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Object: Quantitative analysis in MRI is challenging due to variabilities in intensity distributions across patients, acquisitions and scanners and suffers from bias field inhomogeneity. Radiomic studies are impacted by these effects that affect radiomic feature values. This paper describes a dedicated pipeline to increase reproducibility in breast MRI radiomic studies.

Materials and Methods: T1, T2, and T1-DCE MR images of two breast phantoms were acquired using two scanners and three dual breast coils. Images were retrospectively corrected for bias field inhomogeneity and further normalised using Z-score or histogram matching. Extracted radiomic features were harmonised between coils by the ComBat method. The whole pipeline was assessed qualitatively and quantitatively using statistical comparisons on two series of radiomic feature values computed in the gel mimicking the normal breast tissue or in dense lesions.

Results: Intra and inter-acquisition variabilities were strongly reduced by the standardisation pipeline.

Harmonisation by ComBat lowered the percentage of radiomic features significantly different between the three coils from 87% after bias field correction and MR normalisation to 3% in the gel, while preserving or improving performance of lesion classification in the phantoms.

Discussion: A dedicated standardisation pipeline was developed to reduce variabilities in breast MRI, which paves the way for robust multi-scanner radiomic studies but needs to be assessed on patient data.

Introduction

Radiomics is a recent field of study involving the extraction of large amounts of quantitative imaging features from radiological images [START_REF] Gillies | Radiomics: Images are more than pictures, they are data[END_REF]. These radiomic features can then feed machine learning methods to build predictive models that might assist diagnosis and patient monitoring. Radiomic studies in breast cancer patients have shown promises, for instance in assessing the risk of breast cancer recurrence [START_REF] Li | MR imaging radiomics signatures for predicting the risk of breast cancer recurrence as given by research versions of MammaPrint, oncotype DX, and PAM50 gene assays[END_REF], detecting malignant from benign lesions [START_REF] Bickelhaupt | Prediction of malignancy by a radiomic signature from contrast agent-free diffusion MRI in suspicious breast lesions found on screening mammography[END_REF], or estimating disease free survival [START_REF] Park | Radiomics signature on magnetic resonance imaging: Association with disease-free survival in patients with invasive breast cancer[END_REF]. Over the last few years, several attempts to predict the response to neoadjuvant chemotherapy using radiomics have been reported, but this remains a challenging task [5 10].

Radiomic studies and subsequent machine learning approaches require a substantial number of images to achieve relevant performance, which encourages the use of multicentre and retrospective data. However, many articles have highlighted the influence of scanner parameters on radiomic features in PET and CT imaging (see for instance the review [START_REF] Traverso | Repeatability and Reproducibility of Radiomic Features: A Systematic Review[END_REF]) and in MRI [12 15]. This so-called scanner effect requires standardisation and harmonisation procedures. In particular, MRI radiomic feature values have been shown to depend on magnetic field strengths, voxel size, pulse sequence parameters or receiver coils [START_REF] Chirra | Empirical evaluation of cross-site reproducibility in radiomic features for characterizing tumor appearance on prostate MRI[END_REF][START_REF] Ford | Quantitative Radiomics: Impact of Pulse Sequence Parameter Selection on MRI-Based Textural Features of the Brain[END_REF]. The standardisation process is especially important in MR as images are expressed in arbitrary units that vary between patients, acquisitions and scanners. MR images also suffer from MR bias field non-uniformity, generating regional and local spatial inhomogeneities. Since the impact of this latter effect goes beyond the field of radiomics and affects tasks such as segmentation, an abundant literature already addresses this issue, but studies are mainly oriented towards brain MRI. Several methods have been developed to correct bias field inhomogeneity retrospectively [START_REF] Song | A review of Methods for Bias Correction in Medical Images[END_REF]. Borys et al. [START_REF] Frackiewicz | The evaluation of correction algorithms of intensity nonuniformity in breast MRI images: a phantom study[END_REF] compared a subset of these approaches on breast phantoms. They found that the N4 algorithm [START_REF] Tustison | N4ITK: Improved N3 bias correction[END_REF] gave the most uniform results, slightly outperforming F3CM [START_REF] Lin | A new bias field correction method combining N3 and FCM for improved segmentation of breast density on MRI[END_REF], but hinted that adapting the parameters of the method specifically for breast imaging could improve the correction. Following bias field correction, MR normalisation techniques have been applied to reduce inter-patient variabilities, the most frequent being the Z-score standardisation [START_REF] Liu | Radiomics of multiparametric MRI for pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: A multicenter study[END_REF]. Shinohara et al. [START_REF] Shinohara | Statistical normalization techniques for magnetic resonance imaging[END_REF] designed a new linear approach, the hybrid White-Stripe, using white matter as a reference tissue in the brain to normalise images, from which Fortin et al. [START_REF] Fortin | Removing inter-subject technical variability in magnetic resonance imaging studies[END_REF] derived the voxel-based RAVEL method. Other non-linear normalisation techniques have been proposed such as histogram matching (referred as HM) by Nyul et Udupa [START_REF] Nyúl | On standardizing the MR image intensity scale[END_REF], further adapted in a multiple sclerosis study by Sha et al. [START_REF] Shah | Evaluating intensity normalization on MRIs of human brain with multiple sclerosis[END_REF]. Bias field correction and intensity normalisation have been shown to improve the radiomic characterisation of tumours from single centre MR images of paediatric brain tumours [START_REF] Goya-Outi | Computation of reliable textural indices from multimodal brain MRI: Suggestions based on a study of patients with diffuse intrinsic pontine glioma[END_REF] and lung cancer [START_REF] Lacroix | Correction for Magnetic Field Inhomogeneities and Normalization of Voxel Values Are Needed to Better Reveal the Potential of MR Radiomic Features in Lung Cancer[END_REF].

Recent works in glioblastoma [START_REF] Um | Impact of image preprocessing on the scanner dependence of multi-parametric MRI radiomic features and covariate shift in multiinstitutional glioblastoma datasets[END_REF][START_REF] Moradmand | Impact of image preprocessing methods on reproducibility of radiomic features in multimodal magnetic resonance imaging in glioblastoma[END_REF] and prostate cancer [START_REF] Chirra | Empirical evaluation of cross-site reproducibility in radiomic features for characterizing tumor appearance on prostate MRI[END_REF][START_REF] Shiradkar | Radiomic features from pretreatment biparametric MRI predict prostate cancer biochemical recurrence: Preliminary findings[END_REF] patients specifically investigated the influence of bias field correction, noise reduction and histogram normalisation on the scanner effect affecting MR radiomic features. Authors identified small subsets of features that were reproducible across scanners after standardisation but did not manage to successfully harmonise all features. A harmonisation method called ComBat initially developed to mitigate batch effects in genomic studies [START_REF] Johnson | Adjusting batch effects in microarray expression data using empirical Bayes methods[END_REF] was successfully applied to compensate for the scanner effect in PET [START_REF] Orlhac | A postreconstruction harmonization method for multicenter radiomic studies in PET[END_REF], CT [START_REF] Orlhac | Validation of a method to compensate multicenter effects affecting CT radiomics[END_REF] and MR [START_REF] Orlhac | How can we combat multicenter variability in MR radiomics? Validation of a correction procedure[END_REF][START_REF] Whitney | Harmonization of radiomic features of breast lesions across international DCE-MRI datasets[END_REF].

Few breast radiomic studies mention bias field correction [START_REF] Wu | Identifying relations between imaging phenotypes and molecular subtypes of breast cancer: Model discovery and external validation[END_REF] or MR normalisation [START_REF] Liu | Radiomics of multiparametric MRI for pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: A multicenter study[END_REF] before computing features. In this study, we propose and validate a radiomics pipeline dedicated to breast MRI. First, a bias field correction method was adapted for breast MR images to overcome the limitations of the conventional approaches. Second, two MR image standardisation techniques (Z-score, HM) were investigated to study their impact on MR intensity distribution. Third, the ComBat method was proposed to further reduce the scanner effect affecting radiomic features. Our experimental study was conducted using two breast phantoms designed for biopsy training in order to monitor the effects of standardisation and harmonisation without any biological or tissue interference. MR acquisitions following the standard clinical protocol in our institution were performed using two MR scanners and three dedicated breast coils. Our pipeline efficacy was assessed by studying the reproducibility of each radiomic feature across thirty regions in the gel mimicking normal tissue and by comparing the performance of dense lesion classification in the phantoms before and after harmonisation using ComBat.

Materials and Methods

Phantom

In order to remain as close as possible to clinical settings and to better investigate MR bias field considering the symmetry inherent to breast imaging, all the experiments described were carried out using two phantoms simultaneously. Two Multi-Modalit Breast Biops and Sonographic phantoms, CIRS reference 073 (Norfolk, VA, USA), were used (Fig. 1a). They consist of an elastomer membrane simulating the skin and subcutaneous fat layer of breast in patients and are filled with a branded gel (Zerdine®). Five to ten cystic lesions (5-10 mm) and ten to fifteen dense lesions (5-10 mm) are included in the gel. Half of the dense lesions are spheres including microcalcifications (Fig. 1c) while the other half are spiculated lesions (Fig. 1d). This model is dedicated to biopsy training and accurately reproduces breast tissue with lesions for MR imaging.

Image acquisition

Images were acquired in the three clinical imaging settings used in our institution. The two phantoms were scanned in a first setting, using a 1.5 T magnet, Optima MR450w (GE, MA, USA) with an 8-channel breast coil further referred to as Coil

The were also scanned in a second setting, using a 1.5T magnet, MAGNETOM Aera (Siemens, Munich, Germany) with an 18-channel breast coil Coil . The third setting consisted in using a 16-channel Sentinelle breast coil, dedicated to diagnosis and MR-guided biopsy, on the 1.5T MAGNETOM Aera (Siemens, Munich, Germany) Coil . For each setting, two acquisitions were acquired (Acq. A and Acq.

B), between which the positions of the two phantoms were switched while the dual breast coils were unchanged.

The phantoms were scanned with three sequences routinely used in breast clinical imaging protocol to get T1weighted, fat-saturated T2-weighted and T1-weighted DCE images, with parameters listed in Table 1. Scanning parameters slightly differed for each coil hence adding another source of variability to the settings. In clinical studies, T1 sequence is acquired for anatomical purposes and does not include fat saturation, while the functional T1-DCE sequence is acquired with high resolution voxel size, fat saturation, and is repeated five times every 90 seconds. However, only one dynamic is presented throughout this work since there was no injection of contrast agent in the phantom. Spoiled gradient recalled T1-DCE and T1 (on the GE Scanner only) images were acquired, while turbo spin echo acquisitions were performed in other cases. Fat saturation was achieved using either Dixon or SPAIR techniques. ARC (GE scanner) and GRAPPA (Siemens scanner) multi-coil parallel imaging were used for T1-DCE acquisitions. The acquisition time including the three sequences was around 18 minutes.

In total, six 3D images (acquisitions A and B with three sequences each) were acquired for each of the three clinical settings, yielding a total of 18 raw 3D images.

T1

Fat-saturated T2 

Bias field correction

Images were corrected for bias field inhomogeneity using the SimpleITK N4BiasFieldCorrection Image filter class adapted for python from the implementation of the N4 algorithm [START_REF] Tustison | N4ITK: Improved N3 bias correction[END_REF] in the ITK library. The N4 method is based on the following image model: , where is a voxel, is the corrupted image, the bias field, the bias-free image and an independent Gaussian noise. In a noise-free case, using logarithmic transformation, with :

The N4 method uses an iterative multi-scale optimisation approach, at iteration , where is an adapted B-spline approximation, and is the residual bias field at step .

The number of resolution levels and the number of iterations at each level are set by default to four levels and fifty iterations but can be changed. A default mask to select the pixels used to estimate the bias field is defined using Otsu thresholding unless a specific mask is provided.

The impact of the hyper parameters mentioned above were investigated by running several trials using three, four, five or six resolution levels, fifty or a hundred iterations, combined with either the default mask or a full mask of the phantom.

To assess the ability of the N4 correction to reduce intensity non-uniformities within similar tissue types, voxels corresponding to the background gel and embedded masses were clustered using the k-means algorithm. The clustering results were compared before and after the bias field correction. As the inner part is made of three different materials (background gel, dense masses and cyst masses), that have different physical properties, the number of clusters was set to three.

The performance of N4 algorithm was also assessed by comparing the coefficients of variation of the mean intensity of small regions drawn in the background gel for the different corrections: fifteen 3D spherical regions of 600 voxels each were drawn using the LIFEx freeware [START_REF] Nioche | LIFEx: A freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity[END_REF] (www.lifexsoft.org) on every raw acquisition.

These spheres were located in the background neutral gel of the phantom, avoiding any cyst or dense masses.

As there were two acquisitions per coil, regions from the same coil were pooled to get thirty regions per coil.

MR normalisation

MR images were normalized after bias field correction as it has been shown that pre-correcting intensity nonuniformities leads to an improved standardisation [START_REF] Madabhushi | Interplay between intensity standardization and inhomogeneity correction in MR image processing[END_REF].

Two types of normalisation were performed separately and compared: 1) Z-score standardisation using a mask of the phantom to compute the mean and standard deviation of intensities (linear transform); 2) piecewise linear histogram matching [START_REF] Nyúl | On standardizing the MR image intensity scale[END_REF][START_REF] Shah | Evaluating intensity normalization on MRIs of human brain with multiple sclerosis[END_REF]. Histogram matching includes two stages: first, HM learns landmarks of a standard histogram and then landmarks of the image histograms are non-linearly mapped to the ones of the standard histogram to align the intensity distributions. HM was applied independently on the three sequences with codes adapted from Reinhold et al. [START_REF] Reinhold | Evaluating the impact of intensity normalization on MR image synthesis[END_REF], using the decile landmarks and standard scale defined by Shah et al. [START_REF] Shah | Evaluating intensity normalization on MRIs of human brain with multiple sclerosis[END_REF].

The impact of normalisation in correcting inter-subject and inter-coil variabilities was evaluated by qualitatively comparing intensity histogram alignment and by using texture analyses.

Radiomic analysis

After MR normalisation, four MR volumes of the same acquisition were available, corresponding to raw data, N4-corrected data, z-score normalised-N4-corrected data, and HM normalised-N4-corrected data.

All 18x4 (3 sequences x 3 coils x 2 acquisitions x 4 transformations) MR volumes were resampled, as recommended by Image Biomarker Standardisation Initiative guidelines [START_REF] Zwanenburg | The image biomarker standardization initiative: Standardized quantitative radiomics for high-throughput image-based phenotyping[END_REF] before extracting features, using nearest neighbour interpolation: T1 and fat-saturated T2 images were resampled to 0.7x0.7x4 mm 3 voxels and T1-weighted DCE images to 1x1x1 mm 3 voxels.

In addition to the regions inside the background gel, dense lesions were segmented on N4-corrected data using the k-means algorithm, these latter regions being manually corrected, when it was necessary.

For each MR volume and each region, 42 radiomic features were computed with LIFEx v5.79 [START_REF] Nioche | LIFEx: A freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity[END_REF] in compliance with the Image Biomarker Standardisation Initiative guidelines [START_REF] Zwanenburg | The image biomarker standardization initiative: Standardized quantitative radiomics for high-throughput image-based phenotyping[END_REF]. Besides first order features, texture features included indices from the grey-level co-occurrence matrix (GLCM), the grey-level run length matrix (GLRLM), the grey-level zone length matrix (GLZLM) and the neighbourhood grey-level different matrix (NGLDM). The list of radiomic features is provided in Supplemental Table 1. For texture calculations, absolute discretization was chosen [START_REF] Goya-Outi | Computation of reliable textural indices from multimodal brain MRI: Suggestions based on a study of patients with diffuse intrinsic pontine glioma[END_REF]. For each sequence and each step of the standardisation pipeline separately, the minimum and maximum intensities inside the regions were calculated to determine the range of intensities and the average standard deviation of intensities over the regions was defined as the fixed bin size.

Harmonisation of radiomic features

Since radiomic feature values might differ between the three experimental settings even after the different processing steps, for every sequence separately, the distributions of the radiomic features extracted after normalisation were harmonised across the three coils using the ComBat method [START_REF] Orlhac | A postreconstruction harmonization method for multicenter radiomic studies in PET[END_REF][START_REF] Orlhac | Validation of a method to compensate multicenter effects affecting CT radiomics[END_REF][START_REF] Orlhac | How can we combat multicenter variability in MR radiomics? Validation of a correction procedure[END_REF]. The ComBat method aims at correcting any differences that could be due to coils, scanners and/or scanning parameters [START_REF] Fortin | Harmonization of cortical thickness measurements across scanners and sites[END_REF][START_REF] Fortin Harp | Harmonization of multi-site diffusion tensor imaging data[END_REF]. For each radiomic feature y measured in region j in centre i, the scanner effect on feature can be modelled as:

where is the overall value of the radiomic feature y, is an additive centre effect and a multiplicative centre effect associated to an error term.

The ComBat method corrects the distributions by calculating , et as estimators of , et using maximum likelihood estimation so that:

The non-parametric form of the method was used without any empirical Bayes assumption. Using R codes by Fortin et al. [START_REF] Fortin | Harmonization of cortical thickness measurements across scanners and sites[END_REF][START_REF] Fortin Harp | Harmonization of multi-site diffusion tensor imaging data[END_REF], ComBat was applied on the feature values measured in the gel and in the dense lesions separately. A specific transformation was determined for every feature independently.

Statistical analysis

Statistical analyses were performed in R, and p-values less than 0.05 were interpreted as statistically significant.

As radiomic features are computed in 30 regions inside the background gel, they should be comparable. For each step of the pipeline and after harmonisation by ComBat, inter-coil differences in the statistical distributions of each radiomic feature were assessed using the Kruskal-Wallis test. A total of 3 (T1, T2 and T1-DCE sequences) x 5 (raw, N4-corrected, z-score normalised-N4-corrected, HM normalised-N4-corrected, HM normalised-N4-corrected after ComBat) x 42 (radiomic features) Kruskal-Wallis tests were thus performed.

To provide a synthetic view of the test results, five ranges of p-values were defined: , , , and . Radiomic features were then classified into the five ranges defined above depending on the p-value of their Kruskal-Wallis test. For each sequence at each step of the pipeline, the number of features in every range was reported.

To check that the ComBat method does not reduce the discriminative power of radiomic features, we evaluated the impact of ComBat on the task of separating the two types of dense lesions in the T1, T2 and T1-DCE sequences. The 42 radiomic features computed from the lesions in the HM-normalised-N4-corrected images were compared before and after harmonisation by ComBat using Wilcoxon tests.

Results

Bias field correction

Default parameters of the N4 algorithm (four resolution levels, fifty iterations per level and the use of a mask defined by Otsu thresholding) proved suboptimal for breast MR images. From a qualitative point of view, the corrected images showed little improvement when compared to the raw images (Fig. 1b and1g). The bias field estimated with the default parameters was almost flat on the upper half of the images (Fig. 1f). These upper regions are the regions of interest where clinical information will be looked for, whereas lower regions have less clinical relevance (corresponding to zones posterior to the thorax in patients). Increasing the number of iterations per level did not improve the corrections as the results seemed to stabilise after fifty iterations.

Running the algorithm with five resolution levels instead of four yielded a bias field with much stronger variations in the upper zones resulting in a greater correction of the images. Combining it with a full mask of the phantoms to estimate the bias field further improved the correction in the upper regions of interest (Fig. 1m). The effect of N4 correction with the full mask, 5 levels (50 Iterations) on k-means segmentation results using three clusters on a raw image versus the image after bias field correction is shown in Fig. 3. 

MR normalisation

Histograms of image intensities within the phantoms (as defined by the mask used for N4 correction) are shown in Fig. 5 for the four stages of the post-processing pipeline.

The different post-processing methods had a similar behaviour across the three sequences. In raw images, the peaks of the histograms were not aligned before any correction. Intensities from coil 1 (the GE machine), in particular, spread on a significantly greater range than the intensities from the two Siemens coils. N4 correction sharpened the peaks but did not align them. Z-score normalisation combined with N4 correction realigned perfectly acquisitions from the same coils and managed to align the peaks of different coils around the same value. The alignment was nevertheless not optimal, especially in high intensities in T2 images. Histogram matching produced the best alignments whatever the coils. 

Harmonisation of radiomic features

To illustrate the impact of the pipeline on radiomic feature values, Fig. 6 shows the statistical distributions of the Short-Zone High Gray-level Emphasis (GLZLM_SZHGE) feature extracted from regions on fat-saturated T2 images across coils for the four stages of the standardisation pipeline, and after further harmonisation using ComBat. This example shows that the Z-score and HM normalisation contributed to realigning the distributions across coils (Fig. 6c,6d) but that further harmonisation using ComBat was needed to co-align all three coils distributions (Fig. 6e). Fig. 6f presents a plot of the ComBat corrected values against the values before harmonisation to illustrate the three transformations (one per coil) applied to the feature. Regarding the two types of dense lesions, Wilcoxon tests were performed for each feature and each sequence. Before harmonisation, on T1 (respectively T2, T1-DCE) images, 10 (respectively 39, 7) features out of 42 were significantly different between the two lesion types, whereas after ComBat harmonisation, 32 (respectively 39, 21) features were significantly different. Fig. 7 shows the impact of ComBat on the mean intensity, with reduced inter-scanner effect. Fig. 7 Mean intensity before and after ComBat harmonisation across sequences and coils of lesion 1 (Dense lesion with microcalcification) and lesion 2 (Dense spiculated lesion). Asterisks denote cases where the difference between the two lesion types is significant.

Discussion

The present study suggests that standardisation methods developed for brain or lung MRI should be adapted specifically to breast MR images. The process we propose includes a bias field correction to reduce local/regional inhomogeneities in similar regions (intra-image variabilities), an intensity normalisation to decrease inter-acquisition variabilities, and statistical harmonisation to make results across coils comparable.

We have shown that the three steps, each tackling a different source of variability, are all needed and complementary. They pave the way towards an efficient standardisation pipeline for multi-scanner radiomic studies of patients acquisitions.

To enable retrospective patients studies, bias field correction was based on an a posteriori method.

Comparisons of bias fields with different settings of the N4 algorithm led to a set of parameters appropriate for breast MRI when using dual breast coils. Based on our study, we recommend using a mask including the internal part of the breast phantoms (unlike the mask defined by Otsu s threshold) and performing the optimisation across five resolution levels (instead of four) with fifty iterations per level. Using the default parameters optimised for brain MRI underestimated the variations in the bias field, even when using the mask including the phantom inner part. It resulted in intensity non-uniformity inside this mask, where MR information is of prime importance in a clinical context (Fig. 1g). The drawback of the default mask and five resolution levels was also illustrated in Fig. 1. The bias field was indeed underestimated in the central part of the phantom, yielding a hypersignal effect in the corrected image (Fig. 1j) and thus increased heterogeneity in the background gel hence an increase in the coefficient of variation of the mean intensity (Fig. 2). The analysis of the quantitative assessments of all experiments (Fig. 2) showed that the proposed breast specific N4 parameters led to the greatest decrease, across coils, of the coefficients of variation of the mean intensity over homogeneous regions inside the phantom. The k-means clustering performed on the inner part of the phantom clearly shows how N4 correction reduced intensity variations across tissue types. In addition, the intensity histogram of the inner part of the phantom on N4 corrected images showed a strong sharpening of its peak around the mean value of the largest structure, i.e. the background gel (Fig. 3e). The overlay of the segmented regions demonstrated a clear improvement in the identification of masses on N4 corrected images (Fig. 3f). Bias field correction thus appeared essential to improve homogeneity inside the breast MR images and is crucial for a correct segmentation of abnormalities in the breast. It should be underlined that the estimated bias fields depend not only on the MR scanner, but also on coils, type of sequence (T1, T2, T1 DCE), and on the positioning of the phantoms inside the breast coils. As shown in Fig. 4, the coil has a high impact. Indeed, bias field images from coils 2 and 3 originating from the same MR scanner were quite different. Using a same coil, bias field also showed large fluctuations across sequences. In clinical acquisitions, the N4 correction should be applied separately on each dynamic of the T1-DCE acquisition, due to the change in contrast agent concentration between the different time frames.

To reduce inter-subject and multi-scanner variabilities, MR normalisation was performed after bias field correction. Linear approaches using a reference tissue, similar to Shinohara et al. method [START_REF] Shinohara | Statistical normalization techniques for magnetic resonance imaging[END_REF] involving white matter in the brain were not reported as no satisfying reference tissue could be found in breast for all sequences, despite attempts with the subcutaneous fat layer of the breast. Studying the co-alignment of intensity histograms across acquisitions and coils highlighted the impact of intensity normalisation, and the good performance of the histogram matching approach. Results from Fig. 5 supported the idea that it was necessary to go beyond linear normalisation and Z-score standardisation [START_REF] Liu | Radiomics of multiparametric MRI for pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: A multicenter study[END_REF], confirming findings by Nyul et al.

[24] and Fortin et al. [START_REF] Fortin | Removing inter-subject technical variability in magnetic resonance imaging studies[END_REF]. Z-score normalisation indeed squashed all intensities inside a range of values but did not succeed at aligning tissue-specific peaks. As observed by Isaksson et al. [START_REF] Isaksson | Effects of MRI image normalization techniques in prostate cancer radiomics[END_REF] (though with different types of landmarks) in the normalisation of prostate radiomics, the piecewise linear histogram matching gave excellent results in realigning intensity distributions. However, histogram matching depends on the set of images selected to extract a standard histogram. In a clinical setting, it will be important to use patient images coming from a wide range of scanner and biological variabilities to identify robust landmarks [START_REF] Shah | Evaluating intensity normalization on MRIs of human brain with multiple sclerosis[END_REF] that will perform as well on images of potential new patients included in the study.

Considering radiomic features computed inside thirty similar regions, statistical tests showed that N4 correction combined with histogram matching normalisation could not completely remove the scanner effects.

Each stage of the pipeline decreased the number of features that were significantly different between the three coils, but it was not sufficient to harmonise all radiomic features. This result agrees with the trends reported in glioblastoma [START_REF] Um | Impact of image preprocessing on the scanner dependence of multi-parametric MRI radiomic features and covariate shift in multiinstitutional glioblastoma datasets[END_REF][START_REF] Moradmand | Impact of image preprocessing methods on reproducibility of radiomic features in multimodal magnetic resonance imaging in glioblastoma[END_REF] and prostate [START_REF] Chirra | Empirical evaluation of cross-site reproducibility in radiomic features for characterizing tumor appearance on prostate MRI[END_REF][START_REF] Shiradkar | Radiomic features from pretreatment biparametric MRI predict prostate cancer biochemical recurrence: Preliminary findings[END_REF] cancer patients. Further harmonisation of the radiomic features is needed and ComBat succeeded in realigning feature distributions across scanners. Some studies normalise the features using scaling or z-score [START_REF] Chatterjee | Creating Robust Predictive Radiomic Models for Data From Independent Institutions Using Normalization[END_REF][START_REF] Castaldo | The impact of normalization approaches to automatically detect radiogenomic phenotypes characterizing breast cancer receptors status[END_REF] separately for each centre but unlike ComBat, these methods cannot model possible co-variates that could affect the features [START_REF] Johnson | Adjusting batch effects in microarray expression data using empirical Bayes methods[END_REF][START_REF] Fortin | Harmonization of cortical thickness measurements across scanners and sites[END_REF][START_REF] Fortin Harp | Harmonization of multi-site diffusion tensor imaging data[END_REF]. Performance in separating two different models of dense lesions was preserved (for T2 sequences) or largely improved (for T1based sequences) by ComBat harmonisation, suggesting that ComBat successfully harmonises features across coils without removing differences mimicking biological variations. Though ComBat has a major role in reducing the scanner effect, the N4 correction and the normalisation are also needed to reduce intra-image and interacquisition variabilities that cannot be accurately compensated by the ComBat affine transformation.

Combining the corrections is thus essential to correct for the different sources of variabilities.

The present study has several limitations. First, the CIRS model was built to be usable in multiple imaging modalities and not specifically in MRI. The phantom was also aimed at biopsy training providing lesions that could be biopsied multiple times and was therefore not designed for radiomic studies unlike phantoms used in normalisation [START_REF] Waugh | The influence of field strength and different clinical breast MRI protocols on the outcome of texture analysis using foam phantoms[END_REF][START_REF] Rai | Multicentre Evaluation of MRI-based Radiomics Features: A Phantom Study[END_REF][START_REF] Bianchini | PETER PHAN: An MRI phantom for the optimisation of radiomic studies of the female pelvis[END_REF]. The phantom was made from simple materials to capture the global breast heterogeneous appearance but not to mimic the very fine heterogeneity that could be observed in tumours and modelled in other phantoms [START_REF] Valladares | Physical imaging phantoms for simulation of tumor heterogeneity in PET, CT, and MRI: An overview of existing designs[END_REF]. Another limitation is that our experiments were performed using two MR scanners and three coils at the same institution, but we are confident in the possibility to extend our results to other scanners, centres and acquisitions protocols. Finally, there is always an inherent limit in using a phantom to assess performances of methods that we want to apply in clinical settings. Nevertheless, phantoms offered the opportunity to properly monitor the effects of standardisation without any interference of biological covariates.

Conclusion

This study shows the necessity to use a standardisation pipeline before performing radiomic studies involving MR breast images acquired using multiple settings. A retrospective bias field correction dedicated to dual breast coils and non-linear MR intensity normalisation reduced the scanner effect for subsets of radiomic features, but further statistical harmonisation was needed to fully correct for it. The results were obtained on breast phantoms and future work will assess the pipeline on patient data, where biological and pathological variations increase the sources of MR intensity variations. 
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 12 Fig. 1 a Phantom. b Raw T1 image from Coil 3. c Dense lesion with microcalcification. d Dense spiculated lesion. e Default mask. f Bias field estimated with mask e and 4 fitting levels. g Corrected image obtained from bias field f. h Default mask. i Bias field estimated with mask h and 5 fitting levels. j Corrected image from bias field

Fig. 3 a

 3 Fig. 3 a, d T1-weighted DCE image from coil 3. b, e Histogram of the inner layer voxels of image coloured by the results of k-means clustering. c, f k-means clustering results overlaid on image. First line: raw image. Second line: N4 corrected (full mask, 5 levels, 50 iterations) image

Fig. 4

 4 Fig. 4 Examples of estimated bias fields across sequences and acquisitions

Fig. 5

 5 Fig.[START_REF] Fan | Radiomic analysis of DCE-MRI for prediction of response to neoadjuvant chemotherapy in breast cancer patients[END_REF] Image intensity histograms of the six acquisitions (Acq.) for the four steps of the standardisation pipeline across the three sequences. Each row represents a sequence and each column a step of the pipeline
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 62 Fig. 6 Statistical distributions across coils of the GLZLM_SZHGE texture feature extracted from a raw T2 images. b N4 corrected (full mask, 5 levels) T2 images. c Z-score normalised-N4 corrected T2 images. d Histogrammatched-N4 corrected T2 images. e Histogram-matched-N4 corrected T2 images and harmonised by ComBat. f Affine transformations (one per coil) of GLZLM_SZHGE values estimated by ComBat
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Table 1

 1 T1, T2 and T1 DCE sequence parameters for the three settings

	T1-weighted DCE
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