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Abstract The Autism Genome Project has assembled two
large datasets originally designed for linkage analysis and
genome-wide association analysis, respectively: 1,069 multi-
plex families genotyped on the Affymetrix 10 K platform, and
1,129 autism trios genotyped on the Illumina 1 M platform.

We set out to exploit this unique pair of resources by analyzing
the combined data with a novel statistical method, based on
the PPL statistical framework, simultaneously searching for
linkage and association to loci involved in autism spectrum
disorders (ASD). Our analysis also allowed for potential
differences in genetic architecture for ASD in the presence or
absence of lower IQ, an important clinical indicator of ASD
subtypes. We found strong evidence of multiple linked loci;
however, association evidence implicating specific genes was
low even under the linkage peaks. Distinct loci were found in
the lower IQ families, and these families showed stronger and
more numerous linkage peaks, while the normal IQ group
yielded the strongest association evidence. It appears that
presence/absence of lower IQ (LIQ) demarcates more
genetically homogeneous subgroups of ASD patients, with
not just different sets of loci acting in the two groups, but
possibly distinct genetic architecture between them, such that
the LIQ group involves more major gene effects (amenable to
linkage mapping), while the normal IQ group potentially
involves more common alleles with lower penetrances. The
possibility of distinct genetic architecture across subtypes of
ASD has implications for further research and perhaps for
research approaches to other complex disorders as well.

Keywords Autism . Linkage analysis . Genome-wide
association . PPL . PPLD . IQ

Introduction

Autism spectrum disorders (ASDs) are heritable, genetically
complex neurodevelopmental conditions. In this paper, we
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search for ASD genes through combined analysis of two
datasets collected by the Autism Genome Project (AGP). The
AGP previously reported linkage to 11p12–p13 along with
notable copy number variations in the largest collection of
multiplex ASD families analyzed to date (Szatmari et al. 2007;
see also Liu et al. 2008), followed by copy-number variation
(CNV) and association analysis in a large cohort of trios
(Anney et al. 2010; Pinto et al. 2010). Here, we use a distinct
statistical method, based on the PPL framework (Vieland
1998, 2006; Yang et al. 2005; Vieland et al. 2008; Wratten et
al. 2009; Huang and Vieland 2010), to reconsider the
combined multiplex and trio data sets.

The PPL statistical framework has three principle
advantages in this context. (1) It handles genetic hetero-
geneity via “sequential updating” across data subsets
(Vieland et al. 2001; Huang and Vieland 2001; Govil
and Vieland 2008). The posterior evidence from previous-
ly analyzed data is carried forward as prior evidence as
new data subsets are analyzed, with underlying genetic
parameters (allele frequencies, penetrances, and levels of
heterogeneity) allowed to vary between subsets. This can
be a powerful method for discovering genetic signals
arising from even very small subsets of the data, provided
only that we have classification variables allowing the
division of families (or cases) into relatively more
homogeneous groups (Govil and Vieland 2008). (2) The
PPL accumulates evidence against genetic hypotheses as
well as in favor of them. Thus inspection of subset-
specific contributions to the omnibus signal can distin-
guish among subsets that are supporting the hypothesis
and subsets that are actually contributing evidence against
it. (3) The PPL permits analysis of multiplex families and
trios in a unified manner. The multiplex families provide
linkage information, while the trios provide information
on allelic associations. Here, we introduce a novel method
for genome-wide analysis based on simultaneous use of
linkage and association information from two different
sets of data.

It is widely accepted that ASD is genetically heteroge-
neous, but less clear whether clinical features can be used to
demarcate more homogeneous subclasses. Familial con-
cordances for specific ASD symptoms are not strong, and
there is generally high intrafamilial variability. However,
familiality for nonverbal IQ has been reported in several
studies (Le Couteur et al. 1996; Silverman et al. 2002;
Szatmari et al. 2008; MacLean et al. 1999). This is in line
with more recent family and twin studies suggesting that IQ
is the most heritable component of the ASD phenotype
(Szatmari et al. 2008). Furthermore, subgrouping ASD
patients on the basis of IQ has provided the most consistent
method for distinguishing patients on a number of dimen-
sions. At the lower end of the IQ range, there is considerable
overlap between autistic features and chromosomal syn-

dromes (Xu et al. 2004); epilepsy is more prevalent, and the
ratio of females to males approaches unity in contrast to the
preponderance of males among higher IQ cases (Amiet et al.
2008). Moreover, there is compelling emerging evidence of
considerable etiologic overlap between the clinical classifi-
cation of intellectual disability, various mental retardation
syndromes, and ASD in terms of rare de novo and inherited
CNVs (Guilmatre et al. 2009; Bijlsma et al. 2009; Marshall
et al. 2008). Indeed, the distinction of “high” and “low”
functioning autism is often based on IQ, and indicates groups
that differ with respect to associated brain dysfunction,
outcome, and response to treatment (Lotspeich et al. 2004;
Allen et al. 2001; Stevens et al. 2000).

Here, we accumulate the total, or “omnibus,” evidence
across subsets of families characterized by the presence or
absence of lower IQ autistic individuals while allowing for
the fact that the subsets may differ substantially from one
another. We find compelling evidence that, indeed, the
lower IQ group appears to be genetically distinct.

Methods

Participants

Multiplex families (N=1,069), each containing at least 2
individuals diagnosed with autism by the Autism Diagnos-
tic Interview (ADI; Le Couteur et al. 1989) and clinical
best estimate, were contributed by 10 sites. (See Szatmari et
al. (2007) for additional details. Note that some “sites”, or
research groups, covered multiple data collection locations;
however, sample sizes precluded further subdivision of the
data.) IQ was recorded as a dichotomous trait. Families
were classified as lower IQ (LIQ, N=255) if at least one
ASD individual had performance IQ≤50 or was coded as
“missing due to low functioning”; as normal IQ (NIQ,
N=580) if all ASD individuals had IQ>50; and as missing
IQ (MIQ, N=234) if there were no lower IQ individuals
and at least one affected individual missing IQ information.

Trios (N=1,129) were contributed by 8 sites. (See Anney
et al. (2010) for additional details. Again, some sites
covered multiple data collection locations). Children met
criteria for either autism or ASD based on ADI and ADOS
criteria. A trio was classified as LIQ (N=285) if the child had
performance IQ≤70 or was coded as “missing due to low
functioning”, as NIQ (N=394) if the child had IQ>70, and
as MIQ (N=450) if the IQ information was missing.
Changes in IQ classification by the AGP over time have
led to the slight difference in IQ classification compared to
the multiplex families. However, IQ is used only to
subdivide the sample into relatively more homogeneous
subsets, not as an outcome variable in its own right, and this
is therefore unlikely to appreciably affect the results. Note

114 J Neurodevelop Disord (2011) 3:113–123



too that the proportion of LIQ families is similar (25% vs.
24%) in the trios and multiplex families, respectively,
suggesting that the change in cutoff might actually appropri-
ately compensate for differences between the two datasets. Of
the trios, 283 overlapped with the multiplex families, but only
a single case from each overlapping family was used in the LD
analyses; thus there is no overlap in the information extracted
from the overlapping samples. All trios were of European
ancestry (Anney et al. 2010). All sites had Institutional
Review Board approval for this study, and the research was
conducted in accordance with the World Medical Associa-
tion Declaration of Helsinki (2000). Written informed
consent was obtained from all subjects after the study had
been fully explained.

Genotyping and data cleaning

Details of genotyping methods are given in Szatmari et al.
(2007) and Anney et al. (2010). In preparation for linkage
analysis, marker data were cleaned for family structure
problems and Mendelian inconsistencies. Merlin (Abecasis
et al. 2002) was run to detect and remove unlikely double
recombinants, and to cluster any SNPs in LD groups. (Most
parents were genotyped and LD in the marker map proved
not to affect the results.) In preparation for LD analyses,
marker data were additionally cleaned for marker missing-
ness (>5%), sample missingness (>5%), and excess Mendel
errors both by SNP and individual. Markers with minor
allele frequency <1% were dropped, as were SNPs with a
Hardy–Weinberg (HW) p value<1×10−10 in at least one
data subset or HW p value<0.05 in at least three subsets.
After cleaning, 749,933 SNPs remained in the analyses.

Statistical methods

All analyses were conducted using the software package
KELVIN (Huang et al. 2006), which implements the PPL
class of models for measuring the strength of genetic
evidence (Vieland 1998, 2006). The two specific statistics
employed were the PPL itself (posterior probability of
linkage) and the posterior probability of trait-marker
linkage disequilibrium (PPLD). Linkage analyses utilized
LOD scores computed in Merlin (Abecasis et al. 2002;
Lander and Green 1987) as input to PPL calculations
(Vieland 1998). The genetic map is based on http://
compgen.rutgers.edu/mapopmat (Matise et al. 2007; release
10/09/06).

The PPL as applied here is parameterized as a dichotomous
trait model with parameters α (the admixture parameter of
Smith (1963), representing the proportion of ‘linked’
pedigrees), p (the disease allele frequency), and the
penetrance vector fi, representing the probability that an
individual with genotype i develops disease, for i−1..3. All

trait parameters are integrated out of the final statistic, using
uniform prior distributions, implicitly allowing for dominant,
recessive, and additive models along with intra-subset
heterogeneity. This provides a robust approximation for
mapping complex traits in terms of the marginal model at
each locus, and because the parameters are integrated out, no
specific assumptions regarding their values are required. The
likelihood also contains two location parameters: the
recombination fraction θ and the standardized LD parameter
D′, representing trait–marker association due to physical
proximity.

The PPL framework accumulates evidence across data
subsets by integrating the trait parameters out of the
likelihood separately for each subset, using Bayesian
sequential updating to combine the marginal information
regarding θ and D′ across subsets. This procedure allows
for genetic differences among data subsets, and is far more
robust in retaining true signals originating from individual
subsamples than analyses that simply combine subsets for a
single analysis (Vieland et al. 2001; Huang and Vieland
2001; Govil and Vieland 2008). Here, we have subdivided
the data and sequentially updated across IQ groups.
Because the AGP families have been contributed by
multiple research groups, we also sequentially update over
“site.” Sites can vary with respect to the populations from
which they recruit, ascertainment strategies and criteria, and
subtle differences in clinical evaluations; simple sampling
variability can also lead to inter-site differences. While not
usually considered as a separate source of variation in
genetic studies, the importance of allowing for site effects
has been long appreciated in other settings, such as clinical
trials. After dividing by IQ and site, subset sizes ranged
from N=20–148 (mean=62) for the multiplex families and
N=20–169 (mean=71) for the trios.

The PPL is on the probability scale, and its interpretation
is therefore straightforward: e.g., PPL=40%, means that
there is a 40% probability of a trait gene at the given
location based on these data. Based on earlier calculations
(Elston and Lange 1975), the prior probability at each
location is set to 2%, so that PPLs>2% indicate (some
degree) of evidence in favor of a trait gene at that locus,
while PPLs<2% represent evidence against the location.
The prior probability of LD given linkage (L) is also set to
0.02, so that in the absence of prior linkage information
P(L&LD)=0.0004 (see also Welcome Trust Case Control
Consortium 2007 for justification of a comparable figure).

Novel here is a mathematically rigorous method for
using linkage information from the multiplex families to
inform the association analyses, based on the fact that
PPLD=PP(LD|L)×PPL (see Huang and Vieland 2010 for
additional details). We interpolated the PPL results onto the
physical map, and inserted the measured PPL into this
equation. Thus, PPLs<2% will depress PPLDs, and PPLs>
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2% will increase PPLDs, by increasing the prior probability
of LD under a linkage peak, up to a maximum of 2% prior
probability of LD when PPL=1 (see Roeder et al. (2007)
for a related approach). This assumes that at least some
ASD genes are etiologically relevant to both the multiplex
and trio sets.

The PPL and PPLD are measures of statistical evidence,
not decision-making procedures; therefore, there are no
“significance levels” associated with them and they are not
interpreted in terms of associated error probabilities (Royall
1997; Vieland and Hodge 1998). By the same token, no
multiple testing corrections are applied to the PPL or
PPLD, just as one would not “correct” a measure of the
temperature made in one location for readings taken at
different locations (Vieland 2006). Nevertheless, it may
assist readers to have some sense of scale relative to more
familiar frequentist test statistics. In simulations of 10,000
replicates of sets of 1,000 affected sib-pairs under the null
hypothesis (no linkage), PPLs of 5%, 25%, and 80% were
associated type 1 error probabilities of 0.00128, 0.00002,
and <0.00001, respectively. In 10,000 null (no linkage, no
LD) replicates of sets of 1,000 trios, no PPLDs>1% were
observed, while PPLD>0.1% occurred in just 0.04% of
replicates. At a locus with PPL<2%, this represents a
PPLD<0.1%; while at a locus with PPL=80% this would
still only correspond to a PPLD of 3.9%.

It is also of interest to consider “power” in the trio
sample in particular. For relative risk (RR) of 1.3–1.7, our
ability to detect association in regions lacking evidence of
linkage is low; e.g., for RR=1.7, PPLDs>10% occur just
10% of the time. However, LD under linkage peaks is
expected to be considerably stronger. For RR=2.0, with
PPL=80%, 91% of PPLDs are>29% and 59% of PPLDs
are >82%; with RR=2.5 99.6% of PPLDs are >82%. (Here
we generated data with disease and marker minor allele
frequencies of 0.1, varying D′ and the penetrances to
achieve different RRs; actual power can obviously deviate
from these results.) Thus, we are unable to draw definitive
conclusions regarding absence of LD in unlinked regions of
the genome based on the current sample size. However, the
sample size appears adequate for detection of moderate
allelic effects under linkage peaks.

Results

Omnibus linkage analysis

Figure 1a shows genome-wide PPL results for the omnibus
(all groups) analysis. 92.6% of the genome showed
evidence against linkage, 97.4% of the genome had PPLs
<5%, and 98.7% of PPLs were <10% (99.6% ignoring
chromosome 11, which shows several broad peaks).

Against this backdrop, several peaks stand out. Two
peaks on chromosome 11 coincide with locations
reported in the two previous AGP analyses of this
dataset (PPL=60%@11p13; PPL=93%@11p15.2). Also
noteworthy is the very high PPL=87% on 16q21, as well
as several other peaks including: 2p25 (PPL=12%), 4q31
(PPL=33%), 6q14 (PPL=11%), 18q22 (PPL=18%), and
possibly two additional peaks on 11p15 and 11q14,
which are more moderate in size although still salient
relative to the background. We note that the detection of
multiple loci in this dataset is attributable largely to the
PPL’s use of sequential updating. For instance, if we
simply “pool” all sites and IQ groups together for a
single analysis, on 16q21, the PPL at the peak is just 4%,
compared to 87% based on sequential updating.

Linkage analysis by IQ group

Plotting the IQ groups separately (Fig. 1b–d), we see that
the linkage plots suggest substantially different genetic
profiles, with peaks occurring at different positions and
more peaks in the LIQ group than the NIQ group. Notably,
in several cases in which one IQ group gives evidence in
favor of linkage, the other IQ group is actually giving
evidence against linkage across the region. For example,
the NIQ group gives PPL<2% across the entire region
surrounding the peak on 16q21 in which the LIQ group is
giving evidence for linkage.

In this context, the MIQ group serves as a kind of
control. Combining data from two genetically distinct
groups in a single analysis tends to attenuate linkage
signals (Govil and Vieland 2008). Thus, if the LIQ and
MIQ groups differ in their underlying genetic etiology, then
the MIQ group, presumably comprised of a mixture of LIQ
and NIQ families, should produce smaller linkage signals
overall. On the other hand, if the appearance of two distinct
genomic patterns comparing the LIQ and NIQ groups were
the result of random variations rather than true genetic
differences, the larger MIQ group would be expected to
yield larger linkage peaks, perhaps in separate locations.
The observed pattern in the MIQ group corroborates the
interpretation of these graphs as indicating that IQ is indeed
demarcating genetically different subsets of the data.

The linkage signals on 1q31.3, 13q22.1, 14q24.2, and
16q21 are clearly driven by one IQ group in particular (with
the other giving evidence against linkage), and in three of
the four cases it is the LIQ group that is driving the signal.
The peaks on 11p13, 11p15.2 are more difficult to parse: on
the one hand, the omnibus PPLs are higher than the PPLs
from either the LIQ or the MIQ subset; on the other hand,
Fig. 1 strongly suggests that there are multiple loci on this
chromosome, and possibly distinct genes operating in the
two IQ groups (see below), which is consistent with the
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absence of appreciable signals from the MIQ group. Note
too the small but visible omnibus signal on 15q11.2 (PPL=
4%), which rises to PPL=14% in the NIQ group. This
signal is directly over the known Prader–Willi ASD locus
(van der Zwaag et al. 2010; Vorstman et al. 2006).

Omnibus combined linkage and association analysis

Figure 2a shows omnibus PPLD results. Against a very
clean background, two modest peaks stand out. These occur
at rs11603469 (11p15.2, PPLD=26%) and rs10221112
(16q21, PPLD=15%). In both cases, surrounding SNPs
are also giving PPLDs elevated above the baseline (prior)
probability of LD. On 11p15.2, rs11603469 is one of a
small cluster of SNPs showing some LD evidence and
overlapping the gene FAR1 (rs11603469 itself is 10 kb from
the FAR1 start site); on 16q21 the SNP falls 351 kb from
the nearest annotated gene (GOT2). A third, smaller, LD

signal stands out on 4q31.23 (PPLD=6% at rs7668351,
which falls in BC031092). In each case, these SNPs fall
directly under corresponding linkage peaks (Fig. 3). It is
noteworthy that in each case, multiple data subsets (sites)
support LD, but also, multiple sites give evidence against
LD, and some are merely neutral. In situations where allelic
effects may vary across strata, pooling data across strata
will tend to wash out these types of signals.

Combined linkage and association analysis by IQ group

Because the linkage results strongly suggest distinct
etiology in the LIQ and NIQ groups, it is also of interest
to consider the two groups separately in the association
analyses. As expected, different SNPs are salient in the two
groups (Fig. 2b–c). In general, the LIQ plot is slightly
noisier than the NIQ plot, with smaller maximum peak and
more “chatter” at the bottom of the plot. In part, this is

Fig. 1 Genome-wide linkage analyses in a omnibus, b LIQ, c MIQ,
and d NIQ groups. The PPL (posterior probability of linkage)
represents the probability of an ASD gene at each position. The x-
axis represents chromosomes 1–23 (X) on the Kosambi cM scale; the

y-axis is on the probability scale. The horizontal line at PPL=0.02
corresponds to the prior probability of linkage. Values below this line
represent evidence against linkage, while values above the line
represent evidence for linkage, at the given position
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consistent with smaller sample size. However, “power” is
not merely a function of sample size, but also of the
underlying genetic model. The LIQ multiplex family
dataset is also smaller than the multiplex NIQ dataset, yet
the linkage signals are more numerous and higher in the
LIQ group. The different pattern observed for the PPLD
analyses may therefore be revealing real differences in the
underlying genetic architecture, and not just reflecting
relative sample sizes. We return to this point below.

Table 1 shows all PPLDs≥10% from the separate LIQ
and NIQ analyses. Compared with the omnibus results, on
11p15.2, the omnibus signal in FAR1 is driven by the NIQ
group (maximum PPLD=32%). On 16q21, the omnibus
signal is driven by the LIQ group, which on its own gives a
PPLD=7%, bolstered by a small signal from the MIQ
group (not shown); none of these SNPs falls in an
annotated gene. Some additional signals also appear in the
subgroup analyses that were not salient in the omnibus
results (see Fig. 4; this figure also shows the distinct genetic
linkage patterns on chromosome 11). On 8q21.12 (LIQ, not
in an annotated gene), a pair of SNPs is showing evidence
of LD in a region not showing evidence of linkage (the
second SNP, rs7007634, has PPLD=8%). Additional
association signals from the separate analyses are found
on 3p12.1 (NIQ) and Xq13.1 (NIQ, with no clear difference
between males and females) and 16p13.2 (LIQ).

Discussion

These analyses represent an examination of the AGP data
from a unique statistical perspective. In contrast to the
original analyses of the multiplex families (Szatmari et al.
2007), we have found multiple strong linkage signals.
Disappointingly, however, PPLD analysis failed to find
strong evidence of allelic effects under the linkage peaks,
which would point us to the individual genes driving the
linkage results. (We note, however, that follow up molec-
ular work focused on one of the linkage peaks has
established a strong prima facie case for involvement of
the gene CDH8 (Pagnamenta et al. 2011).) The apparent
absence of allelic effects could reflect a genuine absence of
LD under the peaks, or limitations in 1 M coverage of the
peaks for LD mapping purposes. Another possibility is that
there is sufficient heterogeneity that the trios are simply too
dissimilar to the multiplex families to be informative at the
same genes. The absence of dense SNP array data in the
majority of the multiplex families makes direct evaluation
of this possibility difficult.

It is also important to keep in mind that the trio sample is
still relatively small, and in particular, the LIQ and NIQ
groups individually may be too small to provide strong
evidence on their own. The AGP is currently completing a

Fig. 2 Genome-wide combined linkage and association results from a
omnibus, b LIQ, and c NIQ analyses. The PPLD (posterior probability
of LD) represents the probability of allelic association with ASD due
to LD for each SNP in turn, and utilizes both linkage information from
the multiplex families and association information from the trios. The
x-axis represents the physical map for chromosomes 1–23 (X); the y-
axis is on the probability scale. An additional 151 markers from the
pseudoautosomal region of X are not shown on the graph; none had
PPLD exceeding the prior probability of LD
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second phase of trio data collection and genotyping, which
will effectively double the sample size, and sequentially
updating with the new dataset will provide better differen-
tiation between SNPs truly supporting LD and SNPs with
evidence against LD.

However, the overall pattern of results might reflect
heterogeneity between the IQ groups rather than sample
size. The linkage analysis finds more loci in the LIQ
analyses than the NIQ analyses, despite the fact that the
multiplex NIQ sample is 2.3 times the size of the
multiplex LIQ sample; while in the LD analyses, where

the sample sizes are better matched (the NIQ trio sample
is just 1.4 times as large as the LIQ trio sample), the
strongest signals are found in the NIQ group. Linkage
analysis is powerful for identifying relatively major
effects, that is, those in which mutations at a single
locus greatly increase disease risk, even if only in a
small subset of cases or against specific genetic and
environmental backgrounds. Association analysis is par-
ticularly powerful for detecting alleles that individually
confer small effects on disease risk, but do so in a rela-
tively homogeneous manner across the study population.

Fig. 3 Omnibus PPL and PPLD for chromosomes a 4, b 11, c 16. Units on the x-axis are in cM

Table 1 All PPLDs≥10% from the LIQ, NIQ analyses

IQ group Chromosome SNP name cM position Physical positiona PPLD Gene

NIQ 11p15.2 rs11603469 27.41 13636952 0.32 8 kb from FAR1

NIQ 11p15.2 rs10500796 27.41 13655409 0.27 FAR1

LIQ 8q21.12 rs3885022 92.28 79890601 0.19 17.6 kb from IL7

NIQ Xq13.1 rs12556351 59.34 71509736 0.12 HDAC8

LIQ 16p13.2 rs17722735 17.10 6660421 0.11 A2BP1

NIQ 3p12.1 rs9812103 117.58 86069410 0.1 CADM2

a Physical positions are based on NCBI build 36.1.
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Thus, the two sets of results can be interpreted as telling
a complementary story. The LIQ families may represent
more strongly “genetic” forms of disease, in which a
single gene or a small number of genes cause the
disorder in any given individual, with sufficient overlap
in causal genes across families to permit linkage mapping.
The NIQ families, on the other hand, could involve more
of a spectrum of conditions, possibly more highly
influenced by the accumulation of variants in multiple

genes each of smaller effect, or perhaps simply involving
even higher levels of heterogeneity and/or many private
mutations.

Of course until more data are available, this remains highly
speculative. Further work to fully characterize the distinction
between the LIQ and NIQ groups, combined with additional
genetic analyses, will be needed to refine and test this
hypothesis. But the results obtained thus far require us to at
least consider the possibility that subtypes of autism have

Fig. 4 PPL and PPLD for LIQ, NIQ groups respectively, for chromosomes a 3, b 8, c 11, d 16, e X containing SNPs shown in Table 1. Units on
the x-axis are in cM
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distinct genetic architectures. This means that no single study
design or experimental approach is likely to be optimal for all
subtypes, and that we must be prepared for disparate results
across different types of studies, or across data sets comprising
different mixtures of subtypes. This point almost certainly
applies to other complex disorders as well.

Finally, it is interesting to note that the association signal
on 16p13.2, which does not fall under a PPL linkage peak,
does fall within a linkage interval previously reported in a
subset of AGP families, using a very different approach to
untangling clinical heterogeneity based on latent class
modeling (Bureau et al. 2008). Thus, the PPLD may be
indicating a true association, but at a locus that our linkage
analysis lacked power to detect, given the particular
phenotypic classifications used here.
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