. (17) found that the
nonverbal communication domain total score was familial with
an intraclass correlation coefficient (ICC) of .39 (p � .05);
Silverman et al. (18) and Spiker et al. (19) found moderate
familialities for the nonverbal communication (ICC � .19, p �
.01; and r � .15, p � .05, respectively) and repetitive behaviors
and stereotyped patterns domain total scores (ICC � .34, p �
.001; and r � .22, p � .01, respectively); and Kolevzon et al. (20)
found that the social interaction (ICC � .75, p � .0005) and
communication domain total scores (ICC � .52, p � .01) were
also familial using data from affected monozygotic twins. In
addition, Sung et al. (21) detected moderate heritabilities for
social motivation (.19) and range of interests/flexibility (.16)
domains as measured by the Broader Phenotype Autism Symp-
tom Scale from 201 nuclear families having at least two children
affected with ASD. This study also found that the shared genetic
variance between these two traits was low, supporting indepen-
dent analyses of these two traits.

Besides measures of the three core autistic domains, other
subphenotypes associated with these domains but not part of the
diagnostic criteria were also found to be heritable. These in-
cluded nonverbal IQ (17,19,22,23) and several aspects of lan-
guage development as measured by the Vineland Communica-
tion Scale (23), verbal/nonverbal status (17–19), age of first
words (24), and age of first phrases (18,24).

The heritability of these autism subphenotypes has provided
a foundation for direct linkage analyses of these traits. Alarcón et
al. (25) performed quantitative trait linkage analyses using the
ADI-R age of first single words, age of first phrases, and repetitive
and stereotyped behavior total score from 123 families of the

Autism Genetics Resource Exchange (AGRE) and found sugges-
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ive evidence for linkage on chromosome 7q for age of first
ords. This evidence for linkage was supported in a follow-up

tudy with 168 additional AGRE families (24). Evidence for
inkage at the same region was also found in an independent
tudy for age at first phrases (26). Other linkage studies on
ubphenotypes include a study by Chen et al. (27), which found
suggestive quantitative trait locus on chromosome 1 for the
DI-R nonverbal communication total score using 228 AGRE

amilies, while Duvall et al. (28) performed quantitative trait
inkage analysis on the Social Responsiveness Scale (29) using
00 families from AGRE and found linkage signals on chromo-
omes 11 and 17.

The heritability of these subphenotypes (the reduced in-
rafamily variance compared with the interfamily variance) also
rovides evidence of genetic heterogeneity in ASD. Studies have
hown that some evidence for linkage for ASD was obtained only
n the subsets of ASD families defined by certain subphenotypes,
uch as the language-related subphenotypes (30–33), develop-
ental regression (26,34), and obsessive-compulsive behavior

35). A number of studies have also applied the ordered-subset
nalysis method (36) to identify subsets of families according to
ertain quantitative subphenotypes and found stronger linkage
ignals for ASD on chromosomes 7 (24), 15 (37), 19 (38), 8, and
6 (27).

Although the above genetic analyses using the autism sub-
henotypes have shown some promising results, the susceptibil-

ty genes for autism and the subphenotypes remain evasive,
ossibly due to the low statistical power of modest numbers of
amilies. Previously, we reported linkage results for the categor-
cal diagnosis of autism (defined in a broad and narrow way)
sing 1181 families from the Autism Genome Project (AGP)
onsortium data (3). In the present study, we performed ge-
ome-wide linkage analyses on two quantitative subphenotypes
rom this sample: the reciprocal social interaction domain total
core and the restricted, repetitive, and stereotyped patterns of
ehavior domain total score from the ADI-R. We also selected
ubsets of ASD families on which we performed linkage analyses
sing the following subphenotypes: delayed onset of first words,
elayed onset of first phrases, verbal status, and IQ � 70. The
election of these subphenotypes was based on the previous
eports of high familiality and heritability.

ethods and Materials

tudy Samples
The original 1397 families were collected from the 10 AGP

ites in North America and Europe. For each site, the diagnosis of
utism was based on the ADI-R and the Autism Diagnostic
bservation Schedule or best clinical estimate (for details of the
GP data, see 3). Even though our linkage analyses used autism
ubphenotypes rather than the categorical diagnosis, to reduce
enetic (locus) heterogeneity, families were included in the
inkage analysis if they had at least two individuals diagnosed
ith ASD. Based on the results of Risi et al. (39), subjects were

egarded as having ASD if they were 1) at/above the ADI-R
utism cutoff on the social, communication, and repetitive
ehavior domains; 2) one point below the ADI-R autism cutoff
n both the social and communication domains; 3) at/above the
utism cutoff on the social domain but one or two points below
he cutoff on the communication domain; or 4) at/above the
utism cutoff on the communication domain but one or two
oints below the cutoff on the social domain. Details of the
nclusion and exclusion criteria are provided in Supplement 1.

ww.sobp.org/journal
Autism Subphenotypes and Covariates
The following six subphenotypes were used for the linkage

analyses: a best estimate IQ and five measurements from the
ADI-R, including reciprocal social interaction domain total scores
(SOC); restricted, repetitive, and stereotyped patterns of behavior
domain total scores (BEH); age of first words; age of first phrases;
and verbal/nonverbal status. These subphenotypes were only
available for the individuals with ASD.

The ADI ages of first words and phrases were specified in
months for most individuals, but some individuals had been
coded into groups. For example, code 993 was used for an
individual who had some words then lost them. Due to the
difficulties of imputing these “99x” codes into exact ages, these
two variables were categorized into binary traits. Individuals who
had delayed onset of first words (�24 months or the ADI-R code �
994 or 997) or first phrases (�36 months or the ADI-R code � 994
or 997) were coded as affected for the traits DelayedWord and
DelayedPhrase, respectively. Table 1 in Supplement 1 lists the
recoding of the 99x codes. Verbal/nonverbal status had three
categories in the ADI-R—verbal, nonverbal with �5 words, and
nonverbal with �5 words. The verbal category was treated as
affected for the trait Verbal. Since different AGP sites used
different instruments to measure IQ (though typically affected
individuals from the same family would be tested with the same
instrument), AGP required that each site provide the best estimate
IQ in three categories, �50, 50 to 69, and �70. The individuals with
ASD IQ � 70 were treated as affected for the trait IQ � 70.

Associations between the pairs of the autism subphenotypes
were tested. Chi-square tests were used for the pairs of categor-
ical variables; nonparametric Kruskal-Wallis tests were used for
the pairs of categorical and continuous variables, while Spear-
man rank correlation tests were used for the pairs of continuous
variables. The effects of the six potential covariates on SOC and
BEH were tested using mixed linear models with family as a
random effect (SAS v 9.1, SAS Institute, Cary, North Carolina).
There were four categorical covariates: AGP site, gender, best
estimate IQ (in three categories, �50, 50–69, and �70), and
verbal/nonverbal status (in three categories, verbal, nonverbal
with �5 words, and nonverbal with �5 words). There were two
continuous covariates: the age and calendar year of ADI-R
completion. These covariates were chosen based on the litera-
ture and our preliminary review of the data. Due to nonnormal-
ity, rank transformation was applied to SOC and Box-Cox
transformation to age of ADI-R completion.

Linkage Analysis
The genotypes were obtained using the Affymetrix (Santa

Clara, California) 10K single nucleotide polymorphism (SNP)
arrays at the Translational Genomics Research Institute (3).
Detailed genotyping methods are available at http://www.af-
fymetrix.com/products/arrays/specific/10k.affx, and details of
quality control can be found in Supplement 1. A total of 5371
tag SNPs were selected for linkage analyses so that they were
not in strong linkage disequilibrium with each other (maxi-
mum D’ � .6 with a mean distance of .68 cM and SD of 1 cM
and a mean minor allele frequency of .31 with SD � .12) (40).
The Rutgers genetic map (http://compgen.rutgers.edu/maps/)
(41) was used as the basis for linear interpolation for the locations
of the Affymetrix 10K SNPs with the physical locations from
National Center for Biotechnology Information (NCBI) Build 35
(42). Because Merlin (http://www.sph.umich.edu/csg/abecasis/
Merlin/index.html) assumes a no-interference model, the Kosambi

map was converted into the Haldane map for linkage analyses

http://www.affymetrix.com/products/arrays/specific/10k.affx
http://www.affymetrix.com/products/arrays/specific/10k.affx
http://compgen.rutgers.edu/maps/
http://www.sph.umich.edu/csg/abecasis/Merlin/index.html
http://www.sph.umich.edu/csg/abecasis/Merlin/index.html
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hile all results were reported on the Kosambi scale. The marker
llele frequencies were calculated using the founders from the
nferred Caucasian families by Haploview (http://www.broad.mit.
du/mpg/haploview/index.php) (43).

Variance component linkage analyses were applied to the
uantitative subphenotypes SOC and BEH using Merlin (v1.0.1)
44). Multipoint nonparametric linkage analyses (NPL) from
erlin were applied to the ASD families that had two or more

ffected individuals defined by the four binary subphenotypes—
elayedWord, DelayedPhrase, Verbal, and IQ � 70 (45). The
PL results were presented as logarithm of odds (LOD) scores
nder the exponential allele-sharing model (46). Since all the
ffected individuals defined by the four binary subphenotypes
ad ASD, the linkage analyses were for both the subphenotypes
nd ASD using a subset of families that met the criteria. To
ompare the linkage results of the subsets with the results of the
hole data, a linkage analysis on the diagnosis of ASD from the
hole data was also performed. LOD scores as well as asymp-

otic p values were reported for these linkage analyses. For the
ost significant linkage results from the subset analyses, the
Lexible Ordered SubSet (FLOSS v1.4.1, http://www.stat.
uckland.ac.nz/˜browning/floss/floss.htm#osa) software was
sed to generate empirical p values (47). More details are provided

able 1. Descriptive Statistics for the Individuals from All the ASD Families

All ASD Dela

ender
Male 1618 (80) 66
Female 407 (20) 17

erbal/Nonverbal Status
Verbal 1337 (66) 47
Non-verbal 685 (34) 36

est Estimate IQ
�70 932 (67) 32
�70 463 (33) 23

nset of First Words
�24 months 912 (47) 21
�24 months 1032 (53) 60

nset of First Phrases
�36 months 647 (34)
�36 months 1256 (66) 84

GP Site
AGRE 572 (28.2) 27
VANDERBILT 93 (4.6) 3
IMGSAC 445 (22.0) 21
DUKE 105 (5.2) 3
CANAGEN 186 (9.2) 6
INSERM 73 (3.6) 3
STANFORD 163 (8.1) 3
CPEA 276 (13.6) 9
UNC 93 (4.6) 5
MT. SINAI 19 (0.9) 1

ge of ADI-R Completion (month) 101 � 67 1
OC 22.0 � 5.6 23
EH 6.2 � 2.5 6

Values are count (percentage) or mean � standard deviation.
ADI-R, Autism Diagnostic Interview-Revised; AGP, Autism Genome Proje

EH, behavior domain total scores; CANAGEN, Canadian Autism Genetics;
nset of first phrases; DelayedWord, delayed onset of first words; IMGSAC,
ational de la Santé et de la Recherche Médicale; IQ � 70, best estimate IQ �
erbal, verbal category.
n the Supplement 1.
Results

Study Families
There were 976 families selected for final analyses (details can

be found in the Supplement 1). The descriptive statistics for the
individuals from all the ASD families and the subsets of ASD
families are provided in Table 1. This sample was most similar to
the “ASD all” family sample in our previous report (3).

Autism Subphenotypes and Covariates
Table 2 lists the associations between the subphenotypes

used in this study. The subphenotypes SOC and BEH were
significantly correlated (r � .28, p � .0001). The associations
between the two quantitative traits and the binary traits were
different. The subphenotype SOC was positively associated with
DelayedWord and DelayedPhrase but negatively associated with
Verbal and IQ � 70 (all p � .0001). In other words, the mean
scores for SOC were higher in the affected groups defined by
DelayedWord and DelayedPhrase than the mean scores in the
unaffected group but were lower in the affected groups defined
by Verbal and IQ � 70 than the mean scores in the unaffected
group. On the other hand, BEH was not associated with Delayed-
Word (p � .7), DelayedPhrase (p � .6), and IQ � 70 (p � .9) but
was positively associated with Verbal (the verbal group had

rom the Subsets of ASD Families

hrase DelayedWord Verbal IQ � 70

) 470 (79) 768 (81) 523 (81)
) 128 (21) 179 (19) 122 (19)

) 339 (57) 947 (100) 565 (88)
) 259 (43) 0 (0) 80 (12)

) 240 (63) 593 (83) 645 (100)
) 141 (37) 118 (17) 0 (0)

) 0 (0) 521 (56) 339 (53)
) 598 (100) 414 (44) 299 (47)

47 (8) 428 (46) 282 (45)
0) 518 (92) 504 (54) 348 (55)

.3) 212 (35.5) 234 (24.7) 141 (21.9)
6) 23 (3.9) 48 (5.1) 0 (0)
.2) 138 (23.1) 220 (23.2) 223 (34.6)

8) 21 (3.5) 55 (5.8) 20 (3.1)
1) 54 (9.0) 67 (7.1) 78 (12.1)
3) 24 (4.0) 30 (3.2) 22 (3.4)
3) 35 (5.9) 73 (7.7) 22 (3.4)
.2) 57 (9.5) 173 (18.3) 110 (17.0)

0) 32 (5.3) 45 (4.7) 29 (4.5)
2) 2 (0.3) 2 (0.2) 0 (0)
69 97 � 68 116 � 67 104 � 50
5.0 22.9 � 5.2 21.4 � 5.7 21.3 � 5.7
2.5 6.0 � 2.5 6.7 � 2.7 6.3 � 2.7

RE, Autism Genetics Resource Exchange; ASD, autism spectrum disorders;
, Collaborative Programs of Excellence in Autism; DelayedPhrase, delayed
national Molecular Genetic Study of Autism Consortium; INSERM, Institute

C, social interaction domain total scores; UNC, University of North Carolina;
and f

yedP

8 (79
3 (21

9 (57
0 (43

2 (58
5 (42

5 (26
4 (74

0 (0)
1 (10

2 (32
9 (4.
2 (25
2 (3.
0 (7.
6 (4.
6 (4.
4 (11
0 (6.
0 (1.

03 �
.1 �
.1 �

ct; AG
CPEA
Inter
higher BEH scores than the scores in the nonverbal group with

www.sobp.org/journal

http://www.broad.mit.edu/mpg/haploview/index.php
http://www.broad.mit.edu/mpg/haploview/index.php
http://www.stat.auckland.ac.nz/browning/floss/floss.htm#osa
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� .0001). As expected, DelayedWord and DelayedPhrase were
ositively associated with each other (if an individual had
elayed onset of first words, he/she would be more likely to
ave delayed onset of first phrases) and Verbal and IQ � 70 were
ositively associated with each other, but the two sets of traits
ere negatively associated with each other (all p � .0001).
Four of the six potential covariates were significantly associ-

ted with SOC (p � .05) using a mixed linear model. These
ovariates were AGP site, verbal/nonverbal status, age of ADI-R
ompletion, and best estimate IQ and together they accounted
or 23% of the total variance in the model. The covariates AGP
ite, verbal/nonverbal status, age of ADI-R completion, and
ender were significantly associated with BEH (p � .05) and
ogether accounted for 12% of its total variance. The final set of
ovariates was selected based on both the strength of association
ith the subphenotypes and the number of missing values for a
articular covariate. For example, best estimate IQ was a very

mportant covariate for SOC in the simple mixed linear model.
hen covariates verbal/nonverbal status, AGP site, and age of
DI-R completion were included in the multiple model, the
ssociation between best estimate IQ and SOC was still signifi-
ant but with IQ accounting for less than 1% of the total variance
f SOC. Since the inclusion of best estimate IQ would reduce the
ample size by approximately one quarter due to missing values
n IQ, it was not included as a covariate for SOC. Tables 2 and 3
n Supplement 1 list the effects of the selected covariates for SOC
nd BEH, respectively. The heritability estimate was .35 (p � 5 �
0�9) for SOC and .52 (p � 5 � 10�17) for BEH.

inkage Analysis
The genome-wide linkage results for the seven traits are

llustrated in Figure 1 with the strongest linkage signals for each
rait listed in Table 3. For quantitative traits SOC and BEH, no
hromosomal region reached a LOD score of 2.2, the genome-
ide suggestive linkage threshold. For the subset analyses, the
ost significant linkage signal was on chromosome 15q13.3-q14

or IQ � 70 (LOD score � 4.01, p � .00001, � [the locus-specific
ffect size] � .25) (Figure 2). Interestingly, there was also weak
vidence for linkage for BEH at the same region (LOD score �
.67, p � .003). The next strongest linkage signal was on
hromosome 11p15.4-p15.3 for DelayedPhrase (LOD score �
.40, p � .00004, � � .19) (Figure 2). In this region, the LOD
cores were 1.34 (p � .007) for DelayedWord, 1.89 (p � .002) for
erbal, and 2.15 (p � .0008) for IQ � 70. There was also a LOD
core of 2.18 (p � .0008) at this region when all the ASD families
ere used. The linkage results for individual chromosomes are

able 2. Associations Between the Autism Subphenotypes

SOC BEH D

OC — 2025
EH .28 (� .0001) —
elayedPhrase 184.9 (� .0001) .3 (.6)
elayedWord 88.7 (� .0001) .1 (.7) 58
erbal 133.7 (� .0001)a 68.9 (� .0001) 19

Q � 70 83.5 (� .0001)a .03 (.9) 9

The sample sizes are in the upper triangle and the strength of association
y correlation coefficient between SOC and BEH; chi-square statistic among
tatistic between the quantitative traits (SOC and BEH) and the categorical

BEH, behavior domain total scores; DelayedPhrase, delayed onset of first
0; SOC, social interaction domain total scores; Verbal, verbal category statu

aNegative association.
rovided in Figure 1 in Supplement 1.

ww.sobp.org/journal
Using permutation tests, for the most significant linkage result
on chromosome 15 (LOD score � 4.01, p � .00001 for the ASD
families with IQ � 70 and LOD score � .08, p � .3 for all the ASD
families), the probability that a subset of 313 families randomly
selected from all the ASD families could reach a LOD score of
4.01 at this locus was .0006 with a 95% confidence interval of
.0004 to .001. For the most significant linkage result on chromo-
some 11 (LOD score � 3.40, p � .00004 for the ASD families with
DelayedPhrase and LOD score � 1.75, p � .002 for all the ASD
families), the probability that a subset of 412 families randomly
selected from all the ASD families could reach a LOD score of 3.40
at this locus was .03 with a 95% confidence interval of .02 to .05.

Discussion

The two most significant chromosomal regions (11p15.4-
p15.3 with a 1-LOD interval of 19–26 cM and 15q13.3-q14 with a
1-LOD interval of 22–28 cM) in this study were also identified in
several previous studies even though their signals were not as
strong. Spence et al. (33) showed evidence for linkage to the
same regions on chromosome 11 (20–55 cM with NPL scores �
2.0) using all ASD families and on chromosome 15 (20–25 cM
with NPL scores � 1.5) using language-delayed families. Evi-
dence for linkage was also reported for the chromosome 11
region (20–30 cM with Z scores � 3.0) in a study by Duvall et al.
(28) using a quantitative trait from the Social Responsiveness
Scale. Both of the above studies (28,33) used families from
AGRE. In the present study, 132 (32%) of the ASD families with
DelayedPhrase and 67 (21%) of the ASD families with IQ � 70
were from AGRE. The exact number of overlapping families
between our AGRE data and those in the two previous studies is
unknown. To test if our linkage results were independent
confirmation of the previous reported linkage signals, we re-
peated the linkage analysis without any of the AGRE families.
The linkage signals remained at both loci with the LOD scores
changed from 3.40 to 2.78 (p � .0002) for the locus on chromo-
some 11 using the ASD families with DelayedPhrase and from
4.01 to 2.59 (p � .0003) for the locus on chromosome 15 using
the ASD families with IQ � 70.

Our linkage signal at the 15q13.3-q14 region (1-LOD interval
22–28 cM) is about 10 cM (or 6–7 Mb) telomeric to the 15q11-q13
region, which has been a focus of many association studies due
to the interests in the �-aminobutyric acid receptor 	, 
, and �
subunit genes in this region (48–50). Most interestingly, markers
at the 15q13.3-q14 region have also been linked with an endo-
phenotype of schizophrenia, P50 sensory gating disorder (51),

dPhrase DelayedWord Verbal IQ � 70

05 1946 2024 1395
03 1944 2022 1393

1870 1903 1338
.0001) — 1944 1360
.0001)a 94.6 (� .0001)a — 1393
.0001)a 29.9 (� .0001)a 364.1 (� .0001) —

p values are in the lower triangle. The strength of associations is calculated
edPhrase, DelayedWord, Verbal, and IQ � 70; and Kruskal-Wallis chi-square

(DelayedPhrase, DelayedWord, Verbal, and IQ � 70).
ses; DelayedWord, delayed onset of first words; IQ � 70, best estimate IQ �
elaye

19
19

—
2.0 (�
8.5 (�
0.1 (�

s and
Delay
traits

phra
and with schizophrenia itself (52,53). The most studied candidate
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igure 1. Genome-wide linkage analysis results for the seven subphenotypes. The vertical reference lines separate the chromosomes. The horizontal

eference lines are at LOD score � 2.2 as the suggestive linkage threshold and LOD score � 3.6 as the significant linkage threshold. LOD, logarithm of odds;
ther abbreviations as in Table 1.
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ene in this region is 	7-nicotinic cholinergic receptor
CHRNA7), which controls the excitability of local neuronal
ircuitries in the human cerebral cortex (54). In this study, the
lanking SNPs for CHRNA7 (at 22.6–22.9 cM) were rs953325 at
2.4 cM (LOD score � 3.17, p � .00007) and the most significant
s1454985 at 24.8 cM (LOD score � 4.01, p � .00001).

Autism spectrum disorders and schizophrenia are two distinct
iseases according to DSM-IV (1) and ICD-10 (2). However,
tudies have shown that these two disorders share a number of
henotypic features, including impairments in social cognition
55) and theory of mind (56,57). There is also evidence that adult
SDs who are relatively high functioning and verbal are more

ikely to present schizophrenic features, especially of the disor-
anized subtype (58). In addition, recent studies have reported
ommon genes that are involved in both ASD and schizophrenia,
or example, association of gene DISC1 (disrupted in schizophre-
ia 1) (59) and copy number variations in gene NRXN1 (neurexin
) (60). The overlap of the clinical features and genes indicate
hat shared common pathogenic mechanisms may contribute to
he liability for both ASD and schizophrenia. If our finding at this
ocus is replicated, further study will be needed to determine if
he linkage evidence in this region for high-functioning ASD and
or schizophrenia reflects the same biological pathways for some

igure 2. Highlighted linkage analysis results for chromosomes 11 and 15.
hreshold and LOD score � 3.6 as the significant linkage threshold. ASD, au

able 3. The Most Significant Linkage Signal(s) for Each Trait

Number of Families Chr

OC 976
EH 975
ll ASD 975

elayedPhrase 412
elayedWord 290
erbal 461

Q � 70 313

More results are shown for a trait if there are more loci that have LOD scor
ASD, autism spectrum disorders; BEH, behavior domain total scores; De

ords; IQ � 70, best estimate IQ � 70; LOD, logarithm of odds; SOC, socia
erbal category status.

aSNP is the one at the position with the maximum LOD score.
dds; SOC, social interaction domain total scores.

ww.sobp.org/journal
common intermediate phenotype(s) between these two diseases
or if there is a different locus underlying each disorder within this
region.

Caution should be taken when interpreting the results of this
study. First, the linkage signals on chromosomes 11 and 15 may
be due to either a subset of ASD cases with delayed onset of first
phrases and normal or high IQ or more general language and IQ
loci, which also exist in the absence of ASD. Second, the results
are based on a total of seven genome-wide scans for seven traits.
Because of the correlations between the traits and the subset
analyses, the final number of tests is equivalent to about 5.75
independent genome-wide scans (61). Strictly speaking, none of
the LOD scores reached the significant threshold needed for 5.75
independent genome scans. Third, even though we have pro-
vided both the locus-specific effect sizes and the linkage loca-
tions for the two most significant linkage signals on chromo-
somes 11 and 15, these estimates should be interpreted with
caution because it has been shown that for genome-wide studies,
regardless of the nature of phenotypes and the analytic methods,
the estimates of locus-specific effect size tend to be inflated (62).
In addition, according to the study by Cordell (63), the variance
for a linkage location could be very large for a study with

orizontal reference lines are at LOD score � 2.2 as the suggestive linkage
spectrum disorders; BEH, behavior domain total scores; LOD, logarithm of

ome Location SNPa LOD (p)

3.11 rs727363 1.84 (.002)
2.1 rs1986410 2.09 (.001)

rs1544105 2.22 (.0007)
3 rs2421826 2.55 (.0003)
5.4-p15.3 rs1394119 3.40 (.00004)

rs1513721 1.59 (.003)
.1 rs2167037 2.56 (.0003)
.3 rs1996970 2.28 (.0006)
3.3-q14 rs1454985 4.01 (.00001)

.2 (the suggestive linkage threshold for one genome-wide linkage analysis).
Phrase, delayed onset of first phrases; DelayedWord, delayed onset of first
raction domain total scores; SNP, single nucleotide polymorphism; Verbal,
The h
tism
omos

12q1
14q2
9q34
11p1
11p1
4q27
3p26
2p16
15q1

es � 2
layed
l inte
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oderate sample size (e.g., 313 ASD families with IQ � 70) and
oderate locus-specific sibling relative risk.
Using the quantitative subphenotypes, SOC and BEH, we did

ot find significant linkage signals, even though we found
easonably high heritabilities for both traits (.35 for SOC and .52
or BEH). Ascertainment bias, where a pedigree was selected
nly if there were at least two individuals above thresholds for
oth the social and communication total scores, may have a large
mpact on heritability estimates (64). No ascertainment correction
as performed since there is no efficient method for the complex
scertainment used in this study and no normative data from a
eneral population sample exist for these two quantitative
ubphenotypes. In addition there may simply not be enough
ariation among the ASD patients to detect linkage. This is
specially the case for SOC, where affected subjects had to reach
threshold to be included. In contrast, no such threshold exists

or BEH. It is also important to remember that these domain total
cores are summaries of the scores from many items that
hemselves may be heterogeneous and belong to different
imensions, so the quantitative traits we used may be as complex
s the binary diagnosis of autism (65).

In addition, in a multisite study of this nature, variation in
scertainment by site may add further complexity to the analysis.
o identify loci that specifically affect SOC and BEH, the effects
f age of ADI-R completion, gender, verbal/nonverbal status,
nd AGP site on the phenotypes were removed in the linkage
nalyses (Tables 2 and 3 in Supplement 1). However, one could
rgue that the effects of AGP site, identified here as a covariate,
hould not be removed. In a multisite genetic study, differences
n a phenotype across sites could be caused by measurement
rror and/or by true differences in the severity of phenotypes
mong affected subjects. We suspect that the differences in SOC
nd BEH across the AGP sites might be caused by the latter, since
ll sites have demonstrated good reliability; of note, individual
GP sites have also recruited families from different clinical
enters. Due to these arguments, we performed linkage analyses
ithout the AGP site as a covariate (but with the adjustments for
ender, verbal/nonverbal status, and age of ADI-R completion).
ithout the AGP site as a covariate, the heritability for SOC

hanged from .35 to .50 and from .52 to .62 for BEH. However,
he linkage results did not change dramatically with the ranges of
he differences between –.4 to .4 for SOC and between –.4 to .5
or BEH and the highest LOD scores changed from 1.84 to 1.68
or SOC and from 2.09 to 2.06 for BEH.

Even though the analysis method using subsets of ASD
amilies may be limited by chance findings due to reshuffling of
he families and by decreased power due to reduction of sample
ize, the two most significant linkage signals on chromosomes 11
nd 15 (both were reported in the previous studies of autism
28,33] and one [on chromosome 15] was linked to schizophrenia
52,53]) show that it is still a potentially useful method to
vercome genetic heterogeneity. Autism spectrum disorder fam-
lies with IQ � 70 may represent a more genetically homogenous
roup, while the families that have rare single gene disorders,
ndetected chromosomal abnormalities, or de novo copy num-
er variations tend as a whole to have lower IQ (66) and
ncluding them in a linkage analysis may reduce power.

This study is our first attempt at using the pooled multisite
ata to localize genetic locations using autism subphenotypes. It
s apparent that pooling data from multiple sources to increase
ample size is not a panacea due to the possible presence of
enetic heterogeneity (67,68). However, this pooled sample did

rovide a larger base for us to select phenotypically homogenous
subgroups, especially the ASD families with IQ � 70. Future
genetic studies may be improved by using the ADI-R item scores
or factors derived from the item scores rather than the domain
total scores due to the drawbacks discussed above. In addition,
a quantitative IQ measurement may be a better heterogeneity-
informative subphenotype than the categorical IQ used in this
study.
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