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Highlights: 34 

• Sleep disruption is increasingly considered as a risk factor for Alzheimer’s disease. 35 

• Poor sleep is associated with diffuse frontal, temporal and parietal gray matter atrophy. 36 

• Alzheimer’s disease biomarkers are associated with several sleep parameters. 37 

• However, the specificity, topography and causality of these links are unclear. 38 

 39 
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Abstract: Ageing is characterized by a progressive decline of sleep quality. Sleep difficulties 41 

are increasingly recognized as a risk factor for Alzheimer’s disease (AD), and have been 42 

associated with cognitive decline. However, the brain substrates underlying this association 43 

remain unclear. In this review, our objective was to provide a comprehensive overview of the 44 

relationships between sleep changes and brain structural, functional and molecular integrity, 45 

including amyloid and tau pathologies in cognitively unimpaired older adults. We especially 46 

discuss the topography and causality of these associations, as well as the potential underlying 47 

mechanisms. Taken together, current findings converge to a link between several sleep 48 

parameters, amyloid and tau levels in the CSF, and neurodegeneration in diffuse frontal, 49 

temporal and parietal areas. However, the existing literature remains heterogeneous, and the 50 

specific sleep changes associated with early AD pathological changes, in terms of topography 51 

and neuroimaging modality, is not clearly established yet. Notably, if slow wave sleep 52 

disruption seems to be related to frontal amyloid deposition, the brain correlates of sleep-53 

disordered breathing and REM sleep disruption remains unclear. Moreover, sleep parameters 54 

associated with tau- and FDG-PET imaging are largely unexplored. Lastly, whether sleep 55 

disruption is a cause or a consequence of brain alterations remains an open question. 56 

  57 
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1. Introduction 58 

As the worldwide population is ageing, preventing cognitive decline and the development of 59 

dementia represents an important challenge. Intense research aims at identifying modifiable 60 

lifestyle factors that might help to promote healthy ageing. Among them, sleep is receiving 61 

particular attention, as about 50% of older adults complain of poor sleep (Foley et al., 1995). 62 

Age-related changes consist, at the circadian level, in advanced sleep timing and reduced 63 

amplitude of the circadian rhythms (Duffy et al., 2015; Kondratova and Kondratov, 2012). Sleep 64 

changes include longer sleep latency, decreased sleep duration, and increased number and 65 

duration of nocturnal awakenings, resulting in greater sleep fragmentation and lower sleep 66 

efficiency (Li et al., 2018; Ohayon et al., 2004). Remarkably, the amount of slow wave sleep 67 

(SWS), the deepest non-rapid eye movement (NREM) sleep stage, linearly decreases across 68 

the adult lifespan, contrasting with the increase of lighter NREM sleep (especially stage N1). 69 

Substantial changes in NREM sleep oscillations such as delta waves (Carrier et al., 2001; 70 

Landolt et al., 1996; Schwarz et al., 2017) and sleep spindles, key features of N2 sleep (Crowley et 71 

al., 2002; Schwarz et al., 2017) are also reported. Rapid-eye movement (REM) sleep time is 72 

reduced with age, albeit to a lesser extent and later in life than SWS (Floyd et al., 2007; Ohayon 73 

et al., 2004). Finally, 30 to 80% of older adults suffer from sleep-disordered breathing (SDB; 74 

Senaratna et al., 2017), a respiratory disorder defined by recurrent upper airway collapse during 75 

sleep, resulting in intermittent hypoxia episodes and sleep fragmentation, which may trigger 76 

neurodegenerative processes. 77 

Sleep is essential for an optimal daytime cognitive functioning, notably for attention, 78 

executive functioning, memory, and synaptic plasticity (Buzsáki, 1996; Killgore, 2010; Lowe et 79 

al., 2017; Tononi and Cirelli, 2006). In older adults, growing evidence show that sleep 80 

disturbances may represent a risk factor for cognitive decline and dementia. Indeed, 81 

longitudinal studies indicate that poor self-reported sleep quality, short but also long sleep 82 
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duration (i.e., <7 or >8 hours of sleep), longer sleep latency, lower sleep efficiency, greater 83 

sleep fragmentation, decreased REM sleep, excessive daytime sleepiness and SDB are 84 

associated with cognitive decline and incident mild cognitive impairment or dementia 85 

diagnosis (Bubu et al., 2017; Diem et al., 2016; Foley et al., 2001; Gabelle et al., 2017; Leng et al., 86 

2017; Lim et al., 2013a; Pase et al., 2017; Song et al., 2015; Virta et al., 2013). As Alzheimer’s 87 

disease (AD) pathology develops several years before the first clinical symptoms (Jack et al., 88 

2018), it is crucial to better understand the associations between sleep disturbances and brain 89 

integrity (including AD biomarkers) in older adults who are still cognitively unimpaired. 90 

Thus, our objective was to summarize existing data about these associations, with an 91 

emphasis on their topography and causality, and discuss the potential underlying mechanisms. 92 

We focused the present short review on papers published during the last decade (i.e., between 93 

2010 and November 2020), involving cognitively unimpaired older adults, with no history or 94 

current diagnosis of major neurological or psychiatric diseases, or any other major medical 95 

condition. 96 

 97 

2.  Sleep quality and gray matter volume changes 98 

Cross-sectional studies show that lower grey matter (GM) volume within frontal areas is one 99 

of the brain changes most consistently associated with sleep quality in cognitively unimpaired 100 

older adults (Table 1). Sleep parameters associated with frontal atrophy include self-reported 101 

poor sleep quality (Sexton et al., 2014) and inadequate sleep duration (Lo et al., 2014; Westwood 102 

et al., 2017), early-morning awakenings (Stoffers et al., 2012), excessive daytime sleepiness 103 

(Killgore et al., 2012), greater sleep fragmentation obtained from actigraphy (Lim et al., 2016), 104 

and decreased slow wave activity (Dubé et al., 2015; Latreille et al., 2019; Mander et al., 2013). 105 
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In addition, reduced GM volume in lateral and medial temporal regions (including the 106 

hippocampus and the amygdala), the thalamus, and parietal cortex, have been associated with 107 

poor self-reported sleep quality (Alperin et al., 2019; Liu et al., 2018), inadequate sleep duration 108 

(Lo et al., 2014; Westwood et al., 2017) and excessive daytime sleepiness (Carvalho et al., 2017). 109 

Branger et al. (2016) also found an association between a higher number of self-reported 110 

nocturnal awakenings and lower GM volume in the insula. Importantly, these findings are 111 

supported by studies using actigraphy or polysomnography. Indeed, SWS integrity has been 112 

associated with GM volume in parietal and insular cortices (Dubé et al., 2015), and reduced 113 

GM volume in medial temporal areas has been related to greater sleep-wake rhythm 114 

fragmentation (Van Someren et al., 2019). GM volume changes associated with SDB in older 115 

adults vary importantly, some studies showing atrophy (Huang et al., 2019; Shi et al., 2017; 116 

Tahmasian et al., 2016; Weng et al., 2014) in frontal, temporal and parietal areas, while others 117 

rather report hypertrophy (André et al., 2020; Baril et al., 2017; Cross et al., 2018; Rosenzweig et al., 118 

2013) in the same brain areas. 119 

A few longitudinal studies reported that self-estimated poor sleep quality (Fjell et al., 2019; 120 

Sexton et al., 2014) and short sleep duration (Lo et al., 2014; Spira et al., 2016) are associated with 121 

an increased rate of atrophy within frontal, temporal (including the hippocampus) and parietal 122 

areas. However, long self-reported sleep duration (> 7h) has also been related to a higher rate 123 

of frontal GM atrophy (Spira et al., 2016). 124 

 125 

3. Sleep, brain glucose metabolism and perfusion changes 126 

Only a few studies have explored the associations between sleep quality and resting-state 127 

glucose metabolism using 
18

F-fluorodeoxyglucose (FDG) Positron Emission Tomography 128 
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(PET), or perfusion, using Arterial Spin Labeling (ASL) or Single Photon Emission 129 

Computed Tomography (SPECT) imaging (see Table 1). 130 

 131 

In cognitively unimpaired older adults, if self-reported sleep measures were not associated to 132 

glucose metabolism (Branger et al., 2016), greater sleep fragmentation obtained from 133 

actigraphy was related to lower glucose metabolism within the ventromedial prefrontal cortex 134 

and the hippocampi (André et al., 2019). In addition, as for GM volume, SDB has been related 135 

to both lower (Baril et al., 2020, 2015; Innes et al., 2015; Kim et al., 2017; Nie et al., 2017) and 136 

greater (André et al., 2020; Baril et al., 2015; Nie et al., 2017) metabolism and/or perfusion mainly 137 

in frontal, temporal and parietal areas, including the precuneus and posterior cingulate cortex 138 

(Table 1). 139 

 140 

4. Sleep and amyloid pathology 141 

In animal models of Alzheimer’s disease and in humans, amyloid-ß peptide (Aß) levels 142 

fluctuate following a circadian pattern, increasing with wakefulness and decreasing during 143 

NREM sleep (Kang et al., 2009). Whether this effect is mainly attributable to decreased 144 

metabolic activity during SWS, and/or increased metabolites clearance through the 145 

“glymphatic system” (Tarasoff-Conway et al., 2015a; Xie et al., 2013) is still debated. 146 

Nevertheless, the circadian fluctuations of Aß levels in the cerebrospinal fluid (CSF) are 147 

attenuated with ageing and with increased Aß deposition (Huang et al., 2012; Roh et al., 2012). 148 

In cognitively unimpaired older adults, various sleep parameters have been associated with 149 

greater global Aß levels measured in the CSF or using PET, including poorer self-reported 150 

sleep quality, both cross-sectionally (Sprecher et al., 2017) and longitudinally (Fjell et al., 2018), 151 

longer subjective (Brown et al., 2016) and objective (Ettore et al., 2019) sleep latency, both 152 
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insufficient and long self-reported sleep duration (Spira et al., 2013; Xu et al., 2020), lower 153 

sleep efficiency (Ettore et al., 2019; Ju et al., 2013; Molano et al., 2017), increased sleep 154 

fragmentation (Ettore et al., 2019; Lucey et al., 2019; Wilckens et al., 2018), excessive daytime 155 

sleepiness (Xu et al., 2020), and altered slow wave activity (SWA) (Ju et al., 2017; Varga et al., 156 

2016; Winer et al., 2019) (Table 1). Furthermore, Mander et al., (2015) showed that amyloid 157 

burden in medial prefrontal areas disrupts SWA, negatively affecting sleep-dependent 158 

memory consolidation. In addition, Winer et al. (2020) showed that decreased SWA and sleep 159 

efficiency significantly predicted the subsequent Aß accumulation over several years. 160 

Studies using regional approaches have revealed that greater amyloid deposition in frontal 161 

and/or parietal areas, including the precuneus and posterior cingulate cortex, is associated 162 

with lower self-reported sleep quality (Sprecher et al., 2017), longer self-reported sleep latency 163 

(Branger et al., 2016), lower subjective sleep adequacy (Sprecher et al., 2015), corresponding to 164 

insufficient sleep quality and duration, and excessive daytime sleepiness, both cross-165 

sectionally (Sprecher et al., 2015) and longitudinally (Carvalho et al., 2018). Short sleep duration 166 

has been associated with greater amyloid deposition in the precuneus (Spira et al., 2013), but 167 

this result failed replication by Gabelle et al. (2019).  168 

Lastly, SBD has also been related to higher amyloid levels measured in the CSF or using PET 169 

imaging (both cross-sectionally and longitudinally) (Bu et al., 2015; Bubu et al., 2019; Jackson et 170 

al., 2020; Kong et al., 2020; Liguori et al., 2017; Sharma et al., 2018; Ylä-Herttuala et al., 2020), and 171 

specifically in the posterior cingulate cortex and the precuneus (André et al., 2020; Ylä-Herttuala 172 

et al., 2020; Yun et al., 2017). 173 

 174 

5. Sleep and tau pathology 175 
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Besides Aß deposition, sleep disruption may also exacerbate tau pathology in older adults 176 

without cognitive deficits, the second pathophysiological hallmark of AD (Holth et al., 2019). 177 

Self-estimated poor sleep quality and excessive daytime sleepiness have been associated with 178 

higher t-tau and p-tau/Aβ42 ratios (Sprecher et al., 2017). In addition, Fjell et al. (2018) showed 179 

that CSF tau levels predict poor sleep quality in amyloid-positive older adults. Moreover, CSF 180 

tau levels increased after one night of sleep deprivation (Holth et al., 2019), and are associated 181 

with greater sleep fragmentation (Lim et al., 2013b) and lower sleep efficiency (Ju et al., 2017). 182 

Interestingly, in this latter study, the association between sleep and tau was mainly driven by 183 

increased neuronal activity during sleep. Moreover, patients with SDB also exhibit increased 184 

CSF tau levels, both cross-sectionally (Bu et al., 2015; Kong et al., 2020; Liguori et al., 2017) and 185 

longitudinally (Bubu et al., 2019). 186 

Recent studies using tau-PET imaging have provided mixed results (Table 1). Lucey et al. 187 

(2019) reported that both amyloid and tau pathologies are associated with decreased SWA, 188 

with a stronger link for tau. In contrast, Winer et al. (2019) did not report any direct association 189 

between tau in the medial temporal lobe and prefrontal SWA, but rather a relationship 190 

between medial temporal tau burden and altered coupling between slow waves and sleep 191 

spindles. However, research using tau-PET imaging is still in their infancy, and further studies 192 

are needed to unravel the associations between tau pathology and sleep quality. 193 

 194 

6. Discussion 195 

Poor sleep quality in cognitively unimpaired older adults is associated with diffuse and 196 

heterogeneous structural, functional and molecular brain changes in frontal, temporal and 197 

parietal areas. While some of these brain substrates are consistent with early pathological 198 
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changes observed in AD, other sleep-associated brain changes seem less suggestive of AD, 199 

both in terms of topography and nature of brain alterations involved. 200 

Indeed, frontal amyloid burden is associated with self-reported sleep difficulties (Branger et al., 201 

2016; Sprecher et al., 2017, 2015). Moreover, SWS disruption appears to be robustly associated 202 

with amyloid pathology (Ju et al., 2017; Varga et al., 2016), notably in medial prefrontal areas 203 

(Mander et al., 2015). Interestingly, AD is defined by the presence of amyloid deposition (Jack 204 

et al., 2018) spreading from frontal areas, before the appearance of cognitive deficits. 205 

Moreover, self-reported sleep difficulties (Alperin et al., 2019; Carvalho et al., 2017; Fjell et al., 206 

2019) and greater fragmentation of the sleep/wake rhythm (Van Someren et al., 2019) have been 207 

linked to medial temporal lobe (MTL) atrophy. Of note, SDB has been related to both reduced 208 

(Huang et al., 2019; Tahmasian et al., 2016; Weng et al., 2014) and greater (Cross et al., 2018; 209 

Rosenzweig et al., 2013) MTL volume. It seems crucial to better characterize sleep parameters 210 

associated with MTL atrophy, as medial temporal areas are known to be affected by tau 211 

pathology and atrophied since AD pre-dementia stages (Braak and Braak, 1991; Villemagne and 212 

Chételat, 2016). In addition, beyond the MTL, tau pathology also affects the brainstem, which 213 

is involved in sleep-wake regulation and REM sleep generation (Horner and Peever, 2017). 214 

REM sleep is reduced in AD patients (Brayet et al., 2016; Hassainia et al., 1997; Hita-Yañez et al., 215 

2012; Montplaisir et al., 1995) and this alteration is predictive of cognitive decline in older 216 

adults (Pase et al., 2017). Liguori et al. (2020) have recently demonstrated that REM sleep 217 

reduction is associated with increased CSF tau levels, in a cohort of cognitively healthy older 218 

adults and patients with subjective cognitive decline, mild cognitive impairment and AD. 219 

However, due to the relatively recent emergence of tau-PET neuroimaging, the relationships 220 

between REM sleep changes and tau pathology in the brainstem and medial temporal areas 221 

remains to be clarified, specifically in cognitively normal older populations. 222 
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Lastly, the associations between sleep changes and glucose metabolism have been much less 223 

investigated. SDB has been associated with decreased metabolism and/or perfusion in 224 

posterior parietal areas (Baril et al., 2015; Yaouhi et al., 2009), but increases have also been 225 

reported (André et al., 2020). Taken together, it is unclear whether sleep quality is associated 226 

with the marked hypometabolism in posterior cingulate and precuneus areas observed in AD 227 

and mild cognitive impairment patients (Chételat et al., 2003; Minoshima et al., 1997; Schroeter et 228 

al., 2009).  229 

 230 

Besides, sleep modifications have been linked to other brain changes which seem less directly 231 

suggestive of early AD pathological processes, and could rather reflect normal ageing 232 

processes. Indeed, GM atrophy in frontal and parietal areas is robustly associated with SWS 233 

disruption, in particular decreased slow wave activity (Dubé et al., 2015; Latreille et al., 2019; 234 

Mander et al., 2013). These results are consistent with the fact that these regions are involved 235 

in sleep physiology and the generation of slow waves (Massimini et al., 2004; Murphy et al., 236 

2009). Moreover, greater sleep fragmentation is related to lower frontal GM volume (Lim et al., 237 

2016) and fronto-hippocampal metabolism (André et al., 2019), two areas critical for sleep-238 

dependent memory consolidation (Buzsáki, 1996; Maingret et al., 2016). The brain correlates of 239 

SDB appear however still conflicting, with both positive and negative associations with 240 

frontal GM volume and metabolism, MTL metabolism, and parietal GM volume (see Table 241 

1). The pattern of SDB-related neuronal hyperactivity (i.e., greater GM volume, metabolism 242 

and perfusion) reported in some studies could reflect acute and early reactive processes, likely 243 

due to neuroinflammation in response to hypoxia. This neuronal hyperactivity may also 244 

reflect compensatory mechanisms due to greater individual brain reserve, which may help to 245 

maintain cognitive performance in the normal range by increasing brain activity. Importantly, 246 

these acute changes may only be temporary and may trigger neurodegeneration (i.e., GM 247 
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atrophy and hypometabolism) and the development of cognitive deficits over time. 248 

Longitudinal studies combining several neuroimaging modalities on large cohorts with 249 

various levels of SDB severity will be necessary to confirm this hypothesis. 250 

Frontal, temporal and posterior parietal regions thus constitute common brain substrates 251 

between sleep physiology and AD pathology, but a critical question is whether sleep 252 

disturbances are causal and/or consecutive to brain alterations. First, AD pathology located in 253 

frontal, medial temporal and brainstem areas, involved in sleep rhythms, could disrupt sleep 254 

quality, eventually impairing cognitive performance. Supporting this hypothesis, atrophy and 255 

amyloid burden within medial prefrontal areas have been shown to disrupt SWS (Mander et 256 

al., 2015, 2013), ultimately impairing sleep-dependent memory consolidation. Moreover, sleep 257 

disruption may also mediate or moderate the association between brain alterations and 258 

cognitive performance. Indeed, poor self-estimated sleep quality (Molano et al., 2017) and 259 

increased nocturnal wakefulness (Wilckens et al., 2018) moderate the association between 260 

amyloid burden and memory performance. Lastly, greater sleep fragmentation mediates the 261 

association between fronto-hippocampal hypometabolism and poorer executive functioning 262 

(André et al., 2019). 263 

However, it is likely that the links between sleep and brain alterations are bidirectional (Ju et 264 

al., 2014). Indeed, the consequence of disrupted sleep is to increase the amount of wakefulness 265 

during sleep and to decrease the amount of sleep per se. Subsequently, greater neuronal 266 

activity and reduced brain clearance function may result in greater amyloid and tau release 267 

(Fig. 1). If increased activity and reduced clearance are likely to co-exist, their respective 268 

contributions are unclear. A pilot study in humans showed that these links are mainly driven 269 

by increased Aβ secretion, and not by decreased clearance (Lucey et al., 2018). However, the 270 

study of brain clearance mechanisms is a recent area of research. In mice, clearance through 271 

the blood brain barrier and interstitial fluid bulk-flow seem to be both implicated in amyloid 272 
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clearance and related to sleep quality (Rasmussen et al., 2018; Tarasoff-Conway et al., 2015b; Xie 273 

et al., 2013). Notably, the glymphatic system hypothesis proposes that arterial pulsations drive 274 

waste clearance through a directional convective flow of CSF, from periarterial areas in the 275 

deep brain parenchyma to the perivenous spaces. This process implicates water channels, like 276 

aquaporin-4, located in glial cells (Iliff et al., 2013, 2012; Nedergaard, 2013), and is facilitated 277 

during sleep (Xie et al., 2013). Nevertheless, several aspects of this model are currently debated 278 

(Mestre et al., 2020), and most findings in mice are pending replication in humans, as non-279 

invasive neuroimaging tools of clearance mechanisms are still under development. Moreover, 280 

the associations with AD pathology remain to be confirmed. In healthy young subjects, a 281 

promising recent study demonstrated that slow waves during NREM sleep are followed by 282 

hemodynamic oscillations, which are in turn coherent with large waves of CSF (Fultz et al., 283 

2019). 284 

 285 

7. Conclusion 286 

Age-related sleep disruption is associated with brain changes mainly in frontal, temporal and 287 

parietal areas, some of them being suggestive of early AD pathological changes. These links 288 

may explain why sleep disruption is related to lower cognitive performance and steeper 289 

cognitive decline. However, the specific aspects of sleep disruption involved in these 290 

associations, the impact on tau pathology, and the associations with disrupted brain clearance 291 

mechanisms during sleep remain to be further explored. In addition, if we only discussed the 292 

associations between sleep disruption and regional GM integrity and functioning, sleep-293 

related changes in structural and functional connectivity specifically in cognitively 294 

unimpaired older adults are a promising area of research. From a clinical perspective, it is 295 

crucial to screen for sleep problems in older adults, as they may exacerbate AD 296 
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pathophysiological mechanisms and may represent a modifiable lifestyle factor contributing 297 

to healthy ageing. 298 

 299 
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Figure 1 703 

 704 

 705 

Figure 1. Summary of the associations between sleep, brain and cognitive integrity in 706 

older adults. 707 

Abbreviations: PFC: prefrontal cortex; MTL: medial temporal lobe; PCC: posterior cingulate cortex; 708 

REM-S: rapid eye movement sleep; SD: sleep deprivation; SDB: sleep-disordered breathing; SF: sleep 709 

fragmentation; SWS: slow wave sleep. 710 

Studies show that poor sleep quality in older adults is associated with decreased gray matter volume in 711 

frontal, temporal and parietal areas, increased global, frontal, and parietal amyloid levels, as well as 712 

increased global tau levels. These brain areas are both sensitive to ageing and Alzheimer’s disease, 713 

and some of them (notably frontal areas) are involved in the generation and maintenance of sleep 714 

oscillations. Their alteration contributes to the aggravation of amyloid and tau pathologies and may 715 

explain why poor sleep quality is associated with an increased risk of cognitive decline. 716 

 717 

 718 

 719 
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Sleep parameter Method Grey matter volume 
Perfusion and glucose 

metabolism
1
 

Amyloid pathology
2
 Tau pathology

3
 

Sleep deprivation Objective   Global levels (Ooms 2014) Global levels (Holth 2019) 

 Global sleep quality 
Self-

reported 

Frontal (Sexton 2014), hippocampus 

(Alperin 2018, Liu 2018), thalamus 

(Liu 2018), parietal and amygdala 

(Alperin 2018).  

Longitudinal: frontal, temporal and 

parietal (Sexton 2014), hippocampus 

(Fjell 2019) 

 

Global levels (Sprecher 2017), frontal & 

parietal (Sprecher 2017)  

Longitudinal: global levels (Fjell 2018) 

Global levels (Sprecher 2017) 

Longitudinal: global levels (Fjell 

2018) 

 Excessive daytime 

sleepiness 

Self-

reported 

MTL, frontal, parietal and occipital 

(Carvalho 2017) 
 

Global levels (Xu 2020), frontal & 

parietal (Sprecher 2015).  

Longitudinal: global levels (Spira 2018), 

anterior and posterior cingulate & 

precuneus (Carvalho 2018) 

Global levels (Sprecher 2017) 

 Sleep latency 

Self-

reported 
  

Global levels (Brown 2016), frontal 

(Branger 2016) 
 

Objective   Global levels (Ettore 2019)  

 Sleep efficiency Objective   

Global levels (Ju 2013, Molano 2017, 

Ettore 2019) 

Longitudinal: global levels (Winer 2020) 

Global levels (Ju 2017) 

Short sleep duration 
Self-

reported 

Global atrophy (Lo 2014). 

Longitudinal: fronto-temporal (Spira 

2016: <7h) 

 
Global levels (Spira 2013, Xu 2020: 6h) 

& precuneus (Spira 2013: 6h) 
 

Long sleep duration 
Self-

reported 

Global atrophy (Westwood 2017: 

≥9h), occipital (Spira 2016: >7h). 

Longitudinal: frontal (Spira 2016: 
>7h) 

 Global levels (Xu 2020: ≥6h)  

 Nocturnal 

awakenings & sleep 

fragmentation 

Self-

reported 

OFC (Stoffers 2012, early 

awakenings), insula (Branger 2016, 

nocturnal awakenings) 

   

Objective Frontal (Lim 2016) Frontal & hippocampus (André 2019) 
Global levels (Wilckens 2018, Lucey 

2019, Ettore 2019) 

Longitudinal: global levels (Lim 

2013) 

Sleep-wake rhythm 

fragmentation 
Objective MTL (Van Someren 2018)    

 Slow wave sleep Objective 

Frontal (Mander 2013, Dubé 2015, 

Latreille 2019), parietal & insula 

(Dubé 2015) 

PFC (Wilckens 2016) 

Global levels (Ju 2017, Varga 2016, 

Winer 2019), PFC (Mander 2015) 

Longitudinal: global levels (Winer 2020) 

Global levels (Lucey 2019, 

Liguori 2020) 

 Sleep spindles Objective    

Global levels (Kam 2019: spindles 

density); MTL (Winer 2019: 

spindles/slow waves coupling) 
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 720 

Table 1. Summary of the associations between sleep parameters and brain integrity in older adults. 721 

Abbreviations: ASL: Arterial Spin Labeling, CSF: cerebrospinal fluid, FDG: 18F-fluorodeoxyglucose, MTL: medial temporal lobe, OFC: orbitofrontal cortex, 722 

PET: Positrons Emission Tomography, PFC: prefrontal cortex, SDB: sleep-disordered breathing, SPECT: Single Photon Emission Computed Tomography. 723 

When meta-analyses (in bold) were available, original studies showing the same results were not mentioned. Objective sleep measures encompass actigraphy 724 

and polysomnography measures. Longitudinal studies are indicated in italics. 725 

1
 Brain perfusion was measured using ASL (Innes et al., 2015; Nie et al., 2017) or SPECT imaging (Joo et al., 2007; Shiota et al., 2014; Baril et al., 2015, 726 

2020; Kim et al., 2017), and brain glucose metabolism using FDG-PET (Yaouhi et al., 2009; Wilckens et al., 2016; André et al., 2019, 2020). 727 

2
 Amyloid levels were measured in the CSF (Ju et al., 2013; Ooms et al., 2014; Osorio et al., 2014; Varga et al., 2016; Liguori et al., 2017; Sprecher et al., 728 

2017; Molano et al., 2017; Ju et al., 2017; Fjell et al., 2018; Sharma et al., 2018; Bubu et al., 2019; Liguori et al., 2020; Kong 2020; Xu 2020), the blood (Bu 729 

et al., 2015) or using PET imaging (Spira et al., 2013; Mander et al., 2015; Sprecher et al., 2015; Branger et al., 2016; Brown et al., 2016; Yun et al., 2017; 730 

Elias et al., 2018; Wilckens et al., 2018; Spira et al., 2018; Carvalho et al., 2018; Lucey et al., 2019; Ettore et al., 2019; Winer et al., 2019, 2020; Bubu et al., 731 

2019, André et al., 2020; Jackson et al., 2020; Ylä-Herttuala et al., 2020). 732 

 REM sleep latency Objective   Global levels (Lucey 2019)  

SDB 

Self-

reported 
  Global levels (Elias 2018)  

Objective 

Frontal ( : Shi 2017, Huang 2019; 

: Baril 2017), MTL (: Weng 

2014, Huang 2019, Tahmasian 

2016; : Cross 2018, Rosenzweig 

2013), temporo-parietal (: Weng 

2014, Shi 2017), parieto-occipital 

(: Baril 2017, Cross 2018, André 

2020), insula (: Tahmasian 2016) 

Parieto-occipital (: Yaouhi 2009, Baril 

2015, Joo 2007, Kim 2017; : André 

2020), frontal (: Yaouhi 2009, Innes 

2015, Kim 2017, Shiota 2014, Nie 

2017, Baril 2020; : Nie 2017), 

temporal & MTL (: Innes 2015, Kim 

2017, Joo 2017, Nie 2017, Baril 2020), 

thalamus (: Innes 2015), insula (: 

Baril 2020; : Baril 2015), basal 

ganglia & limbic regions (: Baril 

2015) 

Global levels (Osorio 2014, Bu 2015, 

Liguori 2017, Jackson 2020, Ylä-

Herttuala 2020, Kong 2020), posterior 

cingulate, precuneus & temporal (Yun 

2017, André 2020, Ylä-Herttuala 2020).  

Longitudinal: global levels (Sharma 

2018, Bubu 2019) 

Global levels (Ju 2016, Osorio 

2014, Bu 2015, Liguori 2017, 

Motamedi 2018, Kong 2020).  

Longitudinal: global levels (Bubu 

2019) 
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3
 Tau levels were measured in the CSF (Osorio et al., 2014; Ju et al., 2016; Liguori et al., 2017; Sprecher et al., 2017; Ju et al., 2017; Fjell et al., 2018; Bubu 733 

et al., 2019; Ju et al., 2019; Holth et al., 2019; Kam et al., 2019; Liguori et al., 2020 ; Kong 2020), the blood (Bu et al., 2015; Motamedi et al., 2018), using 734 

PET imaging (Lucey et al., 2019; Winer et al., 2019), or at autopsy (Lim et al., 2013b). 735 

 736 


