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ABSTRACT: Background: Autophagy is intensively
studied in cancer, metabolic and neurodegenerative dis-
eases, but little is known about its role in pathological
conditions linked to altered neurotransmission. We
examined the involvement of autophagy in levodopa (L-
dopa)-induced dyskinesia, a frequent motor complication
developed in response to standard dopamine replace-
ment therapy in parkinsonian patients.
Methods: We used mouse and non-human primate
models of Parkinson’s disease to examine changes in
autophagy associated with chronic L-dopa administration
and to establish a causative link between impaired
autophagy and dyskinesia.
Results: We found that L-dopa-induced dyskinesia is
associated with accumulation of the autophagy-specific
substrate p62, a marker of autophagy deficiency.
Increased p62 was observed in a subset of projection
neurons located in the striatum and depended on
L-dopa-mediated activation of dopamine D1 receptors,

and mammalian target of rapamycin. Inhibition of mam-
malian target of rapamycin complex 1 with rapamycin
counteracted the impairment of autophagy produced by
L-dopa, and reduced dyskinesia. The anti-dyskinetic
effect of rapamycin was lost when autophagy was con-
stitutively suppressed in D1 receptor-expressing striatal
neurons, through inactivation of the autophagy-related
gene protein 7.
Conclusions: These findings indicate that augmented
responsiveness at D1 receptors leads to dysregulated
autophagy, and results in the emergence of L-dopa-
induced dyskinesia. They further suggest the enhance-
ment of autophagy as a therapeutic strategy against
dyskinesia. © 2021 The Authors. Movement Disorders
published by Wiley Periodicals LLC on behalf of Interna-
tional Parkinson and Movement Disorder Society
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Disruption of dopamine transmission is a cardinal
feature of Parkinson’s disease (PD), a common neuro-
degenerative disorder characterized by severe motor
impairment. PD motor symptoms are effectively treated
with the dopamine precursor levodopa (L-dopa), but

the use of this drug is often limited by the appearance
of dystonic and choreic motor complications referred to
as L-dopa-induced dyskinesia (LID).1

A critical factor in the emergence of LID is the devel-
opment of sensitization at dopamine D1 receptors
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(D1Rs) located in the dorsal striatum. This phenome-
non, which has been observed in postmortem samples
from parkinsonian patients2 and in experimental
models of PD,3-5 has been interpreted as an adaptive
response to compensate for the loss of dopamine input
to the basal ganglia.5 The enhanced sensitivity of D1Rs,
which are selectively expressed in the striatal projection
neurons of the direct pathway (dSPN), potentiates the
action of L-dopa and leads to the stimulation of multi-
ple signaling pathways, including the mammalian target
of rapamycin (mTOR) cascade.6,7 Increased mTOR sig-
naling in dSPN is a major culprit behind the develop-
ment of LID. Thus, administration of rapamycin, a
selective inhibitor of the mTOR complex 1 (mTORC1),
reduces abnormal involuntary movements (AIMs), a
surrogate marker of LID, in rodent models of PD.6,8

mTORC1 plays a key role in the control of protein syn-
thesis, via activation of downstream effector targets
that promote initiation of translation and elongation of
mRNA,9 as well as upregulation of ribosomal proteins
and translation factors.10

Another essential role of mTORC1 pertains to its ability
to regulate autophagy, an intracellular pathway involved in
lysosomal degradation of protein aggregates and pathogens,
as well as in cellular processes such as phagocytosis, secre-
tion, and exocytosis.11 Activation of mTORC1 inhibits
autophagy through phosphorylation of the Unc-51like
kinase 1 (Ulk1), a mammalian homolog of the autophagy-
related gene protein (Atg) 1 originally described in yeast.12

mTORC1-mediated phosphorylation at S757 prevents
Ulk1 forming a core complex with other Atg required for
the generation of the autophagosome.13,14 Changes in
autophagy can be monitored by measuring the levels of the
specific substrate p62 (also named sequestosome 1). During
autophagy, p62 interacts with polyubiquitinated proteins
and is targeted to the autophagosome, where it is elimi-
nated together with its cargo by lysosomal degradation.15,16

Accumulation of p62 is therefore regarded as a marker of
impaired autophagy.15,16

Inhibition of mTORC1 has been shown to reduce
dyskinetic behavior in experimental models of
PD,6,17-19 however the mechanisms at the basis of this
effect remain to be established. In this study, we show
that LID is associated with impaired autophagy and
that rapamycin exerts an anti-dyskinetic effect by coun-
teracting this condition.

Materials and Methods
Animals

C57BL/6J mice (25–30 g) were purchased from
Charles River (Sulzfeld, Germany). Mice expressing
enhanced green fluorescent protein (EGFP) or Cre rec-
ombinase under the control of the promoter for the
D1R [Drd1a-EGFP mice, Drd1a-Cre (EY262)] were

generated by the GENSAT (Gene Expression Nervous
System Atlas) program at the Rockefeller University20

and were crossed on a C57BL/6 background for at least
10 generations. Conditional knockout mice of Atg7 in
D1R-expressing SPN (Atg7F/F;Drd1a-Cre+/− mice) and
control mice (Atg7F/F) were from the offspring of
Atg7F/F (gift from Masaaki Komatsu, Juntendo Univer-
sity School of Medicine, Japan) and Atg7F/F;Drd1a-
Cre+/− mice. Experiments were carried out in accordance
with the guidelines of the Research Ethics Committee of
Karolinska Institutet, Swedish Animal Welfare Agency,
and European Communities Council Directive 86/609/
EEC. Captive-bred female monkeys (Macaca mulatta;
Xierin, Beijing) were housed in individual cages under
controlled conditions of humidity, temperature, and light
with food and water ad libitum. Animal care was super-
vised by veterinarians skilled in healthcare and main-
tenance. Experiments were carried out in accordance
with European Communities Council Directive of
3 June 2010 (2010/6106/EU) for care of laboratory
animals, in an Association for Assessment and
Accreditation of Laboratory Animal Care accredited
facility. Procedures were approved by the Institute of
Laboratory Animal Science ethical committee.

Drugs
6-Hydroxydopamine-HCl (6-OHDA; Sigma-Aldrich

Sweden AB, Stockholm, Sweden) was dissolved in
saline containing 0.02% ascorbic acid. L-dopa and
benserazide hydrochloride (Sigma-Aldrich Sweden AB),
and SCH23390 and raclopride (Tocris-Biotechne Ltd.,
Abingdon, UK) were dissolved in saline and injected
intraperitoneally (IP) in a volume of 10 ml/kg body
weight. Rapamycin (LC Laboratories, Woburn, MA)
was dissolved in 5% dimethyl sulfoxide, 5% Tween-20,
15% polyethylene glycol, and distilled water, and
administered IP in a volume of 2 ml/kg body weight.

6-OHDA Lesion and LID in Mice
Mice were injected subcutaneously with Temgesic as

analgesic, and positioned in a stereotaxic frame (David
Kopf Instruments, Tujunga, CA). Anesthesia was
induced with 4% isoflurane and maintained with 2%
isoflurane. Each mouse was injected with 1 μL of vehi-
cle containing 3.75 μg of free-base 6-OHDA into the
right medial forebrain bundle, according to the follow-
ing coordinates (millimeters, relative to bregma):
anteroposterior (AP), −1.2; mediolateral (ML), −1.2;
dorsoventral (DV), −4.8.21 The needle was left in place
for 5 minutes before and after injection. Mice were
allowed to recover for 3 weeks before experimentation.
Only animals with a tyrosine hydroxylase (TH, a
marker of dopamine terminals) reduction of 90% or
more in the dorsal striatum were included in the study.
Atg7F/F;Drd1a-Cre+/− mice and Atg7F/F littermates with
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a unilateral 6-OHDA lesion were treated for 9 days
with 10 mg/kg of L-dopa, administered alone or in com-
bination with rapamycin (5 mg/kg). AIMs were
assessed after the last injection using a previously
established scale.22 Briefly, 20 minutes after the last
injection, mice were placed in separated cages and indi-
vidual dyskinetic behaviors (ie, AIMs) were assessed for
1 minute every 20 minutes, over a period of
120 minutes. AIMs were classified into four subtypes:
locomotive AIMs (contralateral turns), axial AIMs
(dystonic posturing of the upper part of the body
toward the side contralateral to the lesion), limb AIMs
(abnormal movements of the forelimb contralateral to
the lesion), and orofacial AIMs (vacuous jaw move-
ments and tongue protrusion). Each subtype was scored
on a severity scale from 0 to 4: 0, absent; 1, occasional;
2, frequent; 3, continuous; 4, continuous and not inter-
ruptible by outer stimuli.

MPTP Lesion and LID in Monkeys
PD modeling in non-human primates (NHP) and tis-

sue collection is based on a previously used and
described experimental cohort. MPTP (1-methyl-4-phe-
nyl-1,2,3,6-tetrahydropyridine) intoxication protocol,
chronic L-dopa treatment, the clinical assessments, the
terminal procedure, and the characterization of the
extent of nigrostriatal denervation were conducted as
previously published.19,23-25 Briefly, macaques received
daily saline or MPTP hydrochloride injections (0.2 mg/
kg, intravenously) until parkinsonian signs appeared.
Once PD motor signs were stable, MPTP-treated mon-
keys were either untreated or treated twice a day with
an individually titrated dose of L-dopa (Modopar, L-
dopa/carbidopa, 4:1 ratio; range, 9–17 mg/kg). This
dose, defined as 100% dose, was used for chronic L-
dopa treatment, which lasted for 4 to 5 months until
dyskinesia stabilized. A nigrostriatal lesion above 95%
was reported in both MPTP groups in comparison to
control animals as previously reported.26 Brain patches
collected from 300 μm-thick fresh frozen coronal sec-
tions containing caudate-putamen were collected for
Western blotting analysis as previously reported.25

Tissue Preparation and Western Blotting
Mice were killed by decapitation, punches of striatal

tissue (1 mm thickness, 2 mm diameter; three punches
per hemisphere) were dissected, sonicated in 1% SDS
and boiled for 10 minutes. Proteins/samples (30 μg)
were loaded onto 10% polyacrylamide gels and sepa-
rated by electrophoresis and transferred overnight to
polyvinylidene fluoride (PVDF) membranes (Amersham
Pharmacia Biotech, Uppsala, Sweden).27 The mem-
branes were immunoblotted with antibodies against
p62 (1:1000, Abcam), Ulk1, phospho-S757-Ulk1, S6
and phospho-S240/244-S6 (1:1000, Cell Signaling

Technology, Leiden, The Netherlands), actin (1:30000,
Sigma-Aldrich Sweden AB), and TH (1:1000, Mil-
lipore). Detection was based on fluorescent secondary
antibody binding and quantified using a Li-Cor Odys-
sey infrared fluorescent detection system (Li-Cor, Lin-
coln, NE). The levels of phospho-S757-Ulk1 and
phospho-S240/244-S6 were normalized according to
the levels of the respective total protein. Monkey tissue
patches were extracted on ice and placed in 100 μl of
RIPA buffer (50 mM Tris–HCl pH 7.4, 150 mM NaCl,
1.0% Triton X-100, 0.5% Na-deoxycholate, 0.1%
sodium dodecyl sulfate) with a protease inhibitor cock-
tail tablet (Complete Mini, Roche Diagnostics). The
lysate was incubated on ice for 20 minutes and cen-
trifuged at 14,000 rpm for 15 minutes at 4�C. The
supernatant was collected and stored at −80�C. Pro-
teins/samples (20 μg) were separated by sodium
dodecylsulfate-polyacrylamide gel electrophoresis and
transferred to nitrocellulose membranes. Incubation
with primary antibodies was performed overnight at
4�C with antibodies against p62 (1:1000, Progen) and
actin (1:5000, Sigma). Appropriate secondary anti-
bodies coupled to peroxidase were revealed using a
Super Signal West Pico Chemiluminescent kit
(Immobilon Western, Chemiluminescent HRP sub-
strate, Millipore). Chemiluminescence images were
acquired using the ChemiDoc+XRS system measure-
ment (BioRad). Signals per lane were quantified using
ImageJ and a ratio of signal on loading per animal was
performed and used in statistical analyses.

Immunofluorescence
Mice with the unilateral 6-OHDA lesion were deeply

anesthetized with sodium pentobarbital (100 mg/kg, IP,
Sanofi-Aventis, France) and perfused transcardially
with 4% (weight/vol) ice-cold paraformaldehyde in
0.1 M phosphate buffer. The brains were post-fixed
overnight in the same solution and 40 μm-thick coronal
sections were cut with a vibratome (Leica, Germany).
Triple-labeling for p62/DARPP-32/EGFP was per-
formed as follows. Sections (each one containing an
intact and a 6-OHDA lesion striatum) were washed in
Tris-buffered saline solution (TBS) (100 mM Tris-Cl,
150 mM NaCl, pH 7.5), incubated for 1 hour at room
temperature in 1% bovine serum albumin (BSA)-0.3%
Triton X-100-TBS, and then kept overnight at 4�C in
1% BSA-TBS solution containing chicken EGFP
(1:1000, GFP-1020, Aves Labs), rabbit p62 (1:500,
ab91526, Abcam), and mouse DARPP-32 (1:1000)
antibodies. After TBS washing, sections were incubated
for 1 hour at room temperature in 1% BSA-TBS solu-
tion containing Alexa Fluor-647 anti-mouse, Alexa
Fluor-488 anti-chicken, and Cy3 anti-rabbit secondary
antibodies (1:400). Z-stack images of the dorsal stria-
tum were captured using sequential laser scanning
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confocal microscopy (Zeiss LSM 8, Carl Zeiss, Ger-
many) at 63× magnification. Acquired images were
used to quantify p62 and EGFP immunofluorescence in
Drd1a-EGFP mice with the open-source analysis plat-
form Fiji.28 Displayed gray value was set to 0–4082 for
all images and p62+/EGFP+ and p62+/EGFP− cells
were counted in the 6-OHDA lesion and control stria-
tum (n = 5 mice).

p62 RNA Expression Analysis
One striatal punch per hemisphere was dissected out

and snap-frozen in liquid nitrogen for further processing.
Total RNA was extracted using a RNeasy kit (Qiagen)
and quantified on a NanoDrop 1000 device. RNA
(200 ng) was used for generation of cDNA using iScript
cDNA Synthesis Kit (Bio-Rad) and iTaq Universal SYBR
Green Supermix (Bio-Rad) on a CFX96 Touch Real-

FIG. 1. Chronic administration of levodopa (L-dopa) reduces autophagy in the striata of parkinsonian mice and non-human primates. C57BL/6 mice with
a unilateral 6-hydroxydopamine (6-OHDA) lesion were treated with L-dopa (10 mg/kg) as described, and the levels of p62 were measured by Western
blotting in the striata contralateral (control) or ipsilateral (6-OHDA) to the lesion. (A) Mice were divided in four groups (n = 4–10) and treated with vehicle,
or with L-dopa for 1, 4, and 9 days, and p62 was measured 4 hours after the last injection. **P < 0.01 versus control, Welch two-sample t-test. (B) Four
groups (n = 6–7) of mice were treated with L-dopa for 9 days and p62 was measured 2, 4, 8, or 24 hours after the last injection. Two-way ANOVA
showed a significant effect of 6-OHDA lesion (F1,45 = 86.01, P < 0.001) and a significant effect of time (F3,45 = 8.16, P < 0.001), but no lesion × time
interaction (F3,45 = 1.61, P = 0.199). *P < 0.05 and ***P < 0.001 versus control, Tukey post hoc test. (C) Two groups (n = 6–9) of mice were treated with
vehicle or L-dopa for 9 days and mRNA for p62 was measured 4 hours after the last injection. (D) p62 was measured in the striata of three experimental
groups (n = 5) of non-human primates: normal (control), parkinsonian (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; MPTP), and parkinsonian treated
with L-dopa (MPTP+L-dopa). *P < 0.05 versus control group, one-way ANOVA and Tukey’s multiple comparison test.
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FIG. 2. The impairment of autophagy induced by levodopa (L-dopa) is caused by dopamine D1 receptor (D1R)-mediated activation of mTOR complex
1 (mTORC1) in the striatal projection neurons of the direct pathway (dSPN). (A) Mice (n = 8–9 per group) with a unilateral 6-hydroxydopamine (6-OHDA) lesion
received chronic (9 days) pretreatment with L-dopa (10 mg/kg) alone (vehicle), or in combination with SCH23390 or raclopride (0.125 mg/kg and 0.25 mg/kg,
respectively, administered 15 minutes before L-dopa). The levels of p62 were measured by Western blotting 4 hours after the last drug administration in the
striata contralateral (control) or ipsilateral (6-OHDA) to the lesion. Two-way ANOVA showed a significant effect of pretreatment (F2,46 = 22.59, P < 0.001),
6-OHDA lesion (F1,46 = 70.37, P < 0.001), and pretreatment × 6-OHDA lesion interaction (F2,46 = 7.44, P = 0.01). ***P < 0.001 versus control and †P < 0.001
versus 6-OHDA pretreated with vehicle or raclopride, Tukey’s post hoc test. (B) Left panels: immunofluorescence analysis of p62 and enhanced green fluo-
rescent protein (EGFP) in a Drd1a-EGFP mouse with a unilateral 6-OHDA lesion treated for 9 days with L-dopa (10 mg/kg) and perfused 4 hours after the last
injection. DARPP-32 immunoreactivity indicates that accumulation of p62 occurs in striatal projection neurons. Note the increased levels of p62 in the striatal
projection neurons of the 6-OHDA lesion striatum (arrowheads). Right panel: summary of data from 5 Drd1a-EGFP mice showing the number of EGFP-
positive dSPN and EGFP-negative iSPN with high levels of p62 immunoreactivity. Two-way ANOVA showed significant effect of cell type (F1,16 = 52.03,
P < 0.001), 6-OHDA lesion (F1,16 = 100.8, P < 0.001), and cell type × 6-OHDA lesion (F1,16 = 52.03, P < 0.001). ***P < 0.001 versus control, Sidak’s multiple
comparison test. (C) Two groups (n = 9) of mice with a unilateral 6-OHDA lesion were treated for 9 days with L-dopa (10 mg/kg) alone (vehicle) or L-dopa plus
SCH23390 (0.125 mg/kg), and the levels of total and phosphorylated (S757) Ulk1 (P-Ulk1) were determined by Western blotting 4 hours after the last drug
administration in the striata contralateral (control) or ipsilateral (6-OHDA) to the lesion. Two-way ANOVA showed a significant SCH23390 pretreatment
× 6-OHDA lesion interaction (F1,64 = 5.29, P < 0.05). ***P < 0.001 versus control and †P < 0.001 versus 6-OHDA pretreated with vehicle, Tukey’s post hoc
test. (D, E) Mice with a unilateral 6-OHDA lesion were treated for 9 days with L-dopa (10 mg/kg) alone or in combination with rapamycin (2 or 5 mg/kg,
administered 45 minutes before L-dopa) and the levels of p62 (D, n = 6 per group) and total or P-Ulk1 (E, n = 6–11 per group) were determined by Western
blotting 4 hours after the last drug administration in the striata contralateral (control) or ipsilateral (6-OHDA) to the lesion. (D) Two-way ANOVA showed a sig-
nificant effect of treatment (F2,30 = 11.37, P < 0.001), 6-OHDA lesion (F1,30 = 68.86, P < 0.001), and no significant treatment × 6-OHDA lesion interaction.
***P < 0.001 and **P < 0.01 versus respective control, †P < 0.05 and ††P < 0.01 versus 6-OHDA/vehicle; Tukey’s post hoc test. (E) Two-way ANOVA showed
a significant effect of treatment (F1,30 = 12.57, P < 0.001), 6-OHDA lesion (F1,30 = 5.24, P < 0.05), and no significant treatment × 6-OHDA lesion interaction.
*P < 0.05 versus control, ††P < 0.01 versus 6-OHDA/vehicle, Tukey’s post hoc test.
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Time PCR Detection System (Bio-Rad) with primers
Sqstm1 (50-TTCGGAAGTCAGCAAACCTGA-30 and 50-
CCGACTCCATCTGTTCCTCTG-30) and GAPDH
(50-AGGTCGGTGTGAACGGATTTG-30 and 50-TGTA
GACCATGTAGTTGAGGTCA-30) for gene expression.

Statistical Analyses
Data are presented as mean ± SEM. Differences

between groups were evaluated by one- or two-way
ANOVA with post hoc multiple comparison test as
described, while two-group comparisons were performed
with Welch two-sample or unpaired Student’s t-test.

Results

In mice with a unilateral 6-OHDA lesion, repeated
daily administration of L-dopa (10 mg/kg), which induces
severe AIMs,6 increased the levels of p62 in the striatum
ipsilateral to the 6-OHDA lesion compared to the intact
(control) contralateral striatum (Fig. 1A, days 4 and 9). In
contrast, a single administration of L-dopa (Fig. 1A, day
1) did not produce any effect. The increase in p62 caused
by chronic L-dopa in the dopamine denervated striatum
peaked at 8 hours and persisted for up to 24 hours after
the last drug administration (Fig. 1B). Increased p62 pro-
tein levels were not paralleled by enhanced p62 mRNA
(Fig. 1C), indicating that the effect of L-dopa was exerted
via reduced degradation, rather than augmented tran-
scription. In line with the results obtained in the mouse,
p62 was significantly increased also in the gold standard
NHP model of LID based on MPTP intoxication19,23-25

(Fig. 1D). Altogether, these results indicated that chronic
treatment with L-dopa leads to impaired autophagy in the
dopamine-depleted striatum.
As shown in Figure 2A, administration of SCH23390,

a selective antagonist at D1R, abolished the increase in
p62 produced by L-dopa. In contrast, raclopride, a dopa-
mine D2 receptor antagonist, did not modify the effect of
L-dopa. We also examined the cellular localization of p62

FIG. 3. The autophagy promoting effect of rapamycin is occluded in
Atg7F/F;Drd1a-Cre+/− mice. (A) Atg7F/F;Drd1a-Cre+/− and Atg7F/F mice
were injected unilaterally with 6-hydroxydopamine (6-OHDA) and the
levels of p62 was measured by Western blotting in the striata ipsilateral
(control) and contralateral (6-OHDA) to the lesion. Note the large accu-
mulation of p62 in Atg7F/F;Drd1a-Cre+/− mice indicative of impaired
autophagy in the striatal projection neurons of the direct pathway
(dSPN). 6-OHDA did not affect striatal p62 levels (control 100.0 ± 6.3
vs. 6-OHDA 100.7 ± 5.4 in Atg7F/F mice and control 2400 ± 137.1
vs. 6-OHDA 2446 ± 220.2 in Atg7F/F;Drd1a-Cre+/− mice) (n = 5–6 per
group). (B, C) Atg7F/F;Drd1a-Cre+/− and Atg7F/F mice with a 6-OHDA
lesion were treated with vehicle, levodopa (L-dopa) (10 mg/kg), or L-
dopa plus rapamycin (5 mg/kg, administered 45 minutes before L-dopa)
for 9 days and the levels of p62 (B), total S6 and S6 phosphorylated at
S240/244 (C) were measured by Western blotting 8 hours after the last
injection. ***P < 0.001 and **P < 0.01 versus vehicle, one-way ANOVA
followed by Dunnett’s multiple comparison test (n = 4–9 per group).

◀
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using Drd1a-EGFP mice. In 6-OHDA lesion striata,
administration of L-dopa produced a large increase in the
number of EGFP-positive cells, which correspond to
dSPN, with high levels of p62 (3.2 ± 1.11 cells/section in
the control versus 38.7 cells/section in the 6-OHDA
lesion striata) (Fig. 2B). In contrast, we did not observe
any statistically significant change in the number of
EGFP-negative cells with high p62 (Fig. 2B).
We next determined whether the hyperactivation of

mTORC1 produced by L-dopa was responsible for the
concomitant impairment of autophagy. We started by
testing the effect of L-dopa on the phosphorylation of

Ulk1 at S757, which is regarded as a key step in the
negative control exerted by mTORC1 on
autophagy.13,14,29,30 We found that chronic administra-
tion of L-dopa was accompanied by augmented phos-
phorylation of Ulk1 in the dopamine-depleted striatum
and that this effect, similarly to the enhancement of
p62, was prevented by blockade of D1R with
SCH23390 (Fig. 2C). In a second group of experiments,
mice with a unilateral 6-OHDA lesion were treated
with L-dopa alone, or in combination with rapamycin
(5 mg/kg), an inhibitor of mTORC1.6 Rapamycin
reduced p62 in the 6-OHDA lesion striatum (Fig. 2D).

FIG. 4. The anti-dyskinetic action of rapamycin is prevented in Atg7F/F;Drd1a-Cre+/− mice. Atg7F/F;Drd1a-Cre+/− and Atg7F/F mice (n = 4–6 per group)
with a unilateral 6-hydroxydopamine (6-OHDA) lesion were treated for 9 consecutive days with levodopa (L-dopa) (10 mg/kg) plus vehicle or L-dopa plus
rapamycin (5 mg/kg). Abnormal involuntary movements (AIMs) were assessed for 1 minute every 20 minutes, starting immediately after the last injec-
tion. (A) Cumulative effect on axial, limb, orofacial (ALO) AIMs during the entire observation period (120 minutes). Two-way ANOVA showed a significant
effect of treatment (F1,7 = 26.62, P < 0.01), no effect of genotype (F1,9 = 0.01, P > 0.9), and a significant effect of genotype × treatment interaction
(F1,7 = 8.28, P < 0.05). **P < 0.01 versus L-dopa/vehicle, Sidak’s multiple comparison test. (B) Sum of locomotive AIMs scored during the 120-minute
observation period. (C, D) Time course of total AIMs scored in Atg7F/F (C) and Atg7F/F;Drd1a-Cre+/− mice (D) every 20 minutes during the 120-minute
observation period. (C) Two-way ANOVA indicated a significant effect of rapamycin treatment (F1,9 = 69.2; P < 0.001), time (F3,31 = 108.6; P < 0.001),
and treatment × time interaction (F5,45 = 6.4; P < 0.001). (D) Two-way ANOVA indicated a significant effect of time (F2,17 = 25.6; P < 0.001).
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A comparison between the levels of p62 in control
(intact) and 6-OHDA lesion striata showed that L-dopa
was still able to produce a significant, albeit reduced,
effect on p62 despite the presence of rapamycin
(Fig. 2D). In addition, rapamycin abolished the increase
in phosphorylation of Ulk1 produced by L-dopa in the
dopamine-depleted striatum (Fig. 2E).
Finally, we tested the effect of rapamycin in Atg7F/F;

Drd1a-Cre+/− mice, which lack the gene coding for
Atg7, a core Atg involved in autophagosome
formation,31 in D1R-expressing dSPN.32 In these ani-
mals, loss of Atg7 results in the constitutive impairment
of autophagy, as indicated by a considerable accumula-
tion of p62 (Fig. 3A). Moreover, in both genotypes the
lesion with 6-OHDA did not affect striatal p62
(Fig. 3A). In another experiment, the levels of p62 and
phosphorylated ribosomal protein S6 were measured in
the striata of 6-OHDA lesion Atg7F/F and Atg7F/F;
Drd1a-Cre+/− mice treated with vehicle, L-dopa (10 mg/
kg), or a combination of L-dopa and rapamycin (5 mg/
kg). We found that in contrast to control Atg7F/F mice,
rapamycin did not alter p62 levels in Atg7F/F;Drd1a-
Cre+/− mice (Fig. 3B). Notably, in both genotypes
rapamycin retained its ability to abolish the phosphory-
lation of the ribosomal protein S6 on S240/244, a
downstream marker of mTORC1 activation involved in
the control of protein synthesis33,34 (Fig. 3C).
Against this background, the ability of rapamycin to

decrease LID was examined in Atg7F/F and Atg7F/F;
Drd1a-Cre+/− mice. We found that L-dopa produced a
similar dyskinetic response in the two genotypes
(Fig. 4A,C,D). In line with previous work,6,17 adminis-
tration of rapamycin to Atg7F/F mice reduced LID. The
counteracting effect of rapamycin was limited to axial,
limb, and orofacial AIMs, which are a more reliable
indicator of dyskinesia (Fig. 4A). No effect was
observed on locomotive AIMs, which are instead reg-
arded as a marker of motor impairment35 (Fig. 4B). In
contrast, the anti-dyskinetic action of rapamycin was
abolished in Atg7F/F;Drd1a-Cre+/− mice (Fig. 4A,D).

Discussion

This study shows that in mouse and NHP models of
PD, dyskinesia, a serious motor disorder caused by
administration of standard anti-parkinsonian medica-
tions, is associated with molecular changes linked to
impaired autophagy. We also show that a considerable
proportion of the anti-dyskinetic action of rapamycin
depends on its ability to promote autophagy.
In PD, the loss of dopaminergic input to the dorsal

striatum leads to the sensitization of D1R,3-5 which
confers on L-dopa the ability to activate mTORC1 sig-
naling in dSPN.6, 7 The ability of rapamycin, an inhibi-
tor of mTORC1, to counteract dyskinesia has been

related to its action on mTORC1 downstream targets
involved in the control of protein synthesis.6,36 How-
ever, mTORC1 regulates multiple substrates, including
signaling components, such as Ulk1, implicated in the
control of autophagy. Ulk1 forms a complex with
Atg13, FIP200 (focal adhesion kinase family interacting
protein of 200 kDa), and Atg10, necessary for
autophagosome formation.13,14,30 Association of acti-
vated mTORC1 with the Ulk1 complex leads to direct
phosphorylation of Ulk1 and Atg13 by mTOR and
inhibition of the autophagy promoting kinase activity
of the Ulk1 complex.13,14,30 The resulting block of p62
degradation in the autophagosome leads to p62 accu-
mulation, a standard marker of autophagy
impairment.15,16

In line with the abnormal activation of mTORC1
observed in LID, we found that this condition is associ-
ated with mTORC1-mediated phosphorylation of
Ulk1 at the inhibitory site S757 and with increased
levels of p62. We also found that these effects are
abolished by blockade of D1R, but not D2R, and that
in Drd1a-EGFP mice, higher levels of p62 immunoreac-
tivity, induced by L-dopa in the dopamine depleted stri-
atum, are restricted to EGFP-positive cells. These
observations, together with previous studies showing
the selective activation of mTORC1 signaling in D1R-
expressing striatal neurons,6,37 indicate that the impair-
ment of autophagy occurs in a neuronal subpopulation
corresponding to the dSPN.
It has been shown that the development of LID

depends on combined dysregulated transmission in
dSPN38,39 and in the D2R-expressing projection neu-
rons of the indirect pathway (iSPN).40,41 Thus, block-
ade of D2R with raclopride or chemogenetic activation
of iSPN (which generate an analogous functional
response) are also able to reduce LID in a mouse model
of PD.40,41 In view of these findings, the inability of
raclopride to reduce the accumulation of p62 associated
with LID suggests that the anti-dyskinetic action of this
drug occurs through a parallel mechanism, which cir-
cumvents the effects of reduced autophagy in dSPN.
We show that administration of rapamycin reduces

the accumulation of p62 caused by L-dopa in the
6-OHDA lesion striatum. Our results also indicate that
this effect is not complete, since we still observe a sig-
nificant difference compared to the respective control
striatum treated with rapamycin. This partial reduction
of p62 may represent an advantage in clinical settings
since it suggests a normalization rather than an exces-
sive activation of autophagy, which in the long term
might cause undesired side effects.
To test the hypothesis that the dyskinetic action of

rapamycin depends on its autophagy promoting prop-
erties, we used Atg7F/F;Drd1a-Cre+/− mice. In this trans-
genic mouse line, autophagy is suppressed in dSPN, as
indicated by abnormal levels of striatal p62. A recent
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study examined the phenotype of Atg7F/F;Drd1a-Cre+/−

mice and did not report modifications of locomotor
behavior in novel environments.32 Notably, the same
study also showed that knockout of Atg7 in dSPN
reduced dendritic spine density. This effect is reminis-
cent of the increase in spine pruning observed in dSPN
following dopamine depletion42 and might concur to
worsen the effects of 6-OHDA. However, it should be
mentioned that the analysis of locomotive AIMs, which
are an index of motor impairment,43 did not show any
difference between 6-OHDA lesion Atg7F/F;Drd1a-
Cre+/− and control Atg7F/F mice.
Rapamycin failed to promote autophagy in Atg7F/F;

Drd1a-Cre+/− mice as indicated by the lack of effect on
p62 accumulation, but maintained its ability to
decrease mTORC1-mediated phosphorylation of the
ribosomal protein S6, a downstream effector involved
in the regulation of protein synthesis.33,34 As expected,
rapamycin reduced the dyskinetic response produced by
administration of L-dopa in Atg7F/F mice. Although
substantial, this effect was more moderate than that
observed in a previous study in the mouse6 and more in
line with a recent study performed in the rat.8 This dif-
ference may be related to the mouse strain utilized in
this experiment, for example, Atg7F/F mice obtained
from crossing Atg7F/F;Drd1a-Cre+/− with Atg7F/F mice.
Importantly, and in line with the involvement of dys-
regulated autophagy in LID, the anti-dyskinetic effect
of rapamycin was occluded in Atg7F/F;Drd1a-Cre+/−

mice. Combined with the pharmacological experiments
and the cellular localization of elevated p62 in Drd1a-
EGFP mice, these results indicate that rapamycin
reduces LID by promoting autophagy in dSPN.
The mechanisms at the basis of the anti-dyskinetic

properties of rapamycin remain to be determined. LID
has been proposed to depend on defective synaptic
downscaling, manifested as loss of depotentiation at
corticostriatal synapses.44,45 Hyperactivation of
mTORC1 leading to defective autophagy may produce
this condition, since autophagy has been involved in
the degradation of glutamate AMPA receptors and in
the generation of long-term depression.46 It should also
be noted that the constitutive impairment of autophagy
caused by inactivation of Atg7 in dSPN does not
enhance the dyskinetic response to L-dopa. Whereas it
is possible that the severity of LID displayed by the
mouse model employed in this study precludes the
exacerbation of AIMs, further studies will be necessary
to determine the impact of dysregulated autophagy per
se on the development of LID in the absence of
rapamycin. In this context, it is interesting that LID has
been also associated with the D1R-mediated impair-
ment of the ubiquitin-proteasome system,47,48 the other
crucial protein degradation pathway in eukaryotes.49

Therefore, it appears that LID is accompanied by com-
promised activity of the two major catabolic systems in

dSPN. The relative contribution of these pathways to
the development and expression of dyskinesia and their
possible crosstalk remain to be characterized.
Autophagy promoting agents, including mTOR

inhibitors such as rapamycin, are regarded as a poten-
tial therapeutic strategy against cancer, diabetes, and
neurodegenerative disorders.50-52 The present results
indicate that these drugs may represent a promising
avenue also for the management of dysfunctional dopa-
mine transmission in LID.
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