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prospective feasibility study
A. Collignon 1, M. A. Hospital1, C. Montersino2, F. Courtier3, A. Charbonnier1, C. Saillard1, E. D’Incan1, B. Mohty1,
A. Guille3, J. Adelaïde3, N. Carbuccia3, S. Garnier3, M. J. Mozziconacci4, C. Zemmour5, J. Pakradouni6, A. Restouin2,
R. Castellano2, M. Chaffanet3, D. Birnbaum 3, Y. Collette2 and N. Vey1

Abstract
Targeted next-generation sequencing (tNGS) and ex vivo drug sensitivity/resistance profiling (DSRP) have laid
foundations defining the functional genomic landscape of acute myeloid leukemia (AML) and premises of
personalized medicine to guide treatment options for patients with aggressive and/or chemorefractory hematological
malignancies. Here, we have assessed the feasibility of a tailored treatment strategy (TTS) guided by systematic parallel
ex vivo DSRP and tNGS for patients with relapsed/refractory AML (number NCT02619071). A TTS issued by an
institutional personalized committee could be achieved for 47/55 included patients (85%), 5 based on tNGS only, 6 on
DSRP only, while 36 could be proposed on the basis of both, yielding more options and a better rationale. The TSS was
available in <21 days for 28 patients (58.3%). On average, 3 to 4 potentially active drugs were selected per patient with
only five patient samples being resistant to the entire drug panel. Seventeen patients received a TTS-guided treatment,
resulting in four complete remissions, one partial remission, and five decreased peripheral blast counts. Our results
show that chemogenomic combining tNGS with DSRP to determine a TTS is a promising approach to propose
patient-specific treatment options within 21 days.

Introduction
Treatment of acute myeloid leukemia (AML) has

improved over the past 30 years. Initially, progress was
due to the optimization of the “one-size-fits-all”
chemotherapy-based approach. Recently, several targeted
agents have emerged to change the treatment landscape

of AML. In spite of these improvements, the majority of
AML patients relapse and succumb to disease with a 5-
year overall survival rate of around 20%1. Clearly, new
therapeutic strategies are required for patients with
refractory or relapsed disease. Among them, personalized
treatment approaches are appealing but have yet to be
extensively studied in this setting. The development of
genome sequencing has allowed a better understanding of
the mechanisms of leukemogenesis by identifying
numerous somatic genetic alterations2,3, revealing the
molecular AML heterogeneity. Some of these alterations,
called “actionable mutations”4, lead to cancer cell vul-
nerabilities that could be targeted by specific drugs to
improve the outcomes of patients. The success of tar-
geting the Breakpoint Cluster Region-Abelson fusion
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protein fusion with imatinib to control chronic myeloid
leukemia (CML)5,6 has promoted the development of
precision medicine. However, it remains challenging to
assess the potential of actionable mutations for successful
targeting and disease control in AML because of the
increased genomic complexity compared to CML4,7.
Moreover, genomic data alone provide limited value in
developing precision medicine with some studies showing
improvement of overall response rate and/or progression-
free survival (PFS) using matched targeted therapies8–10

and others not11. Another limitation to the development
of precision medicine is that relatively few agents exist to
target actionable genes (PML-RARA, FLT3, KIT, IDH1,
and IDH2). Furthermore, the response to targeted thera-
pies used as monotherapies are generally short-lived,
mainly due to the development of drug resistance by the
tumor12, necessitating the targeting of different pathways
by using drug combinations13,14 while minimizing toxi-
cities15. Thus, functional approaches such as ex vivo drug
sensitivity and resistance profiling (DSRP) may comple-
ment genomic data to identify new targeted therapies and
augment the clinical toolbox with existing drugs that can
be tailored to larger numbers of patients with AML16.
This process can test simultaneously dozens of drugs
ex vivo in a rigorous concentration response format,
enabling the identification of a drug response profile for
each patient17–21 independent of genomic profiling. The
addition of genomic analysis to DSRP gives rise to a more
powerful analysis called “chemogenomics” that has the
potential to identify more effective treatment options for a
given patient, as well as discover unexpected correlations
between molecular profiles and drug response to uncover
new indications (drug repositioning) or reveal new
mechanisms of action. Following the initial report by
Pemovska et al.18, several studies have confirmed the
potential of this approach19,21. However, its feasibility has
not been evaluated in the clinical context of a potentially
rapidly progressive disease such as refractory/relapsed
AML. We thus designed a prospective study that serves as
a clinical proof of concept for a chemogenomic approach
demonstrating its ability to produce a treatment-tailored
strategy (TTS).

Patients and methods
Study design
The primary objective of the CEGAL-IPC-2014-012

study was to determine the proportion of eligible patients
for whom the results of chemogenomic analysis could be
obtained in <21 days after blood and bone marrow sam-
pling. To be eligible for this prospective single center
study, patients had to be age >18 years, have non-
promyelocytic AML according to WHO criteria22, be
refractory to- or have relapsed after at least one line of
prior conventional chemotherapy or hypomethylating

agent therapy, have an ECOG performance status (PS) < 3
and an estimated life expectancy >3 months. Written
consent was obtained from all patients. The trial was
approved by the Ethics Committee in accordance with
local policy and registered in clinicaltrials.gov
(NCT02619071).
Molecular/genetic profiling (see Supplemental Material

and Methods and Table S1)
Ex vivo drug sensitivity and resistance profiling (DSRP)

(see Supplemental Material and Methods and Table S2)

Drug choice and treatment-tailored strategy (TTS)
To further identify drugs with a patient-specific efficacy,

we used a Z-score (defined as: patient EC50–meanEC50
of a patient reference matrix/standard deviation, in which
the reference matrix was previously defined on a panel of
25 different samples treated identically).This Z-score
permits objective identification of a patient cell sensitivity
using a quantitative threshold. In practice, a lower Z-score
indicates greater sensitivity of the patient’s cells as com-
pared to those of the other patients.
As soon as the genomic and DSRP data were available, a

multidisciplinary review board (MRB) was organized with
physicians and molecular biologists to discuss the results.
To choose the most efficient drugs for a given patient, we
first selected all the drugs with a Z-score <−0.5 (arbi-
trarily set threshold) then narrowed to the 5 most potent
drugs related to a detected actionable mutation. For some
patients having no drugs with a Z-score <−0.5, we could
still propose drug compounds showing activity compar-
able to that measured on the samples in the reference
matrix and offering the best difference with the activity
measured on peripheral blood mononuclear cells
(PBMCs).
Then, a tailored treatment strategy-TTS-(mono or

polytherapy) was proposed based on the identification of
actionable mutations and/or potential related drug
responses. For choosing combinations when several drugs
were proposed, we took into account: the accessibility of
the drugs in a reasonable timing, the potential toxicity of
the combination or the knowledge of an already used
combination in the literature data.
The physician was then free to follow or not the TTS.

Statistical analysis
The rate of patients for whom chemogenomic analyses

were available in <21 days was estimated, with its Wald’s
bilateral 90% confidence interval. The main objective was
to demonstrate that this rate is significantly superior to
30% (unacceptable rate). For this purpose, a right-sided Z-
test for comparison to the theoretical value of 30% was
performed at the significance level α= 0.05.
For the global analyses and inter-patient EC50 com-

parison, we normalized all the EC50s of one drug with the
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EC50max of this drug obtained in the cohort. Thus, all the
EC50s were comprised between 0 (sensitive) and 1
(resistant).
Association tests between mutations and EC50 were

done with a t-test and p-values and were corrected for
multiple testing with the Benjamini–Hochberg method.
Of the 232 variables associated with the mutations and
152 drugs (76 drugs in bone marrow +76 in blood, 35,264
possible tests), only the variables with n ≥ 4 mutations and
with one EC50 measurement were kept. Moreover, if the
samples had a standard deviation of EC50 < 0.05 for a
given drug, the drug was not tested.
Overall survival was calculated using the Kaplan–Meier

method from the date of inclusion in the trial to the date
of death or last follow-up, whichever came first.

Results
Patient characteristics
Clinical and biological characteristics
A total of 55 patients were included between August

2015 and August 2018. Their characteristics are listed in
Table 1. Median age was 65 years (range 24–81) and
median ECOG-PS was 1. The majority of patients had
high-risk disease according to European Leukemia Net
(ELN) 2017 classification (n= 36, 65%) and had
treatment-refractory disease (n= 46, 84%). Median
number of white blood cells (WBC) was 3.6 G/L
(1.1–51.3), with four patients (3%) having WBC above
20 G/L. Forty percent of the patients had received more
than three lines of treatment and the mean number of
prior therapies was 2.2 (range 1–5), including 12 patients
(22%) who previously underwent allogeneic stem cell
transplantation.

Genomic characteristics
We identified mutations in 63 genes with at least one

mutation per patient (Fig. 1a). In our heavily pretreated
population, the median number of mutated genes and
mutations per patient was 3.8 (range 1–10) and 4.2 (range
1–11), respectively. Eight patients (17%) harbored >6
mutations. The most frequent mutations were in TET2
(29%), DNMT3A (23%), TP53 (23%), RUNX1 (19%), and
SRSF2 (19%). FLT3 and NPM1 mutations were found in 3
patients each (6%). The most frequently altered classes of
genes were signaling pathway (in 54% of the patients), and
chromatin modifiers (54%), DNA methylation (48%) and
transcription factors (40%) (Fig. S1).

TTS design
Actionable mutations
We found potential actionable mutations (as described

above) in at least 16 genes and among 42 patients (94%)
(Fig. 1b, c). Also, we found that 17% of the patients had an
A1 alteration (FLT3, IDH1, IDH2), 10.4% a B1 alteration,

44% an A2 alteration (TET2, TP53, NRAS, KRAS, JAK2,
DNMT3A) and 88% a B2 alteration (Fig. 1c). The most
frequently mutated actionable genes were TP53 (11
patients), NRAS (7 patients), NF1 (6 patients), and IDH2
(5 patients).

Drug sensitivity and resistance profiles
Among the 32 patients for whom blood and bone

marrow samples were analyzed, EC50 were comparable
for the two samples, except for three of them (difference
not explained by a difference in blast percentage between

Table 1 Patients’ characteristics at inclusion.

Characteristics at inclusion n= 55

Median age (yo, range) 65 (24–81)

Sex M/F (number, %)

Male 33 (40)

Female 22 (60)

Performance status (number, %)

0 8 (14)

1 35 (64)

2 12 (22)

Status at inclusion (number, %)

Relapse 9 (16)

Refractory 46 (84)

Number of prior therapies (number, %)

1 16 (29)

2 17 (31)

≥3 22 (40)

Median number of WBC G/L (range) 3.6 (1.1–51.3)

Median number of medullary blasts % (range) 47.5 (1–95)

WHO classification (number, %)

inv(16)(p13.1q22) 2 (4)

inv(3)(q21.3q26.2) 3 (5)

t(6;9)(p23;q34.1) 2 (4)

Mutated NPM1 5 (9)

MRC 32 (60)

Therapy related 4 (7)

NOS 5 (9)

CMML-2 2 (4)

ELN classification (number, %)

Adverse 36 (65)

Intermediate 15 (27)

Favorable 4 (7)
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blood and bone marrow) (Fig. S2), indicating that each of
leukemic cells source could be used.
A high variability in drug response was observed across

all samples in terms of EC50 and Z-score. The number of
effective drug candidates (with a Z-score <−0.5) varied
from 0 to 53 according to the patients (Fig. 2a). Forty-one
patients (85%) had at least one drug with a Z-score <−0.5.
The median number of drugs with Z-score <−0.5 was 9.
For two patients who had not drugs with a Z-score <−0.5,
we selected one drug with a Z-score >−0.5 because the
EC50 was low and the drug matched to an actionable
mutation. Five patients (10%) were considered as resistant
to the entire drug panel.
We observed for example that bortezomib and carlfi-

zomib had a low EC50 in a majority of samples (Fig. 2b).
In contrast, the IDH inhibitors (AGI 5798 and 6780) or
decitabine and to a lower extent azacitidine were not
active in most of the samples. The response to certain
drugs such as asparaginase or PI3K inhibitors showed a
strong variation from one patient to another.

Among the 78 drugs of the panel, 50 were selected by
the board meeting for at least one patient. An average of
3.4 potentially active drugs per patient was proposed. The
most frequent drug classes based on DSRP results were
kinase inhibitors (52 times), chemotherapies (36 times),
epigenetic drugs (32 times), and apoptosis inducers (25
times). The most often selected compounds were tyrosine
kinase and PI3K inhibitors (as Kinase inhibitors), clofar-
abine and aracytine (as chemotherapies), hypomethylating
agents especially azacitidine and SGI 110, BRDi (as epi-
genetic drugs) and PRIMA1 (as apoptosis inducer) (Fig. S3).

Feasibility of the treatment-tailored strategy
Median times from sampling to DSRP or to targeted

next-generation sequencing (tNGS) analysis were,
respectively, 6 days (range 3–14) and 15 days (range
7–37). Median time for TTS proposal by the MRB was
18.5 days (range 8–50). The main objective was reached
with chemogenomic analyses available in <21 days for 28/
48 patients (58.3%, IC90% [46.6%–70.0%]) (Fig. 3). This

Fig. 1 Targeted Next Generation Sequencing (tNGS) analysis results. a Genomic distribution of all the mutations found in the CEGAL cohort
with the corresponding ELN classification. b Representation of the different actionable mutations found in the cohort according to the algorithm (23)
regardless of their level of evidence. c Distribution of the mutations according to their level of evidence in the scientific literature.
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A

B

Fig. 2 Drug Sensitivity Resistance Profiling (DSRP) results. a Barplot representing the percentage of drugs with a Z-score<−0.5 for a given
sample. b Representation of the individual drugs’response of all the patients with each line representing one patient and each point the EC50 value
of the correspondent drug (logarithmic scale, the lowest EC50 in the center).
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rate was significantly superior to the objective of 30% (p <
0.0001, Z-test). Notably, 12 patients were discussed at day
22 and 23 after bone marrow samples.
Among the 55 patients included, a TTS could not be

designed for eight patients (15%): for seven patients
because the chemogenomic analysis could not be done
due to an insufficient number of cells in the collected
samples and for one additional patient because there were
no actionable mutations and no sensitivity to any of the
drugs included in the panel.
A TTS could be designed for 47 patients (85%) based on

tNGS and/or DSRP results: tNGS only for five patients
(10%), DSRP only for six patients (13%), and both tNGS
and DSRP for 36 patients (75%). For the TTS, at least one
of the selected drugs was available (commercially, off-
label or in clinical trials) in 93% of the cases.
Seventeen patients (31%) were treated according to the

TTS (TTS group, Table S3); nine based on the DSRP
results, three based on the presence of actionable muta-
tions, and five based on having both (correlation between
tNGS and DSRP). Personalized treatments consisted of
targeted drugs in 12 patients (six monotherapy; six in
combination) cytotoxic drugs in four patients and hypo-
methylating agent in one patient (Fig. 4).
Twelve patients were treated with another treatment

than those recommended by the MRB (non-TTS group:
inclusion in clinical trial for four patients, other treatment
chosen by the physician for eight patients, no recom-
mended available drug on market in four patients) and 19

patients did not receive any treatment or only palliative
care (because of a poor general status or death
before MRB).

Response and survival
In the 17 TTS patients, there were 4 complete response

(CR) (two still alive in CR), one partial response, and five
decreased peripheral blast counts. The seven remaining
patients progressed. The four CR responses were obtained
after allogenic stem cell transplantation with cladribine
for one patient, after azacitidine+ sorafenib for two
patients and after azacitidine alone for the last one.
In the non-TTS group, there was only one partial

response after azacitidine and no response in the
palliative group.
This difference was not explained by any difference in

median age (66 vs. 62 years for TTS group and non-TTS
group, respectively, p= 0.5), nor median PS at inclusion
(one in both group, p= 0.6) or median number of pre-
vious line (2.2 vs. 2.3, p= 0.7).
Median OS from inclusion was 3.3 months (0.2–32.3) in

the whole cohort and was 5.6 (range 1.6–30.2), 6 (range
0.8–16.8), and 2 months (range 0.2–9.1) for the TTS
group, the non-TTS group and the palliative group,
respectively.

Global analysis of drug sensitivity profiles
Using the median of all the normalized EC50s of the

drug panel for each patient sample, we could evaluate the

Pauciblastic
paucicellular samples

No TTS (n=1)
No actionnable mutation
& resistance to all drugs

TTS
(n=47, 85%)

Board

Patient inclusion
(n=55)

DSRP + tNGS (n=48)

Lost
(n=7)

Actionable mutation(s)
But no sensitivity in DSRP

(n=5, 10%)

Sensitivity in DSRP
& actionable mutation(s)

(n=36, 75%)

Sensitivity in DSRP
But no actionable mutation

(n=6, 13%)

At least 1 drug available
(n=4)

TTS administrated
(n=1)

At least 1 drug available
(n=34)

At least 1 drug available
(n=5)

TTS administrated (n=15)
- Based on actionnable mutation: n=2
- Based on DSRP : n=8
- Based on both : n=5

TTS administrated
(n=1)

NO TTS
(n=8, 15%)

TTS-guided treatment
(n=17, 35%)

Results<21 days
(n=28, 58%)

Results>21 
days

(n=20, 42%)

Fig. 3 Flow chart summarizing the results of the chemogenomic approach applied to the CEGAL cohort. DSRP Drug Sensitivty Resistance
Profiling, tNGS targeted Next Generation Sequencing, TTS Tailored Treatment Strategy.
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global sensitivity of each patient. Two groups of different
sensitivity could be identified: one with high medians
representing resistant patients and the other with middle
or low medians representing the sensitive group illus-
trating that even heavily pretreated patients could still
respond to therapy, at least in ex vivo (Fig. S4).
These two groups also appeared in the hierarchical

clustering (Fig. S5). However, no correlation between
these two groups and the karyotype, the ELN status, or
the mutational status of one particular gene could be
observed. Enrichment in mutated signaling genes was
however noticed in the sensitive group and samples with
at least one mutation in the signaling pathway class had a
significantly lower median EC50 (p= 0.02, Fig. S6). More
mutations (average 4 vs. 3) were observed in the resistant

group as compared to the sensitive group but no differ-
ence in the number of previous line of therapy was
observed. Although not significant, patients with sec-
ondary AML were globally more resistant than those with
de novo AML (median normalized EC50 of patients with
secondary AML were 0.83 vs. 0.47). There was no cor-
relation between median EC50s and the median overall
survival (p= 0.2). Samples with blasts <25% were asso-
ciated with lower drug sensitivity (higher median EC50,
p= 0.015, Fig. S7) and distributed mainly in the resistant
group in the clustering.
Using the median of all normalized EC50s of every

patient’s sample for each drug, we could compare the
global activity level of each drug. The ten drugs with the
highest activity, that is to say with the lowest median
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EC50s, were arsenic, daunorubicine, carfilzomib, borte-
zomib, entinostat, metformin, birinapant, JQ1, and
ponatinib (Fig. S8). As described above, some drugs,
especially asparaginase, had a high median that was
skewed by high activity in a small number of samples. We
then compared this median to the EC50 obtained for the
same drug in PBMC (from eight healthy donors) to define
which drugs were most specific towards leukemic cell. We
observed that some drugs had a lower median EC50 on
AML cells as compared to PBMCs, indicating that they
were more leukemia specific (JQ1, 17AAG and entinostat
are the first three, Fig. S9). In contrast, the average sen-
sitivity to conventional chemotherapies did not differ
between the patient samples and PBMC reflecting the
known limited therapeutic window for these drugs and
their lack of specificity.
In the clustering analysis (Fig. S5), we also observed that

some drugs formed consistent clusters (cytarabine, cla-
dribine, clofarabine, bleomycine, etoposide, idarubicine or
also dasatinib, alisertib, imatinib, ruxolutinib, vermur-
afenib, trametinib), while others seemed less expected
(hydroxychroroquine, bosutinib, ponatinib and
volasertib).

Correlation analyses between drug sensitivity and
genomic profiles
Since our review board assessed actionable genetic

alterations as defined by Perera-Bel et al.23,24, we first
evaluated correlations between DSRP results and the
actionable mutations found in the cohort (Table S4).
Among patient samples exhibiting such an actionable
alteration, 21 (50%) were sensitive to the associated drug.
Yet not statistically supported, the most frequent corre-
lations were sensitivity to P53 reactivator in TP53 muta-
ted patients (7/11 patients), FLT3 inhibitors in FLT3-
mutated patients (2/3 patients), to MEK inhibitors in
patients with RAS mutations or with supposed activation
of the RAS pathway (PTEN or PTPN11 mutations, NF1
loss) or sensitivity to PI3K/AKT/MTOR inhibitors in
patients with supposed activation of this pathway (for
example, loss of CUX1). There were also discrepancies,
notably for samples with IDH2 mutations that were all
resistant to the IDH2 inhibitor.
Although the limited number of patient makes the

interpretation difficult, we next sought to evaluate whe-
ther unexpected mutation/drug pairs could be identified
using our chemogenomic data. We tested 1679 mutation/
drug associations, keeping all the associations with a fold
change <0.2 and a false-discovery rate (FDR) < 0.05
(arbitrarily defined). We found 52 significant associations
involving nine genes: NRAS (n= 27 associations), TP53
(n= 6), RUNX1 (n= 4), JAK2 (n= 3), EZH2 (n= 3),
PTPN11 (n= 3), NF1 (n= 3), SF3B1 (n= 2), and
DNMT3A (n= 1) (Fig. S10 and Table S5). The most

significant associations were: (i) NRAS mutations asso-
ciated with sensitivity to AT9283 (JAK 2/3, Aurora A/B,
ABLT315Iinhibitor, FDR= 2 × 106), MK206 (Pan-AKT
inhibitor, FDR= 2.64 × 105), and VX680 (Aurora inhi-
bitor, FDR= 5.82 × 105) and (ii) RUNX1 mutations with
bleomycine (FDR= 2.64 × 105). None of them were listed
in the databases used by Perera-Bel et al.25,26, except for
the association between NF1 and sensitivity to BET
inhibitors (B3, p= 0.02), NRAS and sensitivity to HSP90
inhibitors (B3, p= 0.01) and TP53 and resistance to
MDM2 inhibitors (A3, p= 0.01).

Discussion
To our knowledge, this study of 55 AML relapse/

refractory patients is the largest cohort studying the fea-
sibility of a treatment-tailored strategy using a chemoge-
nomic approach. Our main objective (availability of the
results in 21 days) was reached for a majority of the
patients (58%). This timing is compatible with the man-
agement of such patients whom survey rarely exceeds
6 months27. Based on the results of tNGS and/or DSRP,
we were able to propose a TTS to 85% of the patients and
eventually 30% received a personalized treatment. The
main reasons for not receiving a personalized treatment
were the general status of the patient, the choice of
another therapy or the unavailability of the drug.
Although complete responses occurred in the TTS

group, we were not able to show improvement in survival
with personalized therapy but the number of patients was
too small to highlight any difference and the cohort was
composed of heavily pretreated patients with poor prog-
nosis. The short overall survival of 3.3 months in the
whole cohort is an argument for including patients earlier
in their therapeutic course, for instance at first relapse.
In terms of genomics, our cohort had a distinctive

mutational profile with a predominance of TET2,
DNMT3A, and TP53 mutations, which differs from the de
novo leukemia profile2 and we show that 94% of the
patients had actionable mutations. However, even if a
patient harbors an actionable mutation, it does not predict
response to the associated drug28 and actually a correla-
tion between the actionable target and its matched drug
was not always observed. There could be several expla-
nations to the later.
First, all actionable mutations found in this cohort are

not clinically validated and do not have the same scientific
knowledge level. Since the development of NGS, some
authors have tried to ease the classification of these
actionable events29 and to generate tools to guide physi-
cians in personalized treatment decisions30. We chose to
classify the alterations by using the classification pub-
lished in 2018, adding new actionable targets found in the
literature such as TET231. We found that 94% of the
patients had at least a B2 alteration. Eventually, we found
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that 17% of the patients harbored an A1 actionable
mutation for which a targeted treatment is approved in
clinical practice, and 44% harbored an A2 actionable
mutation for which drugs have been studied in clinical
trials. We initially decided not to take A3/B3 level
alterations in consideration because of the lack of vali-
dated data, but this might be reconsidered in view of the
two significant A3 alteration/drug associations identified
in our study. Second, the absence of efficiency of a drug
on its paired target could be explained by the clonal
heterogeneity and the predominance of some mutations
within a clone. Currently, a clinical trial is ongoing to
assess whether targeting a clonally dominant driver
mutation improves outcome compared with targeting the
same event in a subclone (DARWIN1, NCT02183883).
Unfortunately, because of the small number of patients,
only the mutated status, not the VAF, could be taken into
account to test the correlation with the drug’s response. It
will therefore be interesting to be able to increment our
cohort to investigate these points and also to look at data
from other cohorts (such as BEAT AML) in order to have
a sufficient number of samples.
Eventually, in our cohort, genomic data guided a tar-

geted treatment by its own in 8/48 patients (17%).
This is in favor of the use of additional tests to help

clinicians in selecting the most appropriate therapy16. We
chose DSRP as a functional test, because it may rapidly
identify ex vivo potential (in vivo) efficient drugs and has
already been used in several studies in AML14,19,21,32. In
our study, the drug category that stood out as the most
efficient and was the most often proposed in MRB was
kinase inhibitors, which is consistent with the fact that
signaling pathway alteration is a major mechanism in
leukemogenesis. Conventional chemotherapy is also
interesting because despite the refractory and multi-
treated hallmark of the patients of our cohort, there still
persists for many cases some sensitivity to che-
motherapies that could find their place in association to
other targeted treatments or in sequential conditioning
regimens before allograft. Interestingly, proteasome inhi-
bitors seemed to be efficient in a majority of the patients
but we do not have a clear explanation and the search for
possible correlations with genomic data has not so far
provided us with any encouraging leads.
Finally, epigenetic drugs were also central in this cohort

enriched in secondary AMLs with many mutations in
genes encoding for chromatin modifiers and DNA
methylation modulators. Response to drugs was variable
and we identified two groups with different sensitivity
profiles, one resistant and the other rather sensitive.
Unfortunately, we were not able to identify any specific
hallmark linked to these two groups, maybe because of
the limited number of patients. The clustering was also
informative about the mechanism of action of the drugs.

Interestingly, vincristine clustered with rigosertib, which
was recently described as a microtubule poison in addi-
tion to being a kinase inhibitor33 indicating that the
observed clustering might reflect common targeted
pathways. This might be in line with the study by Lin
et al.25, which recently highlighted the off-target activity of
various compounds in clinical development whose anti-
proliferative efficacy was not affected by the loss of the
target. Interestingly, the drug tests were reproducible
between blood and bone marrow samples (except for
three patients), which encourages us to do the future tests
only on blood cells to avoid invasive bone marrow aspi-
rates and save time for the analyses.
Eventually, the DSRP was informative in 41/48 patients

(87%) with the identification of drugs predicted efficient,
and led on its own to a personalized treatment in 14/48
patients (29% of the total cohort).
The fact that some targeted therapies were not efficient

on their predicted molecular target (for example IDH2)
could have several explanations. The first one, as said
above, could be that the mutation targeted by the drug
was in a minor clone, the counter selection of which had
no impact on the disease. Unfortunately, we could not
take into account the VAF of the mutation in the inter-
pretation of the correlation tests. Second, the problem
could come from the DSRP technique, which presents
several pitfalls. Indeed, one of the biases could be the
short (48 h) incubation time that could underestimate
some drug effects. Indeed, drugs such as hypomethylating
or differentiating agents need successive cell division
cycles to reach substantial cellular impact. Moreover, with
DSRP, we only focused on cellular viability/proliferation,
whereas differentiation marker analysis by flow cytometry
could be more relevant to evaluate the impact of drugs
such as IDH2 inhibitors. Also, our DSRP methodology
does not take into account the impact of the micro-
environment known to increase chemoresistance and this
indeed could affect ex vivo response26.
The absence of an objective cut-off to estimate ex vivo

drug sensitivity remains a limitation towards the transla-
tion of DSRP results into clinical practice. Other studies
have developed a drug sensitivity scoring (DSS) to eval-
uate drug potency for each patient19,20, but we chose
instead to use a Z-score more classically used in high-
throughput screening because it permits to identify
patient’s specific vulnerabilities34–36. One of the evolu-
tions of our approach has been to take into account the
response of drugs with PBMC using the patient samples/
PBMCsEC50’s ratio, which makes it possible to identify
cancer-selective drugs with potentially less systemic
toxicity. Moreover, data analysis indicated that samples
with blasts <20% were resistant to almost all the drugs.
The analysis of these patients does not seem to be rele-
vant, and were thus excluded. Clearly, a common
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evaluation of these various parameters between several
investigator centers will be necessary in the future in
order to better define and refine the applications of these
methodologies in optimized clinical practice.
An important future contribution to the evolution of

the chemogenomic approach will be the ability to evaluate
drugs combinations. As systematic testing of targeted
agents with cytotoxic treatments or other targeted agents
poses significant experimental challenges37, this should be
effectively evaluated in the future. The principal limitation
for this at the time of our study was the number of cells
for each patient, which must be significant in case of
combinations. Although possible, drug combination ana-
lysis remains, as our methodology on fresh samples is,
accessible for a few pre-defined combinations and for
biological samples with sufficient richness in cellular
material. However, the test can be miniaturized at least to
a 384-well plate format and an integrated use of func-
tional drug screening combined with genomic and
molecular profiling has recently been described to enable
patient-customized prediction and testing of drug com-
bination synergies for T-cell prolymphocytic leukemia
patients38.
In conclusion, chemogenomic is an interesting and

innovative approach feasible in a hospital setting and in a
time frame adapted to refractory/relapsed AML patients.
Further efforts should be devoted to the development of
additional functional tests for the study of not so heavily
treated patients. Whether this approach brings a real
clinical benefit to patient is still not certain and must be
studied in randomized controlled clinical trials.
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