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Abstract

Autism spectrum disorder (ASD) affects up to 1 in 59 individuals1. Genome-wide association and 

large-scale sequencing studies strongly implicate both common variants2–4 and rare de novo 
variants5–10 in ASD. Recessive mutations have also been implicated11–14 but their contribution 

remains less well defined. Here we demonstrate an excess of biallelic loss-of-function and 

damaging missense mutations in a large ASD cohort, corresponding to ~5% of total cases, 

including 10% of females, consistent with a female protective effect. We document biallelic 

disruption of known or emerging recessive neurodevelopmental genes (CA2, DDHD1, NSUN2, 
PAH, RARB, ROGDI, SLC1A1, USH2A) as well as other genes not previously implicated in ASD 

including the transcription factor FEV, a key regulator of the serotonergic circuitry. Our data refine 

estimates of the contribution of recessive mutation to ASD and suggest new paths for illuminating 

novel biological pathways responsible for this condition.

Editorial Summary:

Analysis of whole exome sequencing data from 2,343 individuals with autism spectrum disorder 

(ASD) compared to 5,852 unaffected individuals demonstrates an excess of biallelic, autosomal 

mutations for both loss-of-function and damaging missense variants.

We performed a systematic analysis of exome data from the Autism Sequencing Consortium 

(ASC)15, representing 2,343 affected and 5,852 unaffected individuals (Supplementary Table 

1, Supplementary Figure 1). We cataloged a total of 696,143 autosomal loss-of-function 

(LOF) events (representing 28,685 unique variants in 11,745 unique genes) that introduce a 

stop codon or disrupt a canonical splice site (Table 1). After excluding common variants 

(allele frequency (AF) >1%), there were 84,645 rare LOF events (27,648 unique alleles) for 

an average of ~10 LOF mutations per individual. After computational phasing, we found 

298 events in the ASC (after filtering to exclude common polymorphisms) consistent with 

complete gene knockout (homozygous or compound heterozygous LOF mutations), 

affecting 266 individuals (Table 1). Affected individuals were disproportionately likely to 

harbor a gene knockout (62% more likely; 0.05 events per affected individual versus 0.031 

per unaffected individual, p=0.0003 by random permutation testing), with the bulk of the 

excess arising from the rarest alleles (Table 1; Supplementary Table 2; Figure 1a). To control 

for possible differences in population and family structure (e.g., founder effects and/or 
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consanguinity in the Finnish and Middle Eastern cohorts), we also normalized to 

background burdens of biallelic synonymous variants (see Methods and Supplementary 

Table 3–6). Individuals with ASD continued to exhibit higher knockout rates after 

normalization (0.042 biallelic LOF events per affected individual versus 0.031 per 

unaffected individual, p=0.008 by random permutation testing) (Supplementary Figure 2a). 

Based on the observed ascertainment differentials (AD) between affected and unaffected 

individuals (0.050 vs. 0.031, or 0.042 vs. 0.031 after normalization), these burdens predict a 

contribution of biallelic LOF alleles to ~1–2% of ASD cases (see Methods).

We considered whether these findings might be extended to incorporate the impact of 

missense variation. Missense variation occurs much more frequently than truncating 

mutations, with a small yet significant subset likely to be damaging. We evaluated potential 

missense contributions of two different types: all missense/nonsynonymous variants (Nsyn), 

and damaging missense/nonsynonymous variants (NsynD4, defined as missense changes 

classified as damaging by 4 or more predictive algorithms, representing 4% of all Nsyn 

events). Individuals with ASD exhibited an excess of biallelic events specifically involving a 

LOF allele in trans with a NsynD4 allele (Figure 1b), an effect which persisted after 

normalization to synonymous rates (Supplementary Figure 2b). Similarly, considering 

biallelic events involving either rare LOF or NsynD4 alleles, individuals with ASD 

demonstrated an excess of biallelic variation (p<10−4) with or without normalization 

(Supplementary Figure 2c, Figure 1c). Biallelic NsynD4 alleles were also found in excess in 

cases (Figure 1c) but this did not persist after normalization (p=0.07, Supplementary Figure 

2c).

Alleles contributing to biallelic LOF knockouts in cases were not in excess in the 

heterozygous state (Supplementary Figure 3). Genes impacted by biallelic mutation also 

scored low with respect to haploinsufficiency16 and gene constraint17 (Figure 1d–e, 

Supplementary Table 7), compared to known dominant and de novo ASD and ID genes18. 

These data support a recessive risk model, as opposed to the additive contributions of alleles 

acting co-dominantly.

ASD exhibits a striking male bias, and females with ASD exhibit a disproportionate burden 

of de novo and inherited SNVs and CNVs, supporting a female protective/male 

susceptibility effect19,20. We asked whether this also applies to rare recessive mutations. 

Unaffected males and females did not differ in burdens of LOF knockout (Figure 2a, 

Supplementary Figure 4a). Females with ASD, however, exhibited a larger excess of 

biallelic LOF mutations (Figure 2a, Supplementary Figure 4a). Similar patterns were 

observed when the analysis was extended to incorporate damaging missense variants, either 

alone (NsynD4) (Figure 2b, Supplementary Figure 4b) or grouped with LOF mutation (LOF 

or NsynD4) (Figure 2c, Supplementary Figure 4c). As observed before, LOF alleles were 

not in excess in the heterozygous state (Supplementary Figure 3). From these patterns we 

conclude that the female protective/male susceptibility effect extends to recessive mutations 

as well.

The ascertainment differentials observed led us to estimate the total contribution of biallelic 

mutation to ASD to be 3–5% (2% from LOF mutations, 1–3% from missense mutations). 
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Furthermore, based on the ascertainment differentials, identifiable biallelic LOF or 

damaging missense alleles appeared to contribute to ~10% of female ASD cases in the ASC 

(Supplementary Figure 4b), suggesting that the category of biallelic mutation could be one 

of the largest genetic contributors to ASD in females.

To address potential biological implications of these results, we examined the genes in 

which biallelic mutations were found. We first focused on the category of strict biallelic 

LOF mutations, estimating from the observed ascertainment differentials that ~25–40% of 

those found in ASD patients (0.019 out of 0.05; or 0.011 out of 0.042 after normalization to 

synonymous burdens) contribute to their condition. A total of 109 unique genes were 

knocked out (biallelic LOF) in affected individuals in our dataset. We reasoned that the most 

relevant of these genes would be those that are selected against biallelic inactivation in the 

general population. We therefore developed a filter to remove any gene that is also knocked 

out in one or more of 60,706 individuals sequenced as a part of ExAC (see Methods)17. To 

test its effectiveness, we examined its impact on observed patterns and burdens of gene 

knockouts in ASD. Overall, 131 of the 227 (58%) gene knockouts observed in the ASC were 

also observed in ExAC. Application of this filter reduced the overall burdens of observed 

biallelic knockout by half but left the ascertainment differentials intact (Figure 3a, 

Supplementary Figure 5). This significantly increased the observed proportional excess of 

biallelic LOF mutation: after filtering, on average, individuals with ASD were ~2.6 times as 

likely to have biallelic LOF mutations as individuals without ASD (p=0.002) (3.9X in 

females, p=0.001, and 2.6X in males, p=0.01) (Figure 3a).

We applied a similar logic to biallelic missense mutations as well. We reasoned that 

missense alleles encountered in the homozygous state in the general population are not 

likely to contribute to recessive condition. ~50% of rare, biallelic damaging missense events 

in the ASC involved an allele encountered in the homozygous state in ExAC (Supplementary 

Figure 6a, Supplementary Table 8). Filtering these events allowed us to discern for the first 

time a significant excess of rare biallelic damaging missense variation (i.e. NsynD4) in cases 

compared to controls (Supplementary Figure 6a), with an ascertainment differential of ~4%. 

Biallelic Nsyn variants were also in slight excess (p=0.0037), which arose almost entirely 

from affected females (Supplementary Figure 6b).

These results indicate that the observed excess in ASD is driven by genes and alleles that are 

biallelically constrained in the control population, strongly supporting the biological 

relevance of these findings.

De novo gene disrupting mutations contribute strongly to ASD21. To examine possible 

interactions between de novo and biallelic gene disrupting events, we compared the burden 

of biallelic LOF events in cases with and cases without LOF de novo mutations 

(Supplementary Figure 10)21. An excess of rare biallelic LOF events is strongly evident in 

ASD cases lacking de novo LOF variants (Supplementary Figure 10, p=0.0006). Their 

contribution in ASD cases with de novo LOF variants is harder to distinguish, as the 

observed difference in burdens of biallelic LOF events did not achieve statistical significance 

(Supplementary Figure 7). These may represent orthogonal risk categories, although larger 

sample sizes will be required to clarify this in the future.
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After ExAC filtering, a total of 57 biallelically constrained genes harbored biallelic LOF 

mutation in at least one ASD case. Of these, we can estimate that ~60% of these (based on 

the observed burdens, see Methods), and ~80% of the knockouts observed in females, likely 

confer ASD risk. To further enrich for relevant genes, we also set aside 13 genes knocked 

out in one or more unaffected individuals in our ASC dataset (Figure 3b, Supplementary 

Table 7), and three that failed Sanger confirmation, leaving a final set of 41 genes that were 

specifically knocked out in individuals diagnosed with ASD, but never in 66,557 controls 

(60,706 from ExAC and 5,852 unaffected individuals from ASC) (Supplementary Table 

9,10).

Several of these represent genes already implicated in disease. Eight (CA2, DDHD1, 
NSUN2, PAH, RARB, ROGDI, SLC1A1, USH2A) were associated with recessive genetic 

conditions involving neurodevelopmental delay (Table 2 and Supplemental Information for 

clinical details). In at least six of these cases (CA2, NSUN2, PAH, RARB, ROGDI, 
USH2A), available medical and phenotypic records were concordant with the clinical 

features predicted from the genetic finding (Supplemental Information). Phenotypic data 

was either unavailable or incomplete, but not discordant, for other cases. In two cases, 

knockouts were encountered in genes that cause well-characterized autosomal recessive 

conditions without clear connection to autism (RFX5 and DNAI2, associated with autosomal 

recessive immunodeficiency and primary ciliary dyskinesia, respectively). In two other 

cases, knockouts were observed in genes associated with autosomal dominant disorders via 

recurrent gain-of-function mutations (IFITM5 and KIF22, causing osteogenesis imperfecta 

type V and spondyloepimetaphyseal dysplasia with joint laxity type 2, respectively). The 

phenotypic consequence of recessive loss-of-function mutations for these two genes is 

unknown. Interestingly, KIF22 is one of 25 genes in the 593kb core interval affected by 

16p11.2 deletions.22 KIF22 was proposed as a one of two genes in the interval that 

demonstrates dosage sensitivity, with knockdown causing axon tract and behavioral defects 

in zebrafish,23 and disruption a KIF22 ortholog in Drosophila causes synapse development 

defects24.

Several of the remaining 33 genes are of strong neurobiological interest. One affected 

individual bore a homozygous LOF mutation (p.E48X) in SLC1A1, mutations in which have 

been linked to dicarboxylic aminoaciduria,25 an extremely rare disorder with prior 

associations with intellectual disability26,27 and obsessive compulsive disorder (OCD)25. 

SLC1A1 encodes a brain-expressed, activity-regulated glutamate transporter28,29 that 

modulates glutamatergic neurotransmission via a variety of mechanisms30,31,32,33,34,35 

SLC1A1 knockout in mice results in altered locomotor behavior36 and learning and memory 

defects.37

Two brothers with ASD bore homozygous stop-gain mutations in FEV, a transcription factor 

that is required for both development and function of serotonergic neurons (Supplementary 

Figure 8a). These neurons send projections that ramify broadly throughout the CNS 

(Supplementary Figure 8b), and have wide-ranging neuromodulatory effects on many 

physiological states and behaviors, including mood, aggression, anxiety, sleep, and 

movement38. Serotonergic dysfunction has been strongly implicated in neuropsychiatric 

conditions including ASD39, schizophrenia and mood disorders38. In mice, Fev/Pet-1 has 
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been shown to be highly expressed in the serotonergic raphe nuclei40, and inactivation of 

Fev during development41 or adulthood42 results in depletion of serotonergic neurons and 

neurobehavioral changes including anxiety and aggression.41,42 Human FEV is also 

expressed in the serotonergic raphe in adult brain43,44, and we found similar results via in 
situ hybridization analysis of human fetal brain as well (Supplementary Figure 8c–f). The 

older affected brother was diagnosed with autism and had a measured IQ of 69. He exhibited 

severe, stereotyped aggressive and self-injurious behaviors. He had a BMI of 25.6 (99%) and 

mildly dysmorphic facial features. EEG showed bilateral rolandic focus with generalization. 

The younger affected brother was diagnosed with PDD-NOS and intellectual disability (IQ 

not measured), had a BMI of 17.7 (91%), and no facial dysmorphisms (further details in 

Supplemental Information). We are not aware of any previous report of a human loss-of-

function phenotype for FEV.

Gene knockouts were also identified in FCHSD2, a cytoskeletal adaptor protein that is 

highly expressed in human fetal brain and is the human homolog of Drosophila nervous 
wreck45, NCOA7, a brain-specific transcriptional coactivator for steroid and nuclear 

hormone receptors46, and MOB1B, a downstream effector in the Hippo signaling pathway, a 

pathway recently implicated in regulation of brain size47. Many additional genes in the 

candidate set have abundant brain expression (BRMS1L, ELOF1, GCN1L1, NUPR1, 

SLC22A6) but less clear neurobiological activity.

We also expanded our scope to incorporate biallelic missense mutation. There were 409 

distinct genes that harbored biallelic, damaging missense mutations in cases but not in 

controls (Supplementary Figure 9, Supplementary Table 11). Only one gene was found that 

was independently hit in multiple families: AMT, an established cause of nonketotic 

hyperglycinemia (NKH). Hypomorphic mutations in AMT have previously been reported to 

cause ASD without NKH’s characteristic metabolic abnormalities. No other gene was hit 

more than once, so larger sample sizes would be necessary to establish any of these genes as 

ASD genes on this basis alone (Supplementary Table 11, Supplementary Figures 10 and 11). 

However, there were thirteen cases in which affected individuals bore biallelic mutations in 

alleles of established medical significance (in ClinVar as Pathogenic or Likely Pathogenic) 

(Table 3, Supplementary Table 12, Supplementary Information). All were diagnostic of 

genetic disorders with known neurodevelopmental consequences including classic metabolic 

diseases, mitochondrial depletion syndrome, and other syndromic conditions. All together, 

combined with the previously described eight LOF cases, biallelic mutations in known genes 

constituted ~1% of our cohort (21 out of 2,343 affected individuals), underscoring the 

importance of clinical screening for monogenic recessive conditions in this patient 

population.

Our study extends prior estimates of the contribution of recessive mutations to ASD13,14 and 

proves that the female protective / male susceptibility effect in ASD applies to biallelic 

mutations as well. Expanding these efforts to larger ASD cohorts should offer a path forward 

to delineate novel neurobiological mechanisms in autism.
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METHODS

Whole exome data analyses

Whole-exome sequencing data were gathered as part of the Autism Sequencing 

Consortium48. We focused our analysis on nine datasets generated using the Illumina 

sequencing platform, Supplementary Table 1). Alignment and variant calling were 

performed as previously described. Low-quality variants were filtered with the following 

criteria: (1) SNPs with GQ<20, (2) SNPs not passing the standard PASS filter, and (3) all 

indels (due to excessive false positives leading to spurious frameshift calls). Variant 

annotation was performed using ANNOVAR49 to add allele frequencies, functional 

predictions, conservation, and gene annotations including OMIM and HGMD50 disease 

associations. Allele frequencies were also calculated for each contributing cohort and across 

the entire collection of ASC samples analyzed. Variants were categorized by their predicted 

impact into synonymous, nonsynonymous (missense), or loss-of-function (altering a 

canonical splice site or resulting in a stopgain). Additional classification of damaging 

missense variants (NsynD4) was performed for variants predicted to be deleterious by at 

least 4/6 algorithms (SIFT51, PolyPhen2_HDIV52, PolyPhen2_HVAR, MutationTaster53, 

MutationAssessor54, and LRT55).

Phasing was performed using Beagle 456 on the ASC dataset. VCFs were subdivided by 

chromosome and cohort prior to processing with Beagle employing default parameters.

Biallelic burden calculations

Allele frequency filtration was performed as described in the text using available public 

databases (1000G, EVS, ExAC). For rare variant calculations at maxAF 0.1%, 0.5%, 1%, 

5%, and 10%, additional cohort-specific filters (cohort-specific AF of 5% or 10%) were 

applied to account for allelic variants that may be prevalent in a population but are not well 

represented in existing control databases. Burdens of homozygous and compound 

heterozygous variants were then counted for each cohort and for the entire ASC, stratifying 

by affected/unaffected status, gender, and mutational category (LOF, Nsyn, NsynD4, Syn).

To control for potential differences in underlying family and population structure of some of 

the constituent cohorts, we also measured rates of synonymous biallelic variation. In two 

cohorts (from the Middle East and Finland, respectively), rates of biallelic synonymous 

variation in affected individuals were higher than rates of biallelic synonymous variation in 

unaffected individuals (Supplementary Table 3). Therefore, for these cohorts, we normalized 

our LOF, NsynD4, and Nsyn burden calculations to the background rate of biallelic 

synonymous variation, to isolate the impact of biallelic LOF variation independent of 

background homozygosity in these cohorts.

The contribution of mutations to ASD risk was estimated using the following approach. First 

the ascertainment differential (AD) is calculated as the difference between the burden of 

biallelic mutations in cases and in controls and represents the estimated fraction of mutations 

that contribute to ASD (for example, an AD of 0.01 suggests that 1% of cases have a 

biallelic mutation contributing to ASD risk. The fraction of observed biallelic mutations 

contributing to disease is then calculated as AD divided by the total mutation burden in 
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cases. For example, given a burden of 0.025 biallelic LOF events in cases and 0.01 biallelic 

LOF events in controls, the AD is 0.015 and the percentage of mutations identified which 

contribute to disease risk is 0.015 divided by 0.025, or 60%.

For burden comparisons, significance was assessed by permutation testing using 10,000 

random assignments of diagnostic categorization to individuals within the study. A 

significance threshold of p<0.05 (i.e., without correction for multiple testing) was employed 

since the allele frequency cutoffs and variant annotation classes (LOF, LOF+NSynD4, LOF 

or NSynD4, NSynD4, NSyn) analyzed are not discrete. We do note that, all ExAC-filtered 

biallelic burden results (i.e., excess biallelic LOF, NSynD4, and NSyn mutations, 

summarized in Figure 3 and Supplementary Figures 5 and 6) were significant even with 

application of maximally conservative Bonferroni correction (e.g., p<0.01 assuming five 

fully independent hypotheses).

ExAC filtration

To generate a list of genes commonly inactivated by biallelic LOF mutation, we analyzed 

whole exome data from 60,706 individuals compiled by the Exome Aggregation Consortium 

(ExAC)17. We applied ANNOVAR to systematically re-annotate all variants from ExAC 

against RefSeq complete protein coding genes. Since phasing was unavailable, we focused 

on genes bearing putative homozygous LOF variants (any variant in stopgain, frameshift, or 

canonical splicing change). Homopolymer expansions / contractions in canonical splice 

regions were ignored, as expansions and contractions in these regions are common and have 

little impact on splicing. With these parameters, a total of 2986 genes were found to be 

inactivated by homozygous stopgain, frameshift, or canonical splice site mutation in ExAC. 

We also used this re-annotated dataset to generate a list of ExAC alleles encountered in the 

homozygous state, to identify missense and other mutations that are more likely to be 

clinically benign. For the final LOF candidate genes presented in Supplementary Tables 9 

and 10, contributory alleles were also confirmed to be absent in the homozygous state in the 

gnomAD dataset17.

Variant confirmation

Sanger sequencing was employed to confirm the accuracy of exome variant calls for a subset 

of LOF and NsynD4 variants with an empirical validation rate of 96% (107 of 114 alleles 

tested). These included all LOF alleles reported here for which DNA samples were 

available. If DNA samples were not available, we note the presence of allelic variants in 

known databases and/or whether predicted genotypes follow Mendelian segregation patterns 

in parental exome data (where available) as additional support.

Human tissue collection and in situ hybridization for FEV

Human embryonic and fetal tissues were obtained from the MRC-Wellcome Trust Human 

Developmental Biology Resource (www.hdbr.org)57 following appropriate consent from the 

women involved and adhering to the relevant HTA guidelines with approval from Research 

Ethics Committee NRES Committee North East - Newcastle & North Tyneside 1.
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RNA probes were produced by amplifying human embryonic cDNA using a forward primer 

to FEV (NM_017521, nt. 1286–1305) tagged with a T7 RNA promoter sequence and a 

reverse primer (NM_017521, nt. 1862–1843) tagged with a SP6 RNA promoter sequence 

(Supplementary Table 13). The resulting fragment was in vitro transcribed using the DIG 

RNA Labeling Kit (Roche).

The in situ hybridizations were performed as previously described48, except that 60ng RNA 

probe in 100ul ULTRAhyb (Ambion) per slide was used for the hybridization and the post-

hybridization washes were modified: slides were washed for 10 minutes in 5 X SSC, twice 

in 2 X SSC, 50% formamide/1 X SSC, 1 X SSC and finally in 0.1X SSC. The hybridization 

incubation and all post-hybridization steps were performed at 63.5°C. Three human fetal 

brain samples were used: a Carnegie Stage (CS) 23 brain (12959), a CS23 head (12011), and 

a 10 post conception week hindbrain (sample 12721). Findings described were confirmed in 

at least two specimens. Expression patterns were analyzed relative to spatial models 

provided by the HuDSeN human gene expression spatial database project (http://

www.hudsen.org).58

Reporting Summary

Further information on research design is available in the Life Sciences Reporting Summary 

linked to this article.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
An excess of rare, damaging, biallelic mutation in ASD. (a) Rates of biallelic gene knockout 

(strict LOF) in the ASC, stratified by diagnosis and allele frequency. Rates of biallelic 

variation, considering (b) LOF variants paired with a damaging missense variant (NsynD4, 

predicted to be deleterious by at least 4 algorithms), (c) LOF or NsynD4 variants, or 

NsynD4 variants alone. Genes impacted by biallelic variation in cases exhibit (d) 
haploinsufficiency and (e) pLI score profiles consistent with recessive genes. Error bars 

represent the 95% confidence intervals.
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Figure 2. 
Biallelic mutations in ASD: effects of sex. (a) Rates of biallelic gene knockout (strict LOF) 

in the ASC, stratified by diagnosis and sex. (b, c) Rates of biallelic variation stratified by 

sex, considering (b) LOF or damaging missense (LOF or NsynD4) variants or (c) damaging 

missense variants alone (NsynD4). Error bars represent the 95% confidence intervals.
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Figure 3. 
Biallelic mutations in ASD: ExAC filtration. (a) Rates of biallelic gene knockout (strict 

LOF) after filtration of commonly inactivated genes in ExAC. (b) Breakdown of candidate 

ASD genes excluded by presence of knockouts in ExAC, or by knockouts that are common 

and/or in unaffected individuals of the ASC. Error bars represent the 95% confidence 

intervals.
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Table 2.

Clinically relevant gene knockouts in the ASC

Gene Mutations Disease relevance Notes

CA2 hom c.232+1G>A (NM_000067) Carbonic anhydrase deficiency Intellectual disability, osteopetrosis, 
renal tubular acidosis

DDHD1 comp het c.1311–2A>T/c.2459–2A>T 
(NM_001160147) Spastic paraplegia Spastic paraplegia, mitochondrial 

abnormalities; only 3 cases reported

NSUN2 hom c.C1708T:p.Q570X (NM_001193455) Autosomal recessive intellectual 
disability

Syndromic intellectual disability; only 
7 mutations reported

PAH
hom c.C703T:p.Q235X and hom c.

592_613del:p.Y198fs (NM_000277) (two separate 
individuals)

Phenylketonuria
~20% of individuals with PKU have 

autism (finding previously reported13)

SLC1A1 hom c.G142T:p.E48X (NM_004170) Dicarboxylic aminoaciduria
Elevated urinary glutamate and 

aspartate, variable neuropsychiatric 
symptoms; only 3 cases reported

RARB hom c.C78A:p.C26X (NM_000965) PDAC syndrome

Microphthalmia, pulmonary 
hypoplasia, diaphragmatic hernia, and 

cardiac defects; milder forms 
described

ROGDI hom c.201–1G>T (NM_024589) Kohlschütter-Tönz syndrome Global developmental delay, epilepsy, 
spasticity, amelogenesis imperfecta

USH2A comp het c.T12714G:p.Y4238X/ 
c.G6224A:p.W2075X (NM_206933) Usher syndrome

Sensorineural hearing deficiencies, 
retinitis pigmentosa (finding 

previously reported14)
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