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In Brief

VAMP7 is involved in exocytosis-

mediated neurite growth and degradative

autophagy. Using secretomics, Wojnacki

et al. show that VAMP7 mediates the

release of tubular ER-phagy receptor

Reticulon 3, a secretory pathway greatly

enhanced in autophagy-null neuronal

cells. ER-phagy and unconventional

secretion regulate neurite growth and

polarization during nutrient deprivation.
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SUMMARY
VAMP7 is involved in autophagy and in exocytosis-mediated neurite growth, two yet unconnected cellular
pathways. Here, we find that nutrient restriction and activation of autophagy stimulate axonal growth, while
autophagy inhibition leads to loss of neuronal polarity. VAMP7 knockout (KO) neuronal cells show impaired
neurite growth, whereas this process is increased in autophagy-null ATG5KO cells.We find that endoplasmic
reticulum (ER)-phagy-related LC3-interacting-region-containing proteins Atlastin 3 and Reticulon 3 (RTN3)
are more abundant in autophagy-related protein ATG5 KO and less abundant in VAMP7 KO secretomes.
Treatment of neuronal cells with ATG5 or VAMP7 KO conditioned medium does not recapitulate the effect
of these KOs on neurite growth. A nanobody directed against VAMP7 inhibits axonal overgrowth induced
by nutrient restriction. Furthermore, expression of the inhibitory Longin domain of VAMP7 impairs the sub-
cellular localization of RTN3 in neurons. We propose that VAMP7-dependent secretion of RTN3 regulates
neurite growth.
INTRODUCTION

Macroautophagy (henceforth referred to as autophagy) is an

adaptive mechanism for the elimination of superfluous intra-

cellular components and is upregulated in conditions of

nutrient restriction. Autophagy is under the regulation of

mammalian target of rapamycin complex 1 (mTORC1) and a

signaling cascade of autophagy-related proteins (ATGs)

(Boya et al., 2013; Mizushima et al., 2011). Nutrients and/or

growth factor deprivation inhibits mTORC1 kinase activity on

ULK1 (Ser757), a central kinase regulating the autophagic

response. Non-phosphorylated ULK1 triggers the formation

of the phagophore with membrane contributions from different

donor compartments, effectively isolating cytoplasmic mate-

rial for degradation. Upon autophagy stimulation, LC3 is

cleaved and lipidated to form LC3-II, which binds to the phag-

ophore, marking the biogenesis of the autophagosome, a dou-

ble-membrane-limited organelle (Kim et al., 2011). This essen-

tial step depends on the multiprotein complex ATG5/12/16L1
Ce
This is an open access article under the CC BY-N
(Matsushita et al., 2007). LC3-II recruits LC3-interacting-region

(LIR)-containing proteins into the phagophore (Birgisdottir

et al., 2013). The autophagosome can then fuse with (1) endo-

somes to form a so-called amphisome, (2) lysosomes to form

an autolysosome, or even (3) the plasma membrane to deliver

its content to the extracellular space (Klionsky et al., 2014;

Ponpuak et al., 2015). These different routes require mem-

brane fusion events; thus, they rely on vesicular (v)- and target

(t)-SNARE proteins (Wang et al., 2016).

Interestingly, the v-SNARE VAMP7 with the t-SNAREs Syn-

taxin17 and SNAP29 or SNAP47 can mediate the fusion of

membranes during the initial formation of the phagophore

and also the fusion of mitochondrial-derived vesicles (MDVs)

with endosomes (Aoyagi et al., 2018; Moreau et al., 2011;

McLelland et al., 2016). VAMP7 mutants in the fly show auto-

phagy defects in neurons (Takáts et al., 2013), and the

VAMP7 knockout (KO) mouse shows mitophagy impairment

in insulin-secreting pancreatic b cells (Aoyagi et al., 2018).

Nevertheless, the role of v-SNAREs in autophagy is complex
ll Reports 33, 108536, December 22, 2020 ª 2020 The Author(s). 1
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as evidenced by the overlapping functions of VAMP7, VAMP8,

and Ykt6 in the fusion of autophagosomes with lysosomes (Ita-

kura et al., 2012; Takáts et al., 2018). The potential function of

VAMP7 in autophagic secretion has been suggested (Fader

et al., 2012), but it has not yet been directly demonstrated.

VAMP7 mediates lysosomal secretion as shown by the effect

of its inhibitory Longin domain in epithelial cells (Proux-Gillar-

deaux et al., 2007) and silencing of its expression in astrocytes

(Verderio et al., 2012). We and others have shown that VAMP7

plays an important role in the elongation of neurites during

neuronal development, a cellular process that requires plasma

membrane expansion. VAMP7 drives secretion during axonal

growth by mediating membrane fusion with the t-SNAREs

Syntaxin1 and SNAP25. It also regulates the transport and dis-

tribution of several cargo proteins including L1-CAM and the

netrin receptor Deleted in Colorectal Cancer (DCC) (Alberts

et al., 2003; Cotrufo et al., 2011; Winkle et al., 2014; Wojnacki

and Galli, 2016). However, whether or how the roles of VAMP7

in autophagy and neurite growth are related has not been

investigated.

To investigate whether the roles of VAMP7 in neurite growth

and autophagy might be linked, we searched for the effect of

nutrient restriction on axonal growth and hypothesized that

VAMP7-dependent secretion could be involved. We found that

beyond inducing autophagy, nutrient restriction stimulated

axonal growth. Moreover, autophagy inhibition induced multi-

polar neurons. To precisely dissect the role of VAMP7 in this un-

expected phenomenon, we took advantage of CRISPR-Cas9

genome editing to knock out VAMP7 in neuronal-like PC12 cells.

To have autophagy-null cells to compare with, we also gener-

ated ATG5 KO PC12 cells. Using these cellular models, lipido-

mics, and proteomics of the secretome, we found that VAMP7

mediated the release of autophagy-related molecules LC3-II

and LIR-containing endoplasmic reticulum (ER) proteins Reticu-

lon 3 (RTN3). RTN3 has been shown to be involved in ER-phagy

of tubular ER. This evidence thus supports the hypothesis that,

during the course of neurite growth, VAMP7 mediates the secre-

tion of molecules involved in ER-phagy.
Figure 1. Effects of Nutrient Restriction and Autophagy Drugs on Grow

(A) Scheme of the experimental design and table showing the concentration of t

(B) Confocal images of hippocampal neurons (3 DIV) either unstarved or starved

(C) Boxplot of the quantification of the length of longest Tau1-positive neurite in

(D)Western blot of cleaved caspase-3 from neurons starved for 24 h. As a positive

Bar plot showing the mean ± SEM amount of cleaved caspase-3 using glyceralde

corresponds to the statistical ANOVA orthogonal contrast with the control condi

(E) Western blot of the total and phosphorylated amount of ULK1 of 3 DIV cortical

amount of pULK1 using total ULK1 as a loading control (Student’s t test).

(F) Proportion of neurons with one (unipolar) or several (multipolar) Tau1-positive n

(Rapa; 50 nM) or Spautin-1 (10 mM).

(G) Boxplot of the quantification of the total length of all Tau1-positive neurites in

(H) LC3 and GAPDH blot of 3 DIV cortical neurons treated with Spautin-1 (10 mM)

mean ± SEM amount of LC3-II using GAPDH as a loading control (ANOVA ortho

(I and J) Blots of total and phosphorylated ULK1 and S6 ribosomal protein, respec

24 h. Bar plots show the mean ± SEM amount of pULK1 and pS6 ribosomal pro

(Student’s t test).

(K) Images of cultured hippocampal neurons treated with or without Rapa (50 nM

(L) Quantification of the total length of the longest Tau1-positive neurite in hipp

orthogonal contrast).

Arrows indicate quantified Tau1-positive axons. Dots in boxplots represent the s
RESULTS

Autophagy Modulates Axonal Growth
We tested the effect of several starvation conditions on axonal

growth in neuronal cultures. Our aim was to mimic nutrient re-

striction while avoiding the extreme conditions that might result

in rapid neuronal cell death as observed with complete glucose

deprivation (Ramı́rez-Peinado et al., 2013). At 2 days in vitro

(DIV), we diluted the N2 media five times with Hank’s balanced

salt solution (Figure 1A) to generate a condition where nutrients

such as amino acids, vitamins, growth factors, and supplements

were diluted, while salts andGlc remained unchanged.We found

that this condition induced longer axons after 24 h, while it did

not induce apoptosis as determined by the amount of cleaved

caspase-3 (Figures 1B–1D). N2 culture media dilution induced

autophagy in neurons as determined by detection of phosphor-

ylated (p)Ser757-ULK1 levels (Figure 1E). A 48-h nutrient depri-

vation also induced longer axons (Figures S1A and S1B) but

had an impact on neuronal viability as less neurons could be

quantified. The effect of nutrient deprivation on axonal maximal

length was attenuated by the specific autophagy inhibitor Spau-

tin-1, which prevents the deubiquitinating activity of USP10 and

USP13 (Liu et al., 2011) (Figures 1A and 1B), further demon-

strating that axonal growth was dependent on functional auto-

phagy. Moreover, autophagy inhibition with Spautin-1 affected

neuronal polarity. Indeed, neurons treated with Spautin-1 still ex-

hibited one axon longer than all other processes, but more neu-

rons had multiple Tau1-positive neurites, with the presence of

Tau1 being a mark of axonal specification (Bradke and Dotti,

2000) (Figures 1B, 1F, and 1K). The sum of the length of all

Tau1-positive neurites was greatly increased upon Spautin-1

treatment (Figure 1G), suggesting that pre-existing minor pro-

cesses turned into supernumerary axons as has been shown

when GSK3b signaling is impaired (Witte et al., 2008; Yoshimura

et al., 2005). The effect of nutrient deprivation on axonal length

could not be reproduced by diluting only insulin (Figures S1C

and S1D), unlike what was previously shown in the case of

neuronal cell death (Young et al., 2009). To further establish
ing Axons

he principal components of the normal and diluted culture media.

and treated with or without Spautin-1 (10 mM) for 24 h.

control and starved hippocampal neurons (Student’s t test).

control of apoptosis, neuronswere treatedwith staurosporine (100 nM) for 24 h.

hyde 3-phosphate dehydrogenase (GAPDH) as a loading control. Each p value

tion.

neurons either unstarved or starved for 24 h. Bar plot showing the mean ± SEM

eurites in control neurons (DMSO treated), following treatment with rapamycin

control and Spautin-1-treated (10 mM) hippocampal neurons (Student’s t test).

, Rapa (50 nM), and a combination of both drugs for 24 h. Bar plot showing the

gonal contrast).

tively, of cortical neurons (3 DIV) treated with Rapa (50 nM) or without Rapa for

tein, respectively, using the non-phosphorylated proteins as loading controls

) and Spautin-1 (10 mM). Arrows indicate quantified Tau1-positive axons.

ocampal neurons treated with Rapa (50 nM) and Spautin-1 (10 mM) (ANOVA

tandardized individual values of all experimental replicates.
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the role of autophagy in axonal growth, we treated hippocampal

neurons with the autophagy inducer rapamycin (50 nM) for 24 h

(Figures 1H–1L and S1E). The detection of LC3-II, pSer757-

ULK1 and pSer235/236-S6 ribosomal protein levels by western

blotting confirmed autophagy activation in neurons upon rapa-

mycin treatment (Figures 1H–1J), and this was coincident with

enhanced axonal growth (Figures 1K, 1L, and S1E). In addition,

200 nM resveratrol and 75 nM Torin1 showed similar effects (Fig-

ures S1F–S1I). The effects of rapamycin and Torin1 in axonal

extension were reversed by Spautin-1 (Figures 1K, 1L, S1H,

and S1I), further demonstrating that the increased maximal

axonal growth was triggered by an autophagy-dependent

process.

Polarization of Autophagy-Related Proteins and VAMP7
in Developing Neurons
We then hypothesized that neuronal polarization might be asso-

ciated with the recruitment of ATG proteins in the growing axon.

To test this hypothesis, we cultured rat hippocampal neurons

and characterized the distribution of LC3 during stages 2–3

when axonal growth is at its peak (Dotti et al., 1988). We ex-

pressed GFP to obtain a measurement of the cell volume and

stained neurons for endogenous LC3. We quantified the density

of LC3 staining as the ratio of LC3 and GFP signals. We found a

striking concentration of LC3 in the axonwhen neurons transition

from stage 2 to stage 3 and during late stage 3, indicating the as-

sociation of axon specification with the autophagic machinery

(Figures 2A–2E). In addition, there was a positive correlation be-

tween the length of the axon and the density of LC3 (Figure 2F). If

LC3 polarizing to the axon corresponds at least in part to

VAMP7-positive secretory vesicles then we would expect that

autophagy should increase the amount of VAMP7, LC3, and

the secretory vesicle tether exocyst in axonal tips (EauClaire

and Guo, 2003). Indeed, the exocyst subunit Sec6 marks secre-

tory vesicles involved in neurite growth (Vega andHsu, 2001).We

thus treated neurons with rapamycin for 4 h to effectively induce

autophagy as detected by the appearance of LC3-II by western

blotting (Figures S2A and S2B). This treatment doubled the

amount of VAMP7-, LC3-, and Sec6-positive spots in axonal

growth cones compared with untreated neurons (Figures 2G,

2H, 2J, 2L, and 2N), while growth cone area remained unaffected

(Figure 2M). Co-localization between LC3 and Sec6 was unaf-

fected by rapamycin (Figures 2I and 2K), suggesting that auto-

phagy induced a general increase in the amount of these vesicles

in growth cones. Interestingly, growth cone concentration of

SNAP29, a t-SNARE that pairs with VAMP7 and inhibits its secre-

tory activity (Kuster et al., 2015) as well as mediates autophago-

some-lysosome fusion (Guo et al., 2014), was not significantly

affected by rapamycin as determined by immunostaining in the

axonal growth cone (Figures S2E and S2F) or the total amount

of protein detected by western blotting (Figure S2G). Addition-

ally, we also tested O-linked b-N-acetylglucosamine (O-GlcNAc)

modification of SNAP29 as this is associated with fusion be-

tween autophagosomes and lysosomes and with autophagic

flux (Guo et al., 2014). No significant O-GlcNAcylation of

SNAP29, VAMP7, or Sec6 was observed under our experimental

conditions (Figures S2H–S2K). These results strongly suggest

that a pool of Sec6/LC3/VAMP7-positive vesicles can concen-
4 Cell Reports 33, 108536, December 22, 2020
trate in growing axons, particularly in growth cones, but these

vesicles appear unrelated to autophagosome-lysosome fusion.

We then studied the in vivo dynamics of VAMP7 in neurons.

We imaged both ATG9a, which is an autophagy-related mem-

brane protein involved in autophagosome biogenesis, and

VAMP7 because previous study found that these proteins co-

localized (Aoyagi et al., 2018). ATG9a is localized in part to late

endosomes in neurons (Tamura et al., 2010). We found the

occurrence of ATG9a-red fluorescent protein (RFP)/GFP-

VAMP7-positive punctae moving both anterogradely and retro-

gradely in the axons of 3 DIV hippocampal neurons (Figure S3A;

Video S1). We also found that mCherry-LC3B and GFP-VAMP7

co-localized in anterogradely and retrogradely moving particles

in growing axons (Figure S3B; Video S2). Co-localization be-

tween LC3 and VAMP7 was high and not modified by rapamycin

(Figures S3B–S3D). However, net vesicular displacement and

particle size were significantly increased upon rapamycin addi-

tion (Figures S3B, S3E, and S3F). The average speed of both

retrogradely and anterogradely moving punctae was equally

increased after rapamycin treatment (Figure S3G). These results

led us to hypothesize a potential involvement of VAMP7 in a

secretory mechanism that would be recruited upon autophagy

induction in neurites.

VAMP7 Mediates NGF- and Autophagy-Induced Neurite
Growth
To decipher the molecular mechanism linking autophagy, secre-

tion, and neurite growth in greater detail, we generated VAMP7

and ATG5 KO PC12 cells by using CRISPR-Cas9 genome edit-

ing (Figures S4A–S4D) and compared the behavior of wild-type

(WT), VAMP7 KO, and ATG5 KO PC12 cells in several assays.

We chose PC12 cells because neurite growth induced by nerve

growth factor (NGF) was previously shown to depend on VAMP7

(Martinez-Arca et al., 2000; Racchetti et al., 2010). First, we

treatedWT, VAMP7, and ATG5 KO cells with NGF to trigger neu-

rite growth (Greene and Tischler, 1976). VAMP7KO cells showed

a strong decrease in neurite growth (as measured by the longest

process), while it was increased in ATG5 KO cells compared with

WT (Figures 3A and 3B). We then treated the cells with rapamy-

cin and observed that the length of the single longest neurite was

increased in WT and ATG5 KO, but not in VAMP7 KO, cells (Fig-

ures 3A and 3B). When we included the longest process and its

branches, neurite growth in ATG5 KO cells was increased and

showed more ramifications compared with WT (Figures 3A and

3C). Rapamycin had no additional effect on total neurite length

(primary neurites plus branches) in any of the three cell types

(Figures 3A and 3C). These results suggest that ATG5 KO cells

resulted in longer and more branched neurites, a result in agree-

ment with the effect on Spautin-1 inducing multipolar neurons

described above (Figure 1). VAMP7 KO cells were strongly

impaired for neurite growth and insensitive to rapamycin (Figures

3A–3C). Re-expression of GFP-VAMP7 fully rescued both NGF-

dependent and rapamycin-induced neurite growth (Figures 3D

and 3E).

Lipidomics and Secretomics of VAMP7 and ATG5 KO
To gain insight into how ATG5 and VAMP7 might regulate neu-

rite growth, we carried out lipidomics and proteomics in our
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Figure 2. LC3 Is Polarized to the Fast-

Growing Axon in Developing Neurons and

Co-localizes with the Exocyst in Growth

Cones

(A–D) Images showing the distribution of endoge-

nous LC3 in GFP-expressing developing hippo-

campal neurons. Non-polarized neuron (A), stage

2–3 transition (B), early stage 3 (C), and late stage 3

(D). For (A)–(C), images share the same scale bar as

in (C).

(E) Boxplot showing the amount of LC3 in minor

processes and axons. GFP was used as a control

for the differential volume of the neuronal pro-

cesses (paired Student’s t test).

(F) Plot showing the correlation between axonal

length and LC3 density compared with the minor

processes. Green dots are the individual obser-

vations.

(G) Images showing endogenous Sec6 and LC3 in

the axonal growth cones of polarized (3 DIV) hip-

pocampal neurons treated with or without Rapa

(50 nM) for 4 h. High-magnification images of

selected areas of the axonal growth cones (white

boxes) are displayed in right panels.

(H and J) Boxplots showing the quantification of

the number of Sec6- and LC3-positive spots in the

axonal growth cone (the growth cone is delimited

by the white dashed lines in G) (Student’s t test).

(I and K) Boxplots showing the quantification of the

proportion of LC3 spots that co-localize with Sec6

and the proportion of Sec6 spots that co-localize

with LC3, respectively, and treated with Rapa

(50 nM) or without Rapa for 4 h (Student’s t test).

(L) Images of polarized hippocampal neurons (3

DIV) stained for endogenous VAMP7 and treated

with Rapa (50 nM) or without Rapa for 4 h. The

F-actin staining was used to define the growth

cone, and the dashed line marks the beginning

point for what we considered the growth cone

during quantification.

(M and N) Boxplots showing the quantification of

the growth cone area and the number of VAMP7

spots, respectively (Student’s t test).
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Figure 3. Effect of VAMP7 and ATG5 KO on Neurite Growth in NGF-Differentiated PC12 Cells

(A) Widefield images (negative display) of tubulin-labeled WT, VAMP7 KO, and ATG5 KO PC12 cells differentiated with NGF (50 ng/mL) for 1 week and then left

untreated or treated with Rapa (100 nM) overnight. Pink and green line indicates the single longest process and the connected branches, respectively.

(B) Boxplot of the length of the longest neurite (pink line in A) for each condition shown in (A).

(C) Boxplot of the length of the longest process and branches (pink and green lines in A) for each condition shown in A. The p values correspond to the statistical

ANOVA test for each genotype and Tukey statistical test for each experimental condition.

(D) Images of non-transfected WT, VAMP7 KO cells transfected with GFP, and VAMP KO PC12 cells transfected with GFP-VAMP7, treated with NGF (50 ng/mL)

for 1 week and then treated with Rapa (100 nM) or without Rapa for 24 h.

(E) Boxplot showing the length of the single longest neurite in PC12 cells shown in (D). Each p value corresponds to an ANOVA test between the two conditions.

The p values on top of the plot show the differences among the genotypes after an ANOVA test.
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PC12 cell lines following NGF differentiation. Lipidomic analysis

of WT, VAMP7 KO, and ATG5 KO PC12 cells showed that spe-

cific lipids involved in neurite extension were altered in each of

the mutants relative to WT (Figures 4A and 4B). In ATG5 KO

cells, enhanced levels of several glucosylceramides (GluCers)

including GluCer d18:0/16:0 and GluCer d18:1/18:0 were

observed. The increased levels of GluCers and enhanced neu-

rite growth in ATG5 KO compared with WT PC12 cells in our

study were in accordance with a previous report on the inhibi-

tory effects of GluCer synthase inhibitor on neurite outgrowth

in PC12 cells (Mutoh et al., 1998). In particular, impeding GluCer

biosynthesis was found to inhibit neuronal sprouting, which was

attributed to the depletion of downstream complex glycosphin-

golipids such as gangliosides in PC12 cells (Mutoh et al., 1998).

Several sphingomyelins (SMs) were reduced in ATG5 KO cells

(Figure 4A), suggesting that the enhanced levels of GluCers

may be partly attributed to elevated breakdown of SMs. Impor-

tantly, accumulation of ceramides has been previously found in

Arabidopsis upon ATG5 inactivation (Havé et al., 2019); there-
6 Cell Reports 33, 108536, December 22, 2020
fore, it is likely a conserved mechanism. On the other hand,

VAMP7 KO cells exhibited reduced levels of phosphatidyletha-

nolamines (PEs) such as PE 38:4 and PE 34:2 and elevated

plasmalogen phosphatidylcholines compared with WT (Fig-

ure 4B). Previous work had shown that the ethanolamine moiety

of PE derived from phosphatidylserine is actively re-acylated

only in PC12 cells undergoing NGF-induced neuritogenesis (Ike-

moto and Okuyama, 2000). This result is particularly interesting

because LC3 and other ATG8 molecules bind PE (Kabeya et al.,

2004; Thukral et al., 2015). This further suggests that maintain-

ing the intracellular pools of PEs may be important for both LC3

recruitment to membranes and NGF-induced neuritogenesis in

PC12 cells.

We then conducted a proteomic analysis of the cell lysate and

secretome of WT, ATG5, and VAMP7 KO PC12 cells. To avoid

false positive results and remove extracellular vesicles (EVs)

present in the cell culture media, we cultured cells without

serum for 20 h before collecting the culture medium. Indepen-

dent biological and technical triplicate experiments were
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Figure 4. Lipidomic and Secretomic Analysis of WT, VAMP7 KO, and ATG5 KO PC12 Cells

(A) Scatterplot of the changes in cellular lipid profiles in VAMP7 KO (vertical axis) and ATG5 KO (horizontal axis) relative to WT PC12 cells. Lipids that were

significantly altered (p < 0.05 from Student’s t test) were enlarged and are represented by rectangles (VAMP7 KO versusWT) and triangles (ATG5 KO versusWT).

(B) Heatmap plot showing the difference in abundance of plasmalogen (PCs) lipid species in WT, VAMP7 KO, and ATG5 KO PC12 cells.

(C–E) Volcano plots showing the proteome of the extracted proteins significantly enriched in WT versus VAMP7 KO (C), WT versus ATG5 KO (D), and ATG5 KO

versus VAMP7 KO (E). Black lines denote the statistical significance boundary. Proteins of interest are highlighted in blue.

(F–H) Volcano plots showing the secretome proteins significantly enriched inWT versus VAMP7 KO (F), WT versus ATG5 KO (G), and ATG5 KO versus VAMP7 KO

(H). Black lines denote the statistical significance boundary. Proteins of interest are highlighted in blue.

Cell Reports 33, 108536, December 22, 2020 7

Article
ll

OPEN ACCESS



A

E
DMSO Rapa Baf DMSO Rapa Baf DMSO Rapa Baf

WT VAMP7 KO ATG5 KO

Input

DMSO Rapa Baf DMSO Rapa Baf DMSO Rapa Baf

WT VAMP7 KO ATG5 KO

Secreted medium (EVs, 15K pellet)

RTN3

p62

GAPDH

VAMP7

LC3 I>
II>

- 25

- 25

- 25

- 50

- 15

+NGF

DMSO Rapa Baf DMSO Rapa Baf DMSO Rapa Baf

WT VAMP7 KO ATG5 KO

Input

DMSO Rapa Baf DMSO Rapa Baf DMSO Rapa Baf

WT VAMP7 KO ATG5 KO

Secreted medium (acetone precipitation)

RTN3

p62

GAPDH

LC3
I>

II>

- 25

- 15

- 50

- 25

B

J
p=0.158

p=0.001

F

WT PC12 +
WT Conditioned media

WT PC12 +
ATG5 KO Conditioned media

WT PC12 +
VAMP7 KO Conditioned media

20 μm

WT VAMP7
KO

ATG5
KO

Lo
ng

es
t n

eu
rit

e 
le

ng
th

 (μ
m

)

no NGF

Conditioned 
media:

D

H

I

N
or

m
al

iz
ed

 fr
ac

tio
na

l r
el

ea
se

 
R

TN
3 

(a
.u

)

Rapa:
Baf:

WT VAMP7 KO ATG5 KO

+- -
+--

+- -
+--

+- -
+--

100

200

300

400

Rapa:
Baf:

WT VAMP7 KO ATG5 KO

+- -
+--

+- -
+--

+- -
+--

N
or

m
al

iz
ed

 fr
ac

tio
na

l r
el

ea
se

 
p6

2 
(a

.u
)

N
or

m
al

iz
ed

 fr
ac

tio
na

l r
el

ea
se

 
R

TN
3 

(a
.u

)

Rapa:
Baf:

WT VAMP7 KO ATG5 KO

+- -
+--

+- -
+--

+- -
+--

Rapa:
Baf:

WT VAMP7 KO ATG5 KO

+- -
+--

+- -
+--

+- -
+--

N
or

m
al

iz
ed

 fr
ac

tio
na

l r
el

ea
se

 
p6

2 
(a

.u
)

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4 p<0.01

p<0.05

p<0.05

p<0.01

p<0.05
p<0.001

p<0.001

p<0.05

p<0.01
p<0.001

p<0.05

p>0.05

G

Rapa:
Baf:

WT VAMP7 KO

+- -
+--

+- -
+--

N
or

m
al

iz
ed

 fr
ac

tio
na

l r
el

ea
se

 
LC

3-
II 

(a
.u

)

0

1

2

3

4
p<0.001

C

Rapa:
Baf:

WT VAMP7 KO

+- -
+--

+- -
+--

N
or

m
al

iz
ed

 fr
ac

tio
na

l r
el

ea
se

 
LC

3-
II 

(a
.u

)

0

1

2

3

4
p>0.05

(legend on next page)

8 Cell Reports 33, 108536, December 22, 2020

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
analyzed by mass spectrometry so that a quantitative analysis

could be performed both in cell lysates and secretomes.

Compared with WT samples, ATG5 and VAMP7 were undetect-

able in their respective KO PC12 cell line (Table S2). These data

confirmed the genotypes of our cell lines and the sensitivity and

reliability of our approach. We then analyzed the secretome of

WT, VAMP7 KO, and ATG5 KO PC12 cells. We found that WT

cells released proteins that were significantly less abundant in

the VAMP7 KO secretome (Figures 4F; Table S2, secretome: fil-

ter ‘‘DOWN V7’’). In the secretome of ATG5 KO cells, we found

several autophagy-related proteins that were significantly

increased (RTN1, CALCOCO1, Atlastin/ATL1, SQSTM1/p62,

MAP1LC3B/LC3b, RTN4, MAP1LC3A/LC3a, GABARAP, GA-

BARAPL2, RTN3, ATL3; Figure 4G; Table S2, secretome: filter

‘‘UP ATG5’’). Interestingly, ER-phagy adaptor proteins RTN3

and ATL3 were significantly more abundant in ATG5 KO and

less abundant in VAMP7 KO secretomes (Figures 4F and 4G;

Table S2, secretome: filter ‘‘DOWN V7’’ and ‘‘UP ATG5’’;

RTN3 and ATL3 are the two top proteins following this criterion).

In addition, we found 483 secreted proteins classified as ‘‘extra-

cellular vesicular exosome’’ (Table S2, secretome: filter ‘‘extra-

cellular vesicular exosome’’ from column ‘‘GOCC name’’). Of

these 483 proteins, 68 are significantly ‘‘UP’’ or ‘‘DOWN’’ in

VAMP7 KO and 73 in ATG5 KO, indicating effect of both KOs

on the secretion of exosomal proteins. When we compared

ATG5 and VAMP7 KO secretomes, RTN1, CALCOCO1, ATL1,

SQSTM1/p62, MAP1LC3B/LC3b, RTN4, MAP1LC3A/LC3a,

GABARAPL2, RTN3, and ATL3 appeared significantly more

abundant in ATG5 KO (Figure 4H; Table S2). According to pub-

lished reports, a block in macroautophagy can lead to the acti-

vation of chaperone-mediated autophagy (CMA) (Kaushik et al.,

2008). We specifically searched for KFERQ-containing proteins

as markers of the CMA pathway (Kirchner et al., 2019; Sahu

et al., 2011), but we did not find any that would be significantly

enriched in ATG5 KO and decreased in VAMP7 KO secretome

(Table S2, secretome: filter ‘‘DOWN V7’’ and ‘‘UP ATG5’’ and

sort KFERQ using filter in CMA column). In conclusion, we found

that VAMP7 KO and ATG5 KO, which have opposite effects on

neurite growth, had clear opposite effects only in the secretion

of RTN3 and ATL3, which are related to ER-phagy.
Figure 5. Western Blot Analysis of VAMP7 KO and ATG5 KO PC12 Cel

(A–D)WT, VAMP7 KO, and ATG5KOPC12were differentiatedwith NGF for 1week

100 nM) overnight. (A) Left: equal amounts of cell lysate proteins were processe

sponding secretomes were precipitated with acetone, resuspended with equal v

SDS-PAGE and western blot analysis. (B–D) Fractional release (secreted fraction

analysis of the corresponding bands from three independent experiments. The p

one-way ANOVA test.

(E–H) UndifferentiatedWT, VAMP7 KO, and ATG5 KOPC12were treatedwith DM

of cell lysate proteins were loaded, processed for SDS-PAGE, and western blot an

recover larges EVs, the pellets were resuspended with equal volumes of lysis b

western blot analysis. (F–H) Fractional release (secreted fraction/cell lysate) of p6

values show the differences among the genotypes and drug treatments after a o

indicated proteins p62, GAPDH, RTN3, LC3 (A and E) and VAMP7 (E). The positio

independent experiments are displayed.

(I) WT PC12 were differentiated for 7 days with the conditioned medium obtained

After the treatment, cells were fixed and processed for immunocytochemistry. N

(J) Boxplot showing the length of the single longest neurite in PC12 cells shown
VAMP7 Mediates Autophagy-Stimulated
Unconventional Secretion of RTN3
Next, we confirmed our prior results by performing western blot-

ting of the cell lysates and the secretomic fractions. WT, VAMP7

KO, and ATG5 KO PC12 cells were either differentiated using

NGF or left undifferentiated; thereafter, they either remained un-

treated or were treated with rapamycin or bafilomycin A1. ATG5

KO cells showed a very strong p62 accumulation and a virtual

absence of LC3-II (Figures 5A and 5E, left, and S5A, S5B, S5D,

and S5E); thus, they were fully autophagy impaired as expected.

The accumulation of p62 in ATG5 KO cells indicated that p62

degradation in autophagolysosomes, which requires ATG5 for

their biogenesis (Rubinsztein et al., 2012), is the main mecha-

nism of p62 catabolism. The level of p62 was not significantly

affected by rapamycin and slightly increased by bafilomycin A1

in WT and VAMP7 KO cells (Figures 5A and 5E, left, and S5A

and S5D). Rapamycin did not have a robust effect on LC3-II in

both WT and VAMP7 KO cells. Only bafilomycin A1, an autopha-

gic flux inhibitor (Mauvezin and Neufeld, 2015), significantly

increased LC3-II in both genotypes, suggesting that autophagic

flux was high in both (Figures 5A and 5E, left, and S5B and S5E).

Furthermore, the persistence of the effect of bafilomycin A1 in

VAMP7 KO cells indicated that autophagosome formation and

autophagosome-lysosome fusion could still proceed in the

absence of VAMP7. The main band that we could detect of

RTN3 in PC12 cells had an apparent molecular weight (MW)

slightly below 25 kDa (Figures 5A and 5E, left) and thus corre-

sponds to RTN3A1, one of the short isoforms (Di Scala et al.,

2005). We did not observe significant effects of the tested drugs

on RTN3 expression levels in either KO cell lines (Figures 5A and

5E, left, and S5C and S5F).

For western blot analysis of the secretome, which includes

both soluble secreted proteins and proteins associated with

secreted EVs, we first precipitated the conditioned medium us-

ing acetone to get the total protein content, an approach similar

to the secretome analysis by proteomics described above. By

analyzing the acetone-precipitated secreted amount as a frac-

tion of the total content (so-called fractional release), we

confirmed the proteomic analysis carried out in NGF-treated

cells and found that loss of VAMP7 decreased secretion of
l Lysates and Secretomes

and then treatedwith DMSO as control, Rapa (100 nM), or bafilomycin A1 (Baf;

d for SDS-PAGE/western blot analysis and loaded in a gel. Right: the corre-

olumes of lysis buffer, and equal amounts relative to input were processed for

/cell lysate) of p62 (B), LC3-II (C), and RTN3 (D) was estimated by densitometry

values show the differences among the genotypes and drug treatments after a

SO as control, Rapa (100 nM), or Baf (100 nM) overnight. (E) Left: equal amounts

alysis. Right: the corresponding secretomes were centrifuged at 15,0003 g to

uffer, and equal volumes relative to input were processed for SDS-PAGE and

2 (B), LC3-II (C), and RTN3 (D) was estimated by densitometry analysis. The p

ne-way ANOVA test. In all cases, the membranes were probed to detect the

n of MW markers is indicated. (A and E) Western blot representative from four

from serum-free differentiation media WT, ATG5 KO, or VAMP7 KO PC12 cells.

eurites were visualized by tubulin staining.

in (D) (ANOVA orthogonal contrast).
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RTN3, while ATG5 KO increased it (Figures 5A, right, and 5D).

The effects of VAMP7 KO and ATG5 KO on p62 secretion were

not significant (Figures 5A, right, and 5B). The secreted fraction

only increased proportionally to the cellular content in the case

of ATG5 KO. LC3-II was barely detectable in the secretome of

VAMP7 KO cells (Figure 5A, right), and we could not observe

any significant difference (Figure 5C), likely because the signal

was too low for proper quantification. In agreement with input

levels (Figures S5B and S5E), LC3-II was virtually absent in

ATG5 KO secretomes, which enables quantification of fraction

release for this genotype.

In order to gain precision in the quantification of secretion of

RTN3, a membrane-associated protein, we then precipitated

the conditioned medium at 15,000 3 g (15K) to recover large

EVs content. We used untreated PC12 cells in order to obtain

large amounts. Based on Ponceau staining, we estimated that

proteins secreted in large EVs corresponded to ~15%–20% of

the total secreted proteins, both in NGF-treated and untreated

cells (Figure S5G). The secretion of p62 was greatly enhanced

in bafilomycin-A1-treated WT but much less in VAMP7 KO cells

(Figures 5E, right, and 5F), indicating that VAMP7 is required for

the secretion of p62 when its degradation is impaired. Interest-

ingly, ATG5 KO did not affect the release of p62, in agreement

with the notion that ATG5 is required to capture p62 in mem-

brane structures (Romanov et al., 2012). We were able to identify

LC3-II in the 15K fraction secreted by WT cells, particularly

following bafilomycin A1 treatment, and the amount was greatly

decreased in the same condition in VAMP7 KO cells (Figures 5E,

right, and 5G). Secreted LC3-II was impossible to detect in ATG5

KO cells, as previously mentioned (data not shown in Figure 5G).

The secretion of LC3-II in the 15K fractions was strongly affected

by VAMP7 KO in bafilomycin-A1-treated cells. We confirmed the

presence of RTN3 in the 15K fractions and the effect of VAMP7

and ATG5 KO, which decreased and increased, respectively, the

amounts of RTN3 (Figures 5E, right, and 5H). In the secretome of

both WT and ATG5 KO cells, we detected the full-length VAMP7

and a 15-kDa fragment likely corresponding to the cytoplasmic

domain of VAMP7 as our antibody was generated against this

domain (Figures 5A and 5E, right) (Verraes et al., 2018), a domain

that was shown to contain a LIR (Gu et al., 2019).

Altogether, biochemical analysis of the secretome of PC12

cells clearly indicated that VAMP7 was required for the release

of RTN3, p62, and LC3-II in large EVs and that ATG5 KO released

more RTN3 than WT cells.

We next characterized the subcellular localization of endoge-

nous RTN3 using immunocytochemistry in NGF-differentiated

WT, VAMP7 KO, and ATG5 KO PC12 cells. We carried out dou-

ble RTN3 and CD63 staining because CD63 is amarker of secre-

tory late endosomes (Kowal et al., 2014) previously shown to co-

localize with VAMP7 in PC12 cells (Coco et al., 1999). We found a

rare but still distinguishable pool of membrane structures posi-

tive for both RTN3 and CD63 in WT cells (less than 5% CD63

in RTN3, less than 2% RTN3 in CD63 staining, as estimated

following 3D particle detection; Figures S6A–S6C). The occur-

rence of CD63 in RTN3 staining was affected both by VAMP7

and ATG5 KO (Figures S6A–S6C). We think that this is a strong

indication that RTN3/CD63 co-localization depends on both

degradative and secretory ER-phagy.
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Next, we askedwhether VAMP7- and ATG5-dependent secre-

tomes could participate in a signaling mechanism involved in

neurite growth. To answer this question, we first collected me-

dium conditioned by NGF-treated WT, VAMP7 KO, and ATG5

KO PC12 cells. We then treated naive WT PC12 cells with these

different conditioned media and measured maximal neurite

length. VAMP7 KO conditioned medium showed no significant

effect, whereas ATG5 KO conditioned medium had slight but

significant inhibitory effect (Figures 5I and 5J). Therefore, the

role of VAMP7-dependent secretion did not appear to depend

on a paracrine mechanism but to be rather cell autonomous.

The increased secretion of ATG-related proteins in ATG5 KO

might have inhibitory effects on neurite growth in addition to

the cell autonomous overgrowth observed in ATG5 KO PC12

cells.

Role of VAMP7 in Nutrient-Deprived Neurons and RTN3
Subcellular Localization
We then asked whether acute inactivation of VAMP7 in neu-

rons could prevent the effect of autophagy modulation on

axonal growth. In order to acutely inhibit VAMP7-dependent

functions without altering VAMP7 expression, we generated

a VHH antibody, corresponding to the variable region of a

heavy chain of a camelid antibody directed against the cyto-

plasmic domain of VAMP7 by phage display (see STAR

Methods). We characterized the clone F1.1, one of the positive

clones, by yeast two-hybrid assay and immunocytochemistry,

showing that this nanobody specifically bound to and co-local-

ized with VAMP7, but not VAMP2, VAMP4, Sec22, or GFP (Fig-

ures S7A–S7G). When we expressed mCherry-F1.1 as an in-

trabody in 2 DIV hippocampal neurons, we found a complete

inhibition of the effect of nutrient restriction in axonal length

compared with neurons expressing mCherry alone (Figures

6A and 6B). In previous work, we and others showed that

acute expression of the auto-inhibitory Longin domain of

VAMP7 had a profound effect on axonal growth (Martinez-

Arca et al., 2001) and inhibited VAMP7-dependent secretion

(Gupton and Gertler, 2010). Here, we expressed RFP or

RFP-Longin in 2 DIV cultured neurons either left untreated or

treated with rapamycin. We found that rapamycin treatment

induced large punctae of RTN3 in control RFP-expressing neu-

rons, but not in RFP-Longin-expressing neurons. Instead, we

found a reticular staining of RTN3, reminiscent of ER sheets

in rapamycin-treated RFP-Longin-expressing neurons (Fig-

ure 6C). Altogether, these results suggest that axonal over-

growth induced by nutrient restriction required VAMP7 and

that inhibiting VAMP7-dependent secretion impaired the sub-

cellular localization of RTN3, further strengthening the relation-

ship between VAMP7 and RTN3.

DISCUSSION

Here, we found that nutrient restriction and autophagy modula-

tion impacted axonal growth via a VAMP7- and autophagy-

dependent secretion of ER LIR-containing proteins Reticulons

and Atlastins. By showing the role of VAMP7 in both ER-phagy

and exocytosis-mediated neurite growth, we have bridged two

yet unconnected cellular pathways.



Control Media Diluted Media

p=0.017

p=0.558

Tau1Tau1
mCherry-F1.1

30μm

Tau1
mCherry

Tau1
mCherry

5μm

C RTN3 RTN3
RFP

DAPI
RTN3

RFP-longin
DAPI

RTN3

D
M

SO

RTN3
RFP

DAPI

RTN3
RFP-longin

DAPI

R
ap

am
yc

in
B

mCherry mCherry-
F1.1

A
xo

na
l l

en
gt

h 
(μ

m
)

0

500

1000

A

mCherry-F1.1

Control media
Diluted media

Figure 6. Role of VAMP7 in Nutrient Restriction-Induced Axonal Overgrowth and RTN3 Subcellular Localization in Hippocampal Neurons

(A) Images of hippocampal neurons transfected with a mCherry-tagged nanobody directed against VAMP7 (clone F1.1) or mCherry as a control and either left

unstarved or starved for 24 h. Arrows indicate the beginning of an axon, and arrowheads point to the ends.

(B) Boxplot of the quantification of the total axonal length of transfected and starved hippocampal neurons (Student’s t test).

(C) Images of hippocampal neurons transfected with RFP as a control or RFP-Longin and treated with Rapa (100 nM) or without Rapa for 4 h. Grayscale displays

of RTN3 staining are shown in left panels.
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Role of Autophagy in Neurite Growth
Here, we found that autophagy activation by nutrient restriction,

rapamycin, Torin1, or resveratrol and autophagy inhibition by

Spautin-1 or by knocking out ATG5 trigger different modalities

of neurite overgrowth. The fact that nutrient restriction and

several drugs that induce autophagy by direct (rapamycin,

Torin1) or indirect (resveratrol) inhibition of mTOR (Zhou et al.,

2010) showed similar effects on neurite growth clearly indicates

that the effect was related to autophagy. The effect of nutrient re-

striction and autophagy induction was limited to overgrowth of

the axon in neurons and the longest process in NGF-differenti-

ated PC12 cells. The positive effect on axonal growth of nutrient

restriction was not due to a change in Glc concentration as this
was maintained constant and was not due to insulin limitation

because we specifically tested the effect of diluting only insulin.

Future studies should address the specific components of the

diluted nutrients that trigger this response in neurons. Amino

acids such as Leu and Arg are certainly potential candidates

for their roles in autophagy (Mordier et al., 2000; Savaraj et al.,

2010).

It is intriguing that both activation and inhibition of autophagy

would enhance neurite growth, but what may here appear as a

paradox could be explained in the context of neuronal polarity

and neurite branching. Indeed, Spautin-1 induced multipolar

axons, and ATG5 KO in PC12 cells led to longer, highly branched

neurites. It is conceivable that the molecular mechanisms
Cell Reports 33, 108536, December 22, 2020 11
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underlying the increased axonal extension after autophagy acti-

vation and the emergence of multiple axons (or ramified pro-

cesses in PC12) after autophagy inhibition partially overlap.

Both modalities of neurite growth could be due to VAMP7-

dependent secretion because the overgrowth effect of rapamy-

cin and neurite ramification were both abolished in VAMP7 KO

cells. Autophagy activation increases axonal length, but it does

not produce supernumerary axons, suggesting that this mecha-

nism is at least partially independent of axonal specification.

Accordingly, we found that LC3 polarized into the axon and

that rapamycin enhanced the motility of LC3/VAMP7 vesicles,

suggesting that autophagy might participate to axonal extension

by regulating the transport of endosomes in axons versus sec-

ondary neurites. These observations might suggest that auto-

phagy may prevent axonal overgrowth, regulate ramification,

and participate to axon specification during neuronal develop-

ment, in line with the notion that the molecular regulation of

axonal growth and axonal specification are inter-connected (Cá-

ceres et al., 2012). We have observed that nutrient restriction ac-

tivates autophagy downstream of mTOR, which has already

been associated with the regulation of cell growth, particularly

in dividing cells (Jewell and Guan, 2013). Our results are in

good agreement with the notion that both reduced mTOR

signaling and excess activation of mTOR signaling cause

abnormal development of neurons (Takei and Nawa, 2014).

Role of VAMP7-Dependent Secretory ER-Phagy in
Neurite Growth
Our previouswork and that of others suggested an important role

of VAMP7-dependent secretion in neuronal development (Al-

berts et al., 2003; Burgo et al., 2012, 2013; Colombo et al.,

2014; Fuschini et al., 2018; Gupton and Gertler, 2010; Jausoro

and Marzolo, 2021; Martinez-Arca et al., 2000, 2001). These re-

sultswere based onmRNAsilencing approaches and expression

of the auto-inhibitory Longin domain in cultured neurons and

NGF-treated PC12 cells. The VAMP7 KO mouse had a smaller

brain, similar to several autophagy-deficient mouse models

(Takei and Nawa, 2014), but VAMP7�/� neurons were still able

to develop in vitro (Danglot et al., 2012). It is possible that other

secretory pathways, particularly those involving VAMP4 or

Sec22b (Colombo et al., 2014; Grassi et al., 2015; Petkovic

et al., 2014), could compensate for the lack of VAMP7 in�/�neu-

rons in culture. VAMP7 was already associated to secretory late

endosomes and lysosomes in PC12 cells (Coco et al., 1999) and

sensory neurons inwhich it is involved in the transport of the cold-

sensing receptor TRPM8 (Ghosh et al., 2016). Here, using intra-

body transfection, wewere able to circumvent the potential func-

tional compensation that might occur in the mouse KO neurons.

Using this approach, we found an important role of VAMP7 in

axonal growth when nutrient restriction conditions were applied

shortly after transfection of an intrabody targeted against

VAMP7. These data are in good agreement with the decreased

neurite growth observed in NGF-treated VAMP7 KO PC12 cells,

the lack of effect of rapamycin on neurite growth, and the rescue

effect on neurite extension by re-expressing VAMP7 in VAMP7

KO PC12 cells. Part of the role of VAMP7 in neurite growth is

certainly related to its involvement in the cell surface transport

of L1-CAM (Alberts et al., 2003) and the Glc transporter Glut1
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(Hesketh et al., 2014). Surface expression of Glut1 was shown

to be stimulated by autophagy (Roy et al., 2017). Furthermore,

VAMP7 exocytosis is regulated by Netrin-1 (Winkle et al., 2014)

and its receptor DCC (Cotrufo et al., 2011). Netrin-1 activates

mTOR (Bai et al., 2017) and UNC-5, the netrin receptor in the

nematode, is related to UNC-51, a Ser/Thr kinase homologous

to yeast Atg1, which is required for autophagy (Ogura and Gosh-

ima, 2006). Altogether, data herein and in previous publications

suggest that VAMP7-mediated secretion could be strongly

dependent on the metabolic state of the cell.

Here, we found that VAMP7 KO cells were defective in the

secretion of p62, LC3-II, and RTN3 in large EVs. In addition, ex-

pressing the Longin domain, which was previously found to

inhibit axonal growth and VAMP7-dependent exocytosis (Gup-

ton and Gertler, 2010; Martinez-Arca et al., 2001), affected the

subcellular localization of RTN3, further strengthening the rela-

tionship between VAMP7 and RTN3. The abnormal subcellular

localization of RTN3 in neurons expressing RFP-Longin and

treatedwith rapamycin likely reflects a dysfunctional ER (Sharoar

et al., 2016). RTN3 is particularly interesting in relation with neu-

rite growth because its overexpression was associated with

dystrophic neurites (Hu et al., 2007). The main form of RTN3

that we recovered in the secretome corresponds to RTN3A1, a

short form that has not been associated to degradative ER-

phagy in contrast to the long form (Grumati et al., 2017), suggest-

ing that degradative and non-degradative autophagy-related

processesmay participate in different aspects of neuronal devel-

opment. It is tempting to further speculate that long forms of

RTN3 could be associated with degradative ER-phagy as previ-

ously shown (Grumati et al., 2017) and short formswith secretory

ER-phagy (this study), providing an interesting control check-

point between different autophagy-related processes. When

degradation in autolysomes is inhibited by loss of ATG5 or bafi-

lomycin A1 treatment, neuronal cells would ramp up a VAMP7-

dependent secretory mechanism to eliminate Reticulons and

Atlastins (Figure 7).

Reticulons form tubular ERmembrane structures (Voeltz et al.,

2006) and ER tubules, which are relatively poor in ribosomes

(Shibata et al., 2006). These might also accumulate integral

membrane proteins and be connected to lipid synthesis (West

et al., 2011). In addition, RTN3 regulates ER-to-Golgi transport

(Wakana et al., 2005), and overexpression of RTN4 was found

to enhance the secretory pathway, most likely of integrins (Mu-

kherjee and Levy, 2019). Regulating supply from the ER to the

Golgi is important for neurite outgrowth (Ruhl et al., 2019). Our

data suggest that VAMP7-dependent secretion of LIR-contain-

ing Reticulons and Atlastins may contribute to neurite growth

in part by regulating the early secretory pathway. It is tempting

to speculate that neurite growth induces a strong upregulation

of the ER to sustain the increased anabolism of proteins and

lipids. Eliminating some ER surplus by both VAMP7-dependent

secretory andATG5-dependent degradative ER-phagy (Figure 7)

would thus appear as a fitness mechanism. Both pathways

might be involved in eliminating aggregates of secretory proteins

as shown in the case of misfolded proinsulin and collagen aggre-

gates (Cunningham et al., 2019; Omari et al., 2018) or preventing

the occurrence of RTN3-mediated dystrophic neurites (Hu et al.,

2007).



Figure 7. Working Model of ATG5- and VAMP7-Dependent ER-Phagy Pathways

Fragments of the ERmay be degraded by an ATG5-dependent autophagy mechanism (1. Degradative ER-phagy—top part of the model, red arrow), allowing for

the catabolism of LC3, p62, GABARAP, CALCOCO, RTN3, and ATL3. Alternatively, ER fragments and associated proteins Reticulons and Atlastins (RTN3 and

ATL3, red box) may be incorporated into secretory structures such as late endosomes/amphisomes (2. Secretory ER-phagy—bottom part of the model, green

arrow). ER fragments could become associated with late endosomes/amphisomes via the fusion of ER-derived vesicle or engulfment (engulf.) in nascent in-

traluminal vesicles of late endosomes/amphisomes. Late endosome/amphisome fuse with the plasma membrane in a VAMP7-dependent manner releasing

Reticulons in membranous structures as we have shown in Figure 5. If the degradative route is inhibited by Spautin-1 or in ATG5 KO, catabolism is impaired,

secretory ER-phagy (pathway 2) would still be active and generate longer andmore ramified neurites as shown here. If secretory ER-phagy is impaired by VAMP7

KO, the degradative route would still be active at the same time as neurite growth is impaired. Inhibition of mTOR by Rapa would activate both 1. Degradative ER-

phagy and 2. VAMP7-dependent secretory ER-phagy. Degradative ER-phagy would be involved in preventing overgrowth and controlling branching, while

secretory ER-phagy would be positively involved in growth.
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Both VAMP7 KO and ATG5 KO showed lipidome defects.

ATG5 KO cells showed increased GluCers and increased neurite

length in agreement with a previous report on the inhibitory ef-

fects of GluCer synthase inhibitor on neurite outgrowth in PC12

cells (Mutoh et al., 1998). VAMP7 KO cells exhibited reduced

levels of PE. Both ceramides (Jiang and Ogretmen, 2014) and

PE (Rockenfeller et al., 2015) participate in autophagy and in

ER-phagy related to ER stress (Ellert-Miklaszewska et al.,

2020; Viswanath et al., 2018). ATG8 proteins such as LC3 are re-

cruited and conjugated to PE on the autophagic membrane

(Thukral et al., 2015). Therefore, VAMP7’s function in auto-

phagy-dependent neurite growth could be related to transport

of lipids and the recruitment of ATG8 molecules to secretory

late endosomes and to the growing neurite.

We recovered large amounts of RTN3 in EVs and found the

occurrence of a small subset of co-localized RTN3 and CD63

in WT cells. To be released in EVs, RTN3 would need to enter

luminal vesicles of CD63+ late endosomes after the fusion of

ER-derived vesicles with the limiting membrane of late endo-

somes or via the engulfment of ER-vesicles inside the late endo-

somes (Figure 7). VAMP7 interacts with the ER-SNAREs

SNAP47 and Syntaxin5 (Kuster et al., 2015; Siddiqi et al.,

2006); thus, ER-late endosome fusion is certainly a viable hy-

pothesis that will require further investigation. We found high
amounts of LC3-II, RTN3, and VAMP7 cytosolic domain in

secreted membranes pelleting at 15K, particularly following ba-

filomycin A1 treatment. This suggests that these membranes

have a buoyancy much larger than typical exosomes that are

recovered at 100,000 3 g (Bobrie et al., 2012) and that these

EVs contain cytosolic proteins (i.e., the cytoplasmic domain of

VAMP7). Thus, engulfment of RTN3-containing ER-derived

membranes in late endosomes as it was observed in the case

of Sec62+membranes (Loi et al., 2019) appears as a likely mech-

anism of recruitment of RTN3 into EVs. Regardless, we exclude

the possibility that released RTN3 would originate from plasma

membrane shedding because we found no evidence of

VAMP7-dependent release of abundant plasma membrane pro-

teins in the extracellular medium (Table S2). Our evidence of

VAMP7-dependent secretion of LC3-II further suggests that

VAMP7 mediates the secretory mechanism recently revealed

in non-neuronal cells (Leidal et al., 2020). The fact that bafilomy-

cin A1 increased the release of p62, LC3-II, and RTN3 in a

VAMP7-dependent manner further suggests that VAMP7 might

mediate the release of amphisomes, which results from auto-

phagosome-late endosome fusion (Figure 7).

We did not find any significant effect of culture medium

conditioned by VAMP7 KO compared with WT cells on neurite

growth of naive cells. This suggests that the mechanisms
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unraveled here are primarily cell autonomous, but it still does

not exclude the possibility of autocrine effects or paracrine ef-

fects at short distances, particularly in the context of the pres-

ence of RNA-binding proteins in LC3-II-positive EVs (Leidal

et al., 2020). In fact, the inhibitory effect of the ATG5 KO secre-

tome on neurite growth may suggest that the lack of degrada-

tive autophagy profoundly deregulates neurite growth with

both cell-autonomous neurite overgrowth and non-cell-auton-

omous inhibition of growth. Our results are in good agreement

with the recent finding that a proteolytic C-terminal fragment of

Reticulon 4A is released in exosomes and inhibits axon regen-

eration (Sekine et al., 2020). Further characterization of the

biochemical content of these secreted membranes may reveal

their autocrine or paracrine effects on specific cellular

functions.

In conclusion, our findings suggest that endosomes can

mediate the release of ER-phagy elements such as Reticulons

and Atlastins in a VAMP7-dependent manner during neurite

growth and neuronal polarization. Further studies will be

important not only in the context of brain development but

also for brain function after development, particularly because

Reticulons and Atlastins have largely been associated with

neurodegenerative diseases (Yamanaka and Nukina, 2018)

and VAMP7 with sex-related disease in humans (Chávez-Ló-

pez et al., 2020; Tannour-Louet et al., 2014). Our findings

further add secretory ER-phagy as a route of unconventional

secretion.
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Hesketh, G.G., Pérez-Dorado, I., Jackson, L.P., Wartosch, L., Schäfer, I.B.,
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Kowal, J., Tkach, M., and Théry, C. (2014). Biogenesis and secretion of exo-

somes. Curr. Opin. Cell Biol. 29, 116–125.

Kuster, A., Nola, S., Dingli, F., Vacca, B., Gauchy, C., Beaujouan, J.-C., Nunez,

M., Moncion, T., Loew, D., Formstecher, E., et al. (2015). The Q-soluble N-Eth-

ylmaleimide-sensitive Factor Attachment Protein Receptor (Q-SNARE) SNAP-

47 Regulates Trafficking of Selected Vesicle-associated Membrane Proteins

(VAMPs). J. Biol. Chem. 290, 28056–28069.

Lagache, T., Sauvonnet, N., Danglot, L., and Olivo-Marin, J.-C. (2015). Statis-

tical analysis of molecule colocalization in bioimaging. Cytometry A 87,

568–579.

Leidal, A.M., Huang, H.H., Marsh, T., Solvik, T., Zhang, D., Ye, J., Kai, F., Gold-

smith, J., Liu, J.Y., Huang, Y.-H., et al. (2020). The LC3-conjugation machinery

specifies the loading of RNA-binding proteins into extracellular vesicles. Nat.

Cell Biol. 22, 187–199.

Liu, J., Xia, H., Kim, M., Xu, L., Li, Y., Zhang, L., Cai, Y., Norberg, H.V., Zhang,

T., Furuya, T., et al. (2011). Beclin1 controls the levels of p53 by regulating the

deubiquitination activity of USP10 and USP13. Cell 147, 223–234.

Loi, M., Raimondi, A., Morone, D., and Molinari, M. (2019). ESCRT-III-driven

piecemeal micro-ER-phagy remodels the ER during recovery from ER stress.

Nat. Commun. 10, 5058.

Longair, M.H., Baker, D.A., and Armstrong, J.D. (2011). Simple Neurite Tracer:

open source software for reconstruction, visualization and analysis of neuronal

processes. Bioinformatics 27, 2453–2454.

Martinez-Arca, S., Alberts, P., Zahraoui, A., Louvard, D., and Galli, T. (2000).

Role of tetanus neurotoxin insensitive vesicle-associated membrane protein

(TI-VAMP) in vesicular transport mediating neurite outgrowth. J. Cell Biol.

149, 889–900.

Martinez-Arca, S., Coco, S., Mainguy, G., Schenk, U., Alberts, P., Bouillé, P.,
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti LC3B Sigma Cat# L7543; RRID:AB_796155

Anti GAPDH Sigma Cat# G9545; RRID:AB_796208

Anti ULK1 Cell Signaling Technology Cat# 8054; RRID:AB_11178668

Anti pULK1 Cell Signaling Technology Cat# 14202; RRID:AB_2665508

Anti S6 Ribosomal Protein Cell Signaling Technology Cat# 2317; RRID:AB_2238583

Anti pS6 Ribosomal Protein Cell Signaling Technology Cat# 4858; RRID:AB_916156

Anti Cleaved caspase 3 Cell Signaling Technology Cat# 9664; RRID:AB_2070042

Anti CD63 Abcam Cat# ab108950; RRID:AB_10863101

Anti VAMP7 N/A Clone TG158.2

Anti VAMP7 N/A Rabbit serum TG50

Anti ATG5 Abcam Cat# ab108327; RRID:AB_2650499

Anti p62 Abcam Cat# ab101266; RRID:AB_10675814

Anti O-Linked N-Acetylglucosamine Abcam Cat# ab2739; RRID:AB_303264

Anti SNAP29 Synaptic Systems Cat# 111 302; RRID:AB_887795

Anti Beta tubulin N/A Clone E7

Anti Tau1 Millipore Cat# MAB3420; RRID:AB_11213630

Anti MAP2 Abcam Cat# ab5392; RRID:AB_2138153

Anti Sec6 Stressgen / Enzo Life Sciences Cat# sv021; RRID:AB_10618264

Anti GFP Roche Cat# 11814460001; RRID:AB_390913

Alexa Fluor 647 Phalloidin Thermo Fisher Scientific Cat# A22287; RRID:AB_2620155

Deposited Data

Analyzed Proteomic Dataset from PC12 This paper ProteomeXchange Consortium via PRIDE.

ID: PXD020502 http://proteomecentral.

proteomexchange.org/cgi/GetDataset?

ID=PXD020502

Experimental Models: Cell lines

PC12 ATCC Cat# CRL-1721.1

Experimental Models: Organisms/Strains

Rattus norvergicus Janvier Labs (France) Cat# RN-SD-F

Oligonucleotides

Guide RNA to KO VAMP7 (sgRNA#5):

GTGTGGAGGAAACTTCCTGG

This paper N/A

Guide RNA to KO VAMP7 (sgRNA#3):

AGTGGTTCCCCTGGCAACAA

This paper N/A

Guide RNA to KO ATG5 (sgRNA#3):

AAGAGTCAGCTATTTGACGC

This paper N/A

Guide RNA to KO ATG5 (sgRNA#4):

AAGAAGATGTTAGTGAGATT

This paper N/A

Recombinant DNA

GFP-VAMP7 Addgene Cat# 42316

Nanobody mCherry-F1.1 This paper. Hybrigenics SA. N/A

Chemicals

Rapamycin Sigma-Aldrich Cat# 37094

Spautin Sigma-Aldrich Cat# SML0440

Bafilomycin A1 InvivoGen Cat# TLRL-BAF1

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Torin1 InvivoGen Cat# INH-TOR1

Software

ImageJ (Schneider et al., 2012) https://imagej.nih.gov/ij

Icy (de Chaumont et al., 2012) http://icy.bioimageanalysis.org

R N/A https://www.r-project.org
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Thierry

Galli (thierry.galli@inserm.fr).

Materials Availability
Plasmids and PC12 cell lines generated in this study have not been deposited to any public repository as they are easily generated.

Should any of them be needed please inquiry with the lead contact. Previously published plasmids generated by the laboratory are

available at Addgene.

No other unique reagent was generated in this study.

Data and Code Availability
The mass spectrometry proteomic data have been deposited at the ProteomeXchange Consortium via the PRIDE partner repository

with the dataset identifier PXD020502.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
PC12 cell lines (ATCC Cat# CRL-1721.1) were grown at 37�C and 5% CO2 in RPMI supplemented with 10% Horse Serum (Thermo

Fisher 26050088) and 5% Bovine Fetal Calf Serum (Biosera 017BS346). Plastic dishes were coated with a 1 mg/ml collagen (Sigma

C7661) solution to obtain a collagen concentration of 1.83 mg/cm2 on the culture dish. Induction of neurite-like extensions was trig-

gered by incubating cells with differentiation media (RPMI + 1% Horse Serum + 50ng/ml NGF (Sigma-Aldrich)) for one week.

To prepare conditioned media we differentiated WT, VAMP7 KO and ATG5 KO PC12 cells in T150 flasks. The culture media was

replaced on the 6th day of differentiation with fresh serum-free differentiation media (RPMI + 50ng/ml NGF) and left overnight. Media

conditioned byWT, VAMP7 KO or ATG5 KOwere collected (~20ml/dish), cell debris were cleared by 2,000 x g / 20min centrifugation,

supplemented with 1% Horse serum and used to differentiate WT PC12 for one week. Culture media was replaced every 2 days.

After the treatment, cells were fixed and processed for immunocytochemistry. Neurites were visualized by tubulin staining.

Primary cultures
Primary neuronal cultures were prepared as previously described (Kaech and Banker, 2006). E18-E19 rat hippocampal and cortical

neurons were dissected, enzymatically dissociated and plated onto poly-L-lysine coated glass coverslips (1 mg/ml) or plastic dishes

(0.1 mg/ml) in MEM supplemented with 10%Horse serum and 0.6%Glucose. After 2 to 4 hours, the culture media was changed with

neuronal N2 media. For confocal imaging analysis, hippocampal neurons were plated at a density of 9,000 neurons/cm2 and for

biochemical analysis, cortical neurons were plated at a density of 300,000 neurons/cm2. No sex selection was performed during

the extraction of the embryos.

Pregnant rats were terminally anesthetized with CO2 before removing the embryos, no special ethical permission was required for

this procedure. The embryos were decapitated immediately after removal from the uterus so no special ethical permission was

required.

METHOD DETAILS

Cell treatments with chemicals
Rapamycin (Sigma-Aldrich, 37094), Spautin-1 (Sigma-Aldrich, SML0440), Torin1 (InvivoGen, INH-TOR1) and Bafilomycin A1 (Inviv-

oGen, TLRL-BAF1) were diluted in culturemedia and added to either PC12 cells or primary neurons. Tominimize cell stress during the

treatments, we prepared 2X concentrated solutions and added them to the same amount of culture media in the culture dish. The

concentrations and time of the treatments are detailed in the main text and figure legends.
Cell Reports 33, 108536, December 22, 2020 e2
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Protein electrophoresis and western blot
Cells were extracted with a lysis buffer composed of Tris 50 mM; NaCl 150 mM; Triton X-100 1%; 3 mM EDTA and 1X complete

protease inhibitor cocktail (Sigma Aldrich 05056489001). After extraction, samples were centrifuged at 12,000 3 g at 4�C for 20 mi-

nutes and the supernatant was recovered. 20 – 30 mg of total protein was loaded into 12% Laemmli-SDS-PAGE gels and run at 80V

for 30 minutes and then 110V for another 90 minutes approximately. Proteins were then transferred to a 0.2 mm nitrocellulose mem-

brane at 400 mA for 2 – 3 hours at 4�C. Membranes were blocked with a Tris-based saline solution; 0,1% Tween-20 (TBST) and sup-

plemented with 2,5% non-fat dry milk. Primary and secondary antibodies were incubated in TBST supplemented with 2.5% non-fat

dry milk solution. Unless otherwise stated, all secondary antibodies were conjugated with Horse Radish Peroxidase. Membranes

were developed with SuperSignal West Femto Maximum Sensitivity Substrate (Thermo Fisher 34095). 10 images over a 60 to

120 s time frame were acquired with a Chemidoc imagerTM (BioRad). Non-saturated images were analyzed with Fiji/ImageJ to deter-

mine signal density. Unless otherwise stated, the signal of interest was expressed as a ratio to GAPDH to compensate for potential

unequal sample loading.

Secretome fractionation
The day following cell seeding the complete culturemedia was changedwith fresh control or treatmentmedia and left overnight. Cells

were processed for western blot as described. The cell culture media was recovered and centrifuged at 2,000 x g for 10 minutes to

remove cell debris. The supernatant was then treated either with acetone and centrifuged at 16,000 x g to recover all proteins or

centrifuged at 15,000 x g for 30 minutes to recover large EVs. The pellet was then re-suspended in lysis buffer with Triton-x100 at

a final concentration of 1%. This was the 15K pellet. For WB analysis, 15mg of the cell lysate and 30% of the 15K pellets were loaded

into a 12% pre-casted 4%–12% Bis-Tris gel (NuPAGE, Life Technologies) and then continued as a regular western blot analysis. All

centrifugations were done at 4�C.

Lipidomic analysis
Lipids were extracted from cells using a modified version of the Bligh and Dyer’s protocol. Lipidomic analyses were carried out as

described previously on an Exion UPLC coupled with a SCIEX QTRAP 6500 PLUS system for polar lipids, and an Agilent 1260 HPLC

coupled with a SCIEX QTRAP 5500 for neutral lipids (Song et al., 2020). All quantification experiments were conducted using internal

standard calibration. In brief, polar lipids were separated on a Phenomenex Luna Silica 3 mm column (i.d. 150 3 2.0mm) under a

binary gradient comprising mobile phase A (chloroform:methanol:ammonium hydroxide, 89.5:10:0.5) and mobile phase B

(chloroform:methanol: ammonium hydroxide: water, 55:39:0.5:5.5) at a flow rate of 270mL/min and column oven temperature at

25�C. Individual polar lipid species were quantified by referencing to spiked internal standards of the same lipid class including

PC-14:0/14:0, PE14:0/14:0, d31-PS-16:0/18:1, PA-17:0/17:0, PG-14:0/14:0, C14:0-BMP, SM-d18:1/12:0, LPC-17:0, LPE-17:1,

LPI-17:1, LPA-17:0, LPS-17:1, S1P-d17:1, Cer-d18:1/d7-15:0, GluCer d18:1/8:0, GalCer d18:1/8:0 obtained from Avanti Polar Lipids

(AL, USA) and PI-8:0/8:0 from Echelon Biosciences, Inc. (UT, USA). d3-GM3 d18:1/18:0 and d3-LacCer d18:1/16:0 were from

Matreya LLC (PA, USA). Glycerol lipids including diacylglycerols (DAGs) and triacylglycerols (TAGs) were quantified using a modified

version of reverse phase LC/MRM. Separation of neutral lipids were achieved on a Phenomenex Kinetex-C18 2.6 mm column (i.d.

4.6x100 mm) using an isocratic mobile phase containing chloroform:methanol:0.1 M ammonium acetate 100:100:4 (v/v/v) at a

flow rate of 300 mL for 10 minutes. Levels of short-, medium-, and long-chain TAGs were calculated by referencing to spiked internal

standards of TAG(14:0)3-d5, TAG(16:0)3-d5 and TAG(18:0)3-d5 obtained from CDN isotopes (Quebec, Canada), respectively. DAGs

were quantified using d5-DAG16:0/16:0 and d5-DAG18:1/18:1 as internal standard from Avanti Polar Lipids. Free cholesterols and

cholesteryl esters were analyzed as described previously with d6-cholesterol and d6-CE18:0 cholesteryl ester (CE) (CDN isotopes)

as internal standards. Lipid levels in each sample were expressed in molar fractions normalized total polar lipids (sum of phospho-

lipids and sphingolipids) for statistical analyses.

Proteomic analysis
Secretome purification

2ml of culture media were precipitated overnight at 4�C with TCA at 10% final v/v and centrifuged 20minutes at 20,000 x g. Pellets

were washed 4 times with ethanol. After the last wash, the pellets were resuspended in 50ml of 5% SDS/100mM TEAB buffer, sup-

plemented with 20mM TCEP and 50mMCAA for complete protein reduction and alkylation. Samples were incubated for 5minutes at

90�C and digested.

Reagents and chemicals

Dithiothreitol, iodoacetamide and ammonium bicarbonate were purchased from Sigma-Aldrich (St Louis, MO, USA), trifluoroacetic

acid (TFA), formic acid, acetonitrile andHPLC-grade water were purchased from Fisher Scientific (Pittsburgh, PA, USA) at the highest

purity grade.

Procedure

PC12 secretome and proteomewere analyzed in three independent biological replicates, each analyzed in technical triplicates. Sam-

ples were digested following an S-Trap protocol using the S-TrapTMmicro spin columns (Protifi, Huntington, NY, USA) either on 50 mg

of total lysate proteins or proteins extracted from 2mL of culture media. Briefly, samples were first supplemented with SDS to a final

concentration of 5%. Proteins were reduced with 20mM TCEP and alkylated with 50mM CAA. Aqueous phosphoric acid was then
e3 Cell Reports 33, 108536, December 22, 2020
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added to a final concentration of 1.2% followed by the addition of S-Trap binding buffer (90% aqueous methanol, 100mM TEAB, pH

7.1). The mixtures were loaded on the S-Trap columns. The columns were washed three times with 150mL S-Trap binding buffer.

Samples were digested with 2mg of trypsin (Promega) at 47�C for 1h. After elution, peptides were vacuum dried and resuspended

in 100ml 10% ACN, 0.1% TFA in HPLC-grade water prior to MS analysis. For each run, 1mL was injected in a nanoRSLC-Q Exactive

PLUS (RSLC Ultimate 3000) (Thermo Scientific, Waltham MA, USA).

Peptides were loaded onto a m-precolumn (Acclaim PepMap 100 C18, cartridge, 300mm i.d.3 5mm, 5mm, Thermo Scientific, MA,

USA) andwere separated on a 50 cm reversed-phase liquid chromatographic column (0.075mm ID, Acclaim PepMap 100, C18, 2mm,

Thermo Scientific, MA, USA). Chromatography solvents were (A) 0.1% formic acid in water, and (B) 80% acetonitrile, 0.08% formic

acid. Peptides were eluted from the column with the following gradient of 5% to 40%B for 120 minutes. One blank was run between

each replicate to prevent sample carryover. Peptides eluting from the column were analyzed by data dependent MS/MS, using the

top-10 acquisition method. Peptides were fragmented using higher-energy collisional dissociation (HCD). Briefly, the instrument set-

tings were as follows: resolution was set to 70,000 forMS scans and 17,500 for the data dependentMS/MS scans in order to increase

speed. The MS AGC target was set to 3.106 counts with maximum injection time set to 60 ms, while MS/MS AGC target was set to

1.105 with maximum injection time set to 60 ms. The MS scan range was from 400 to 2000 m/z. Dynamic exclusion was set to 30 s.

The MS files were processed with the MaxQuant software version 1.6.6.0 and searched with Andromeda search engine against the

UniProtKB/Swiss-Prot Rattus Norvegicus database (release 04-2019, 8036 entries). To search parent mass and fragment ions, we

set an initial mass deviation of 4.5 ppm and 0.5 Da respectively. The minimum peptide length was set to 7 amino acids and strict

specificity for trypsin cleavage was required, allowing up to twomissed cleavage sites. Carbamidomethylation (Cys) was set as fixed

modification, whereas oxidation (Met), N-term acetylation were set as variable. The match between runs option was enabled with a

match time window of 0.7 minutes and an alignment time window of 20 minutes. The false discovery rates (FDRs) at the protein and

peptide level were set to 1%. Scores were calculated in MaxQuant as described previously (Cox and Mann, 2008). For statistical

analysis and graphical representations we used Perseus 1.6.7.0. For both proteome and secretome analysis we kept only proteins

identified in all three biological replicates in at least one group (VAMP7 KO, ATG5 KO and/or WT). Missing values were imputed using

width = 0.3 and down-shift = 1.8. For volcano plot we used t test, S0 = 2, FDR= 0.05.We annotated class of proteins according toGO,

Keyword and Kegg databases. KFERQ motifs (CMA) were annotated according to a database obtained using scanprosite by scan-

ning the rat proteome for the sequences [RK]-[IFVL]-[ED]-[RK]-Q and [IFVL]-[RK]-[RK]-[ED]-Q.

Immunofluorescence and microscopic imaging
Immunofluorescence

Cells were fixed with 4% para-formaldehyde and 4% sucrose for 20 minutes at room temperature. Cells were then permeabilized

with 0.1% Triton X-100 for 6 minutes and then incubated for 30 minutes with a blocking solution consisting of 1% BSA and 0.1%

Tween-20 in PBS. Primary antibodies were diluted in blocking solution and incubated for 90minutes at room temperature. Secondary

antibodies were conjugated with the fluorescent probes Alexa 488, 568, 594 or 647 and were diluted, along with DAPI, in 1% BSA/

PBS and incubated for 60minutes at room temperature. Coverslips were thenmounted with in ProlongGold (Thermofisher) mounting

media.

List of antibodies and dyes
Antibody Catalog Number WB dilution IF dilution

Anti LC3B Sigma-L7543 1/10000 1/500

Anti GAPDH Sigma-G9545 1/40000 –

Anti ULK1 Cell Signaling-8054 1/2000 –

Anti pULK1 Cell Signaling-14202 1/2000 –

Anti S6 Ribosomal Protein Cell Signaling-2317 1/2000 –

Anti pS6 Ribosomal Protein Cell Signaling-4858 1/2000 –

Anti Cleaved caspase 3 Cell Signaling-9664 1/1000 –

Anti CD63 Abcam-ab108950 - 1/300

Anti VAMP7 Clone TG158.2 1/1000 1/200

Anti VAMP7 Clone TG50 1/1000 –

Anti ATG5 Abcam-ab108327 1/5000 –

Anti p62 Abcam-ab101266 1/5000 –

Anti O-Linked N-Acetylglucosamine Abcam-ab2739 1/1000 –

Anti SNAP29 SySy-111 302 1/5000 1/1000

Anti Beta tubulin Clone E7 – 1/8000

(Continued on next page)
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Antibody Catalog Number WB dilution IF dilution

Anti Tau1 Millipore -MAB3420 – 1/2000

Anti MAP2 Abcam-ab5392 – 1/10000

Anti Sec6 Stressgen-vam sv021 1/1000 1/200

Anti GFP Roche-11814460001 1/20000 1/100

Phalloidin Life Technologies-A22287 – 1/1000
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Confocal imaging

For high-magnification analysis, z stack confocal imaging was carried out on a TCS SP8 (93X, 1.3 NA, glycerol-immersion objective)

microscope equippedwith a supercontinuum fiber laser (WLL2). Pixel size aswell as Z-step sizeswere set to fulfill Nyquist criterion. In

all cases, lasers and spectral bands were chosen to maximize signal recovery while avoiding signal bleed-through.

For the analysis of neurite length, low-magnification tile images (covering no less than 6mm2) of hippocampal neurons or PC12 cells

were acquired in a TCS SP8microscope (20X, 0.75 NA, glycerol-immersion objective) or a Leica DMI6000B invertedmicroscope (HC

PL Fluotar 20x/0.5) and then stitched using LAS X (Leica) or Grid/Collection stitching plugin from Fiji software respectively.

Neurons live imaging

2 DIV hippocampal neurons were transfected with mCherry-LC3B and GFP-VAMP7 or ATG9a-RFP and GFP-VAMP7 with the Lip-

ofectamine 2000 reagent (Thermofisher) as described. Immediately after transfection, neurons were placed in control (DMSO) or

treatment (Rapamycin 50nM) media. The following day, neurons were transferred to an imaging chamber (Chamlide EC-B18) and

maintained in Krebs/Ringer buffer (140 mM NaCl, 2.5 mM KCl, 1.8 mM CaCl2, 1.0 mM MgCl2, 20 mM HEPES, 4.5g/ml glucose,

and pH = 7.4) supplemented with insulin (500ng/ml), glucose 1mM and DMSO or Rapamycin according to the experimental proced-

ure. The chamber was placed in a Leica DMI6000B invertedmicroscope with a 1.6Xmag changer, a Leica 63X/1.4 NA Plan-Apochro-

mat oil immersion objective and an ImagEMX2 EMCCD camera (Hamamatsu). Light sources used were a diode-pumped 25mW

561nm (Melles Griot) and a 200mW 488nm (Nichia) lasers, controlled by iLas2 targeted-laser illumination controller. Metamorph

(Molecular Devices) software was used to control the acquisition and the microscopy system. The acquisition lasted for 1 minute

acquiring 1 image every 200ms per channel.

CRISPR/Cas9 genetic engineering
To generate the Knock Out (KO) PC12 cell lines we used the RNA-guided Cas9 endonuclease system developed from the microbial

clustered regularly interspaced short palindromic repeats (CRISPR) adaptive immune system (Ran et al., 2013). The guide RNAs se-

quences were chosenwith theweb-based selection tool CRISPORwhich implements scoring algorithms based on their potential off-

target and on-target DNA cleavage activity (Chari et al., 2017). The 2 highest-scored guide RNAs sequences were cloned into a

pSpCas9(BB)-2A-GFP backbone plasmid. pSpCas9(BB)-2A-GFP (PX458) was a gift from Feng Zhang (Addgene plasmid #48138;

http://addgene.org/48138; RRID: Addgene_48138). After confirmation of the correct insertion by colony PCR and sequencing, plas-

mids were amplified, purified and electroporated to PC12 cells with a bioRad electroporation device which allowed high number of

electroporated cells with moderate plasmid expression. The following day, cells were trypsinized and detached from the culture dish,

pelleted and re-suspended in PBS Ca2+/Mg2+ free, EDTA 1mM, 25mM HEPES, 1% fetal bovine serum, penicillin and streptomycin.

Cells were then sorted by a Fluorescence Activated Cell Sorter by placing one GFP-positive cell per wheel in a 96-multi well plate

containing complete media supplemented with penicillin, streptomycin and kanamycin. Cells were amplified until final confirmation

of gene knockout by protein electrophoresis and Western Blot.

List of guide RNA sequences
Target protein Guide sequence Target protein Target cell

VAMP7 (sgRNA #5) GTGTGGAGGAAACTTCCTGG VAMP7 PC12

VAMP7 (sgRNA #3) AGTGGTTCCCCTGGCAACAA VAMP7 PC12

ATG5 (sgRNA #3) AAGAGTCAGCTATTTGACGC ATG5 PC12

ATG5 (sgRNA #4) AAGAAGATGTTAGTGAGATT ATG5 PC12

*Bold guide RNAs sequences were the most effective.
Selection of the VHHs against VAMP7
Recombinant GST-VAMP7 protein (Martinez-Arca et al., 2000) was biotinylated using EZ-Link Sulfo-NHS-Biotin (Thermo Fisher Sci-

entific) using manufacturer conditions except for a two-fold molecular excess of Sulfo-NHS-Biotin. The unreacted Sulfo-NHS-Biotin
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was eliminated using Prepacked Columns Sepadextran 25 Medium SC (Proteigene). Biotinylation and binding to the beads is

checked by western blot using SA-HRP (Thermo Fisher Scientific). The Nali-H1 library of VHHs was screened against the recombi-

nant biotinylated-VAMP7 as described previously (Moutel et al., 2016) after phage depletion using MBP-Ha-Gst-Flag recombinant

protein. Biotinylated-VAMP7 protein was bound to Dynabeads M-280 Streptavidin (Invitrogen) at each round of selection, at a con-

centration gradually decreased: 100nM in first round, 50nM in second round and 10nM in third round. 1011 phages of the Nali-H1

library were used in the first round of selection. After the third round, 186 clones were randomly picked and tested in non-absorbed

Phage ELISA assay using avidin-plates and biotinylated-VAMP7 Antigen (5mg/ml) for cross-validation (Matz and Chames, 2012).

Anti-VAMP7 VHH F1.1 was recovered following this screen, then mCherry-tagged anti-VAMP7 VHH F1.1 were further validated

by co-expression with GFP-tagged VAMP2, VAMP4, Sec22b as control and VAMP7.

Validation of F1.1 nanobody

VAMP7 and VAMP4 in pB27 (LexA-Bait), VAMP4 and Sec22 in pB29 (Bait-LexA) were transformed in L40DGal4 (mata). Preys: F1-1

pP9 (Gal4AD-F1-1) or pP9 empty vector were transformed in YHGX13 (Y187 ade2-101::loxP-kanMX-loxP, mata). After mating in 96

well plate, growth was tested in drop out minus Leu and Trp (Non-Selective) and on drop out minus Leu, Trp and His to check the

interaction and confirm the non-auto-activation with the empty plasmid.

QUANTIFICATION AND STATISTICAL ANALYSIS

Image analysis
Neurite length

Low-magnification tile images (covering no less than 6mm2) of hippocampal neurons or PC12 cells were analyzed with the Sim-

ple Neurite Tracer plugin (Longair et al., 2011) in Fiji/ImageJ. The length of all processes was quantified for all cells present in the

image.

In neurons the axons were defined as any process longer than 100mm and Tau1-positive. Multi-polar neurons are those that have

two or more axons. The total axonal length is the cumulative lengths of the longest and smaller branches of the axon.

In PC12 cells, we determined the length of the longest, uninterrupted process of every cell, and the cumulative length of the

branches emerging from this process.

Spots detection and co-localization analysis

Stacked confocal images were analyzed with the ‘‘spot detector’’ (Olivo-Marin, 2002) and ‘‘co-localization studio’’ plugins in Icy soft-

ware (de Chaumont et al., 2012). Spots were detected by first processing the original images to obtain coefficient images to remove

background and noise. Then a wavelet adaptive threshold is computed using always a combination of scale 2 and scale 3 and

threshold between 30 and 80 to define the size of the spots and sensitivity of the algorithms respectively. Co-localization was per-

formed with the object-based method by first segmenting the signal of interest (spot detector plugin) and then analyzing their spatial

distributions with second-order statistics (Lagache et al., 2015). Statistically significative (p value < 0.05) co-localizing spots were

used to calculate the average proportion of co-localization under each experimental condition.

For CD63 and RTN3 structures, binary masks were generated from object segmentation with the spot detector icy plugin. The vol-

ume overlap between CD63 and RTN3 structures was determined using 3D roi manager plugin (Ollion et al., 2013) under FiJi (Schin-

delin et al., 2012). Co-localization was considered when the volume overlap was at least 90%.

Vesicle track detection and analysis

Time-lapse images were first segmented with the ‘‘spot detector’’ plug-in in icy software to detect vesicles in the distal axon of hip-

pocampal neurons. Trajectories were then estimated using the ‘‘Spot tracking’’ plug-in in icy software (Chenouard et al., 2013). Tra-

jectories were extracted using a probabilistic tracking method which at any given time point considers multiple past and futures

frames for building the best set of tracks. The set of parameters used were the ones automatically determined by the plug-in.

Statistical analysis
Unless otherwise stated all statistical analysis was performed with the R software. When pooling data from different replicate exper-

iments, the data was standardized as follows: ‘‘std value (x) = (x – sample mean)/sample standard deviation.’’ When the experimental

design required a single pairwise comparison, Student t tests were applied. If the experimental design required the comparison of

multiple conditions with a single control condition an ANOVA with orthogonal contrasts was applied. In the cases where we needed

to do multiple comparisons, we applied an ANOVA test followed by a Tukey’s HSD test.

The exact value of n, what it represents and center and dispersion measures are described in the figures and figure legends. In

experiments where we measured neurite length, each cell was considered as an independent statistical observation. Statistical ob-

servations come from three independent experiments. Significancewas defined as a p value lower than 0.05 unless otherwise stated.

The exact p value is written in the figures.

The lower and upper hinges of all boxplots correspond to the first and third quartiles respectively (the 25th and 75th percentiles).

The upper whisker extends from the hinge to the largest value no further than 1.5 * IQR from the hinge (where IQR is the inter-quartile

range, or distance between the first and third quartiles). The lower whisker extends from the hinge to the smallest value at most 1.5 *

IQR of the hinge. Data beyond the end of the whiskers are called ‘‘outlying’’ points and are plotted individually.
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