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Abstract 
Object:  Quantitative analysis in MRI is challenging due to variabilities in intensity distributions across patients, 

acquisitions and scanners and suffers from bias field inhomogeneity. Radiomic studies are impacted by these 

effects that affect radiomic feature values. This paper describes a dedicated pipeline to increase reproducibility 

in breast MRI radiomic studies. 

Materials and Methods: T1, T2, and T1-DCE MR images of two breast phantoms were acquired using two 

scanners and three dual breast coils. Images were retrospectively corrected for bias field inhomogeneity and 

further normalised using Z-score or histogram matching. Extracted radiomic features were harmonised 

between coils by the ComBat method. The whole pipeline was assessed qualitatively and quantitatively using 

statistical comparisons on two series of radiomic feature values computed in the gel mimicking the normal 

breast tissue or in dense lesions. 

Results: Intra and inter-acquisition variabilities were strongly reduced by the standardisation pipeline. 

Harmonisation by ComBat lowered the percentage of radiomic features significantly different between the 

three coils from 87% after bias field correction and MR normalisation to 3% in the gel, while preserving or 

improving performance of lesion classification in the phantoms. 

Discussion: A dedicated standardisation pipeline was developed to reduce variabilities in breast MRI, which 

paves the way for robust multi-scanner radiomic studies but needs to be assessed on patient data. 
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Introduction 
 

Radiomics is a recent field of study involving the extraction of large amounts of quantitative imaging features 

from radiological images [1]. These radiomic features can then feed machine learning methods to build 

predictive models that might assist diagnosis and patient monitoring. Radiomic studies in breast cancer 

patients have shown promises, for instance in assessing the risk of breast cancer recurrence [2], detecting 

malignant from benign lesions [3], or estimating disease free survival [4]. Over the last few years, several 

attempts to predict the response to neoadjuvant chemotherapy using radiomics have been reported, but this 

remains a challenging task [5–10].  

Radiomic studies and subsequent machine learning approaches require a substantial number of images to 

achieve relevant performance, which encourages the use of multicentre and retrospective data. However, 

many articles have highlighted the influence of scanner parameters on radiomic features in PET and CT imaging 

(see for instance the review [11]) and in MRI [12–15]. This so-called “scanner effect” requires standardisation 

and harmonisation procedures. In particular, MRI radiomic feature values have been shown to depend on 

magnetic field strengths, voxel size, pulse sequence parameters or receiver coils [16, 17]. The standardisation 

process is especially important in MR as images are expressed in arbitrary units that vary between patients, 

acquisitions and scanners. MR images also suffer from MR bias field non-uniformity, generating regional and 

local spatial inhomogeneities. Since the impact of this latter effect goes beyond the field of radiomics and 

affects tasks such as segmentation, an abundant literature already addresses this issue, but studies are mainly 

oriented towards brain MRI. Several methods have been developed to correct bias field inhomogeneity 

retrospectively [18]. Borys et al. [19] compared a subset of these approaches on breast phantoms. They found 

that the N4 algorithm [20] gave the most uniform results, slightly outperforming F3CM [21], but hinted that 

adapting the parameters of the method specifically for breast imaging could improve the correction. Following 

bias field correction, MR normalisation techniques have been applied to reduce inter-patient variabilities, the 

most frequent being the Z-score standardisation [8]. Shinohara et al. [22] designed a new linear approach, the 

hybrid White-Stripe, using white matter as a reference tissue in the brain to normalise images, from which 
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Fortin et al. [23] derived the voxel-based RAVEL method. Other non-linear normalisation techniques have been 

proposed such as histogram matching (referred as HM) by Nyul et Udupa [24], further adapted in a multiple 

sclerosis study by Sha et al. [25]. Bias field correction and intensity normalisation have been shown to improve 

the radiomic characterisation of tumours from single centre MR images of paediatric brain tumours [26] and 

lung cancer [27]. 

Recent works in glioblastoma [28, 29] and prostate cancer [16, 30] patients specifically investigated the 

influence of bias field correction, noise reduction and histogram normalisation on the scanner effect affecting 

MR radiomic features. Authors identified small subsets of features that were reproducible across scanners after 

standardisation but did not manage to successfully harmonise all features. A harmonisation method called 

ComBat initially developed to mitigate batch effects in genomic studies [31] was successfully applied to 

compensate for the scanner effect in PET [32], CT [33] and MR [34, 35]. 

Few breast radiomic studies mention bias field correction [36] or MR normalisation [8] before computing 

features. In this study, we propose and validate a radiomics pipeline dedicated to breast MRI. First, a bias field 

correction method was adapted for breast MR images to overcome the limitations of the conventional 

approaches. Second, two MR image standardisation techniques (Z-score, HM) were investigated to study their 

impact on MR intensity distribution. Third, the ComBat method was proposed to further reduce the scanner 

effect affecting radiomic features. Our experimental study was conducted using two breast phantoms designed 

for biopsy training in order to monitor the effects of standardisation and harmonisation without any biological 

or tissue interference. MR acquisitions following the standard clinical protocol in our institution were 

performed using two MR scanners and three dedicated breast coils. Our pipeline efficacy was assessed by 

studying the reproducibility of each radiomic feature across thirty regions in the gel mimicking normal tissue 

and by comparing the performance of dense lesion classification in the phantoms before and after 

harmonisation using ComBat. 

 

Materials and Methods 

 

Phantom 
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In order to remain as close as possible to clinical settings and to better investigate MR bias field considering the 

symmetry inherent to breast imaging, all the experiments described were carried out using two phantoms 

simultaneously. Two Multi-Modality Breast Biopsy and Sonographic” phantoms, CIRS reference 073 (Norfolk, 

VA, USA), were used (Fig. 1a). They consist of an elastomer membrane simulating the skin and subcutaneous 

fat layer of breast in patients and are filled with a branded gel (Zerdine®).  Five to ten cystic lesions (5-10 mm) 

and ten to fifteen dense lesions (5-10 mm) are included in the gel. Half of the dense lesions are spheres 

including microcalcifications (Fig. 1c) while the other half are spiculated lesions (Fig. 1d). This model is 

dedicated to biopsy training and accurately reproduces breast tissue with lesions for MR imaging.  

 

Image acquisition 
 

Images were acquired in the three clinical imaging settings used in our institution. The two phantoms were 

scanned in a first setting, using a 1.5 T magnet, Optima MR450w (GE, MA, USA) with an 8-channel breast coil 

further referred to as “Coil 1”. They were also scanned in a second setting, using a 1.5T magnet, MAGNETOM 

Aera (Siemens, Munich, Germany) with an 18-channel breast coil (“Coil 2”). The third setting consisted in using 

a 16-channel Sentinelle breast coil, dedicated to diagnosis and MR-guided biopsy, on the 1.5T MAGNETOM 

Aera (Siemens, Munich, Germany) (“Coil 3”). For each setting, two acquisitions were acquired (Acq. A and Acq. 

B), between which the positions of the two phantoms were switched while the dual breast coils were 

unchanged. 

The phantoms were scanned with three sequences routinely used in breast clinical imaging protocol to get T1-

weighted, fat-saturated T2-weighted and T1-weighted DCE images, with parameters listed in Table 1. Scanning 

parameters slightly differed for each coil hence adding another source of variability to the settings. In clinical 

studies, T1 sequence is acquired for anatomical purposes and does not include fat saturation, while the 

functional T1-DCE sequence is acquired with high resolution voxel size, fat saturation, and is repeated five 

times every 90 seconds. However, only one dynamic is presented throughout this work since there was no 

injection of contrast agent in the phantom. Spoiled gradient recalled T1-DCE and T1 (on the GE Scanner 

only) images were acquired, while turbo spin echo acquisitions were performed in other cases. Fat 

saturation was achieved using either Dixon or SPAIR techniques. ARC (GE scanner) and GRAPPA (Siemens 
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scanner) multi-coil parallel imaging were used for T1-DCE acquisitions. The acquisition time including the three 

sequences was around 18 minutes.  

In total, six 3D images (acquisitions A and B with three sequences each) were acquired for each of the three 

clinical settings, yielding a total of 18 raw 3D images. 

 

 T1 Fat-saturated T2 T1-weighted DCE 
 Coil 1 Coil 2 Coil 

3 
Coil 1 Coil 2 Coil 3 Coil 1 Coil 2 Coil 3 

TR (ms) 6.9 592 545 5544 3310 6400 6.81 5.2 5.2 
TE (ms) 4.2 13 13 90 88 88 3.3 2.4 2.4 
Slice 
thickness 
(mm) 

1.6 3.5 3 3 3.5 3 1 0.9 0.9 

Spacing 
between 
slices (mm) 

0.8 4.2 3.6 3.3 4.2 3.6 1 0.9 0.9 

Pixel spacing 
(mm) 

0.68 x 
0.68 

0.71x 
0.71 

0.71
x 

0.71 

0.68 x 
0.68 

0.7 x 
0.7 

0.7 x 
0.7 

0.82 x 
0.82 

0.91 x 
0.91 

0.91 x 
0.91 

Pixel 
bandwidth 
(Hz/pixel) 

244 130 130 558 315 375 434 355 355 

Flip angle 20 148 148 160 150 180 15 10 10 
Table 1 T1, T2 and T1 DCE sequence parameters for the three settings 

 

 

Bias field correction 
 

Images were corrected for bias field inhomogeneity using the SimpleITK N4BiasFieldCorrection Image filter 

class adapted for python from the implementation of the N4 algorithm [20] in the ITK library. The N4 method is 

based on the following image model:  

    , 

where  is a voxel,  is the corrupted image,  the bias field,  the bias-free image and  an independent 

Gaussian noise. In a noise-free case, using logarithmic transformation, with  : 
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The N4 method uses an iterative multi-scale optimisation approach, at iteration  

      

    , 

where   is an adapted B-spline approximation,  and  is the residual bias field at step . 

The number of resolution levels and the number of iterations at each level are set by default to four levels and 

fifty iterations but can be changed. A default mask to select the pixels used to estimate the bias field is defined 

using Otsu thresholding unless a specific mask is provided.  

The impact of the hyper parameters mentioned above were investigated by running several trials using three, 

four, five or six resolution levels, fifty or a hundred iterations, combined with either the default mask or a full 

mask of the phantom.  

To assess the ability of the N4 correction to reduce intensity non-uniformities within similar tissue types, voxels 

corresponding to the background gel and embedded masses were clustered using the k-means algorithm. The 

clustering results were compared before and after the bias field correction. As the inner part is made of three 

different materials (background gel, dense masses and cyst masses), that have different physical properties, 

the number of clusters was set to three. 

The performance of N4 algorithm was also assessed by comparing the coefficients of variation of the mean 

intensity of small regions drawn in the background gel for the different corrections: fifteen 3D spherical regions 

of 600 voxels each were drawn using the LIFEx freeware [37] (www.lifexsoft.org) on every raw acquisition. 

These spheres were located in the background neutral gel of the phantom, avoiding any cyst or dense masses. 

As there were two acquisitions per coil, regions from the same coil were pooled to get thirty regions per coil. 

 

MR normalisation 
 

MR images were normalized after bias field correction as it has been shown that pre-correcting intensity non-

uniformities leads to an improved standardisation [38]. 
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Two types of normalisation were performed separately and compared: 1) Z-score standardisation using a mask 

of the phantom to compute the mean and standard deviation of intensities (linear transform); 2) piecewise 

linear histogram matching [24, 25].  Histogram matching includes two stages: first, HM learns landmarks of a 

standard histogram and then landmarks of the image histograms are non-linearly mapped to the ones of the 

standard histogram to align the intensity distributions. HM was applied independently on the three sequences 

with codes adapted from Reinhold et al. [39], using the decile landmarks and standard scale defined by Shah et 

al. [25]. 

The impact of normalisation in correcting inter-subject and inter-coil variabilities was evaluated by qualitatively 

comparing intensity histogram alignment and by using texture analyses. 

 

Radiomic analysis 
 

After MR normalisation, four MR volumes of the same acquisition were available, corresponding to raw data, 

N4-corrected data, z-score normalised-N4-corrected data, and HM normalised-N4-corrected data.  

All 18x4 (3 sequences x 3 coils x 2 acquisitions x 4 transformations) MR volumes were resampled, as 

recommended by Image Biomarker Standardisation Initiative guidelines [40] before extracting features, using 

nearest neighbour interpolation: T1 and fat-saturated T2 images were resampled to 0.7x0.7x4 mm3 voxels and 

T1-weighted DCE images to 1x1x1 mm3 voxels. 

In addition to the regions inside the background gel, dense lesions were segmented on N4-corrected data using 

the k-means algorithm, these latter regions being manually corrected, when it was necessary. 

For each MR volume and each region, 42 radiomic features were computed with LIFEx v5.79 [37] in compliance 

with the Image Biomarker Standardisation Initiative guidelines [40]. Besides first order features, texture 

features included indices from the grey-level co-occurrence matrix (GLCM), the grey-level run length matrix 

(GLRLM), the grey-level zone length matrix (GLZLM) and the neighbourhood grey-level different matrix 

(NGLDM). The list of radiomic features is provided in Supplemental Table 1. For texture calculations, absolute 

discretization was chosen [26]. For each sequence and each step of the standardisation pipeline separately, the 

minimum and maximum intensities inside the regions were calculated to determine the range of intensities 

and the average standard deviation of intensities over the regions was defined as the fixed bin size.  
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Harmonisation of radiomic features 
 

Since radiomic feature values might differ between the three experimental settings even after the different 

processing steps, for every sequence separately, the distributions of the radiomic features extracted after 

normalisation were harmonised across the three coils using the ComBat method [32-34]. The ComBat method 

aims at correcting any differences that could be due to coils, scanners and/or scanning parameters [41, 42]. For 

each radiomic feature y measured in region j in centre i, the scanner effect on feature can be modelled as: 

 

where  is the overall value of the radiomic feature y,   is an additive centre effect and  a multiplicative 

centre effect associated to an error term. 

The ComBat method corrects the distributions by calculating  ,  et  as estimators of ,  et  using 

maximum likelihood estimation so that: 

 

The non-parametric form of the method was used without any empirical Bayes assumption. Using R codes by 

Fortin et al. [41, 42], ComBat was applied on the feature values measured in the gel and in the dense lesions 

separately.  A specific transformation was determined for every feature independently. 

 

 

Statistical analysis 

 

Statistical analyses were performed in R, and p-values less than 0.05 were interpreted as statistically significant.  

As radiomic features are computed in 30 regions inside the background gel, they should be comparable. For 

each step of the pipeline and after harmonisation by ComBat, inter-coil differences in the statistical 

distributions of each radiomic feature were assessed using the Kruskal-Wallis test. A total of 3 (T1, T2 and T1-

DCE sequences) x 5 (raw, N4-corrected, z-score normalised-N4-corrected, HM normalised-N4-corrected, HM 

normalised-N4-corrected after ComBat) x 42 (radiomic features) Kruskal-Wallis tests were thus performed. 
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To provide a synthetic view of the test results, five ranges of p-values were defined: , 

, ,  and . Radiomic features were 

then classified into the five ranges defined above depending on the p-value of their Kruskal-Wallis test. For 

each sequence at each step of the pipeline, the number of features in every range was reported. 

To check that the ComBat method does not reduce the discriminative power of radiomic features, we 

evaluated the impact of ComBat on the task of separating the two types of dense lesions in the T1, T2 and T1-

DCE sequences. The 42 radiomic features computed from the lesions in the HM-normalised-N4-corrected 

images were compared before and after harmonisation by ComBat using Wilcoxon tests. 

 

Results 
 

Bias field correction 
 

Default parameters of the N4 algorithm (four resolution levels, fifty iterations per level and the use of a mask 

defined by Otsu thresholding) proved suboptimal for breast MR images. From a qualitative point of view, the 

corrected images showed little improvement when compared to the raw images (Fig. 1b and 1g). The bias field 

estimated with the default parameters was almost flat on the upper half of the images (Fig. 1f).  These upper 

regions are the regions of interest where clinical information will be looked for, whereas lower regions have 

less clinical relevance (corresponding to zones posterior to the thorax in patients). Increasing the number of 

iterations per level did not improve the corrections as the results seemed to stabilise after fifty iterations. 

Running the algorithm with five resolution levels instead of four yielded a bias field with much stronger 

variations in the upper zones resulting in a greater correction of the images. Combining it with a full mask of 

the phantoms to estimate the bias field further improved the correction in the upper regions of interest (Fig. 

1m). 

 

 

Fig. 1 a Phantom. b Raw T1 image from Coil 3. c Dense lesion with microcalcification. d Dense spiculated lesion. 
e Default mask. f Bias field estimated with mask e and 4 fitting levels. g Corrected image obtained from bias 
field f.   h Default mask.  i Bias field estimated with mask h and 5 fitting levels. j Corrected image from bias field 
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i. k Full mask. l Bias field estimated with mask k and 5 fitting levels. m Corrected image from bias field l. Red 
arrows point at regions with residual intensity non-uniformity 

 

 

The impact of the N4 correction on the coefficients of variation of the means over the regions across coils in 

different correction scenarios is shown in Fig. 2.  

 

Fig. 2 a Coefficients of variation of the means over thirty regions across settings with different corrections. b 
Example of 3 regions (in blue, light blue and yellow) drawn in LIFEx 

 

The effect of N4 correction with the full mask, 5 levels (50 Iterations) on k-means segmentation results using 

three clusters on a raw image versus the image after bias field correction is shown in Fig. 3. 

 

 

Fig. 3 a, d T1-weighted DCE image from coil 3.  b, e Histogram of the inner layer voxels of image coloured by 
the results of k-means clustering.  c, f k-means clustering results overlaid on image. First line: raw image. 
Second line: N4 corrected (full mask, 5 levels, 50 iterations) image 

 

 

 

Fig. 4 presents all bias field estimations across sequences and acquisitions, with images normalised so that the 

mean intensity in the mask used to estimate the bias field is equal to 1. 

 

Fig. 4 Examples of estimated bias fields across sequences and acquisitions 

 

 

MR normalisation 

 

Histograms of image intensities within the phantoms (as defined by the mask used for N4 correction) are 

shown in Fig. 5 for the four stages of the post-processing pipeline.  

The different post-processing methods had a similar behaviour across the three sequences. In raw images, the 

peaks of the histograms were not aligned before any correction. Intensities from coil 1 (the GE machine), in 

particular, spread on a significantly greater range than the intensities from the two Siemens coils. N4 correction 
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sharpened the peaks but did not align them. Z-score normalisation combined with N4 correction realigned 

perfectly acquisitions from the same coils and managed to align the peaks of different coils around the same 

value. The alignment was nevertheless not optimal, especially in high intensities in T2 images. Histogram 

matching produced the best alignments whatever the coils.  

 

Fig. 5 Image intensity histograms of the six acquisitions (Acq.) for the four steps of the standardisation pipeline 
across the three sequences. Each row represents a sequence and each column a step of the pipeline 

 

 

Harmonisation of radiomic features 

 

To illustrate the impact of the pipeline on radiomic feature values, Fig. 6 shows the statistical distributions of 

the Short-Zone High Gray-level Emphasis (GLZLM_SZHGE) feature extracted from regions on fat-saturated T2 

images across coils for the four stages of the standardisation pipeline, and after further harmonisation using 

ComBat. This example shows that the Z-score and HM normalisation contributed to realigning the distributions 

across coils (Fig. 6c, 6d) but that further harmonisation using ComBat was needed to co-align all three coils 

distributions (Fig. 6e). Fig. 6f presents a plot of the ComBat corrected values against the values before 

harmonisation to illustrate the three transformations (one per coil) applied to the feature.  

 

 

Fig. 6 Statistical distributions across coils of the GLZLM_SZHGE texture feature extracted from a raw T2 images. 
b N4 corrected (full mask, 5 levels) T2 images.  c Z-score normalised-N4 corrected T2 images.  d Histogram-
matched-N4 corrected T2 images.  e Histogram-matched-N4 corrected T2 images and harmonised by ComBat. f 
Affine transformations (one per coil) of GLZLM_SZHGE values estimated by ComBat 

 

 

 

 

Table 2 reports the number of features for which Kruskal-Wallis p-values are inside a specific range. For 

instance, in T1 raw images, 37 out 42 features were significantly different between the 3 coils with a p-value 

 , 3 features were significantly different with a p-value  , 1 with a p-value 
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,  another one with a p-value   and no feature yielded a p-value 

greater than 0.05. Detailed results are given for each radiomic feature in Supplemental Tables 2, 3 and 4. 

The same trend was observed across T1 and T2 sequences: the number of features that were significantly 

different ( ) decreased gradually when they were computed from N4-corrected data, Z-score-

normalised N4-corrected data, HM-normalised N4-corrected data, ComBat harmonised HM-normalised N4-

corrected data and the number of smaller p-values was reduced accordingly.  Harmonisation by ComBat was 

essential to reduce drastically the number of significantly different features in all three settings, especially for 

T1-weighted DCE features. 

T1 

P value Raw images N4 correction N4 & Z-
score 

N4 & HM N4 & HM & 
ComBat 

p <10-5 37 37 24 5 0 
10-5≤ p <10-3 3 1 6 7 0 
10-3 ≤ p <0.01 1 3 3 11 0 
0.01≤ p <0.05 1 0 3 9 2 
0.05≤ p 0 1 6 10 40 

T2 

P value Raw images N4 correction N4 & Z-
score 

N4 & HM N4 & HM & 
ComBat 

p <10-5 38 36 26 13 0 
10-5≤ p <10-3 4 2 5 6 0 
10-3 ≤ p <0.01 0 1 5 10 0 
0.01≤ p <0.05 0 2 2 4 1 
0.05≤ p 0 1 4 9 41 

T1 
weighted 

DCE 

P value Raw images N4 correction N4 & Z-
score 

N4 & HM N4 & HM & 
ComBat 

p <10-5 39 39 39 40 0 
10-5≤ p <10-3 1 0 1 1 0 
10-3 ≤ p <0.01 1 1 0 0 0 
0.01≤ p <0.05 0 0 0 0 1 
0.05≤ p 1 2 2 1 41 

 

Table 2 Number of radiomic features in the 5 different ranges of p-values. The p-values correspond to Kruskal-
Wallis tests between the three coils, radiomic features being extracted from 30 similar regions. Results are 
given for the three MR sequences and each main step of the processing pipeline 

 

Regarding the two types of dense lesions, Wilcoxon tests were performed for each feature and each 

sequence. Before harmonisation, on T1 (respectively T2, T1-DCE) images, 10 (respectively 39, 7) features 

out of 42 were significantly different between the two lesion types, whereas after ComBat harmonisation, 

32 (respectively 39, 21) features were significantly different. Fig. 7 shows the impact of ComBat on the mean 

intensity, with reduced inter-scanner effect. 
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Fig. 7 Mean intensity before and after ComBat harmonisation across sequences and coils of lesion 1 (Dense 
lesion with microcalcification) and lesion 2 (Dense spiculated lesion). Asterisks denote cases where the 
difference between the two lesion types is significant. 

 

 

Discussion 
 

The present study suggests that standardisation methods developed for brain or lung MRI should be adapted 

specifically to breast MR images. The process we propose includes a bias field correction to reduce 

local/regional inhomogeneities in similar regions (intra-image variabilities), an intensity normalisation to 

decrease inter-acquisition variabilities, and statistical harmonisation to make results across coils comparable. 

We have shown that the three steps, each tackling a different source of variability, are all needed and 

complementary. They pave the way towards an efficient standardisation pipeline for multi-scanner radiomic 

studies of patients’ acquisitions. 

To enable retrospective patients’ studies, bias field correction was based on an a posteriori method. 

Comparisons of bias fields with different settings of the N4 algorithm led to a set of parameters appropriate for 

breast MRI when using dual breast coils. Based on our study, we recommend using a mask including the 

internal part of the breast phantoms (unlike the mask defined by Otsu’s threshold) and performing the 

optimisation across five resolution levels (instead of four) with fifty iterations per level. Using the default 

parameters optimised for brain MRI underestimated the variations in the bias field, even when using the mask 

including the phantom inner part. It resulted in intensity non-uniformity inside this mask, where MR 

information is of prime importance in a clinical context (Fig. 1g). The drawback of the default mask and five 

resolution levels was also illustrated in Fig. 1. The bias field was indeed underestimated in the central part of 

the phantom, yielding a hypersignal effect in the corrected image (Fig. 1j) and thus increased heterogeneity in 

the background gel hence an increase in the coefficient of variation of the mean intensity (Fig. 2). The analysis 

of the quantitative assessments of all experiments (Fig. 2) showed that the proposed breast specific N4 

parameters led to the greatest decrease, across coils, of the coefficients of variation of the mean intensity over 

homogeneous regions inside the phantom.  The k-means clustering performed on the inner part of the 

phantom clearly shows how N4 correction reduced intensity variations across tissue types. In addition, the 
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intensity histogram of the inner part of the phantom on N4 corrected images showed a strong sharpening of its 

peak around the mean value of the largest structure, i.e. the background gel (Fig. 3e). The overlay of the 

segmented regions demonstrated a clear improvement in the identification of masses on N4 corrected images 

(Fig. 3f). Bias field correction thus appeared essential to improve homogeneity inside the breast MR images and 

is crucial for a correct segmentation of abnormalities in the breast. It should be underlined that the estimated 

bias fields depend not only on the MR scanner, but also on coils, type of sequence (T1, T2, T1 DCE), and on the 

positioning of the phantoms inside the breast coils. As shown in Fig. 4, the coil has a high impact. Indeed, bias 

field images from coils 2 and 3 originating from the same MR scanner were quite different. Using a same coil, 

bias field also showed large fluctuations across sequences. In clinical acquisitions, the N4 correction should be 

applied separately on each dynamic of the T1-DCE acquisition, due to the change in contrast agent 

concentration between the different time frames. 

 

To reduce inter-subject and multi-scanner variabilities, MR normalisation was performed after bias field 

correction. Linear approaches using a reference tissue, similar to Shinohara et al. method [22] involving white 

matter in the brain were not reported as no satisfying reference tissue could be found in breast for all 

sequences, despite attempts with the subcutaneous fat layer of the breast. Studying the co-alignment of 

intensity histograms across acquisitions and coils highlighted the impact of intensity normalisation, and the 

good performance of the histogram matching approach. Results from Fig. 5 supported the idea that it was 

necessary to go beyond linear normalisation and Z-score standardisation [8], confirming findings by Nyul et al. 

[24] and Fortin et al. [23]. Z-score normalisation indeed squashed all intensities inside a range of values but did 

not succeed at aligning tissue-specific peaks. As observed by Isaksson et al. [43] (though with different types of 

landmarks) in the normalisation of prostate radiomics, the piecewise linear histogram matching gave excellent 

results in realigning intensity distributions. However, histogram matching depends on the set of images 

selected to extract a standard histogram.  In a clinical setting, it will be important to use patient images coming 

from a wide range of scanner and biological variabilities to identify robust landmarks [25] that will perform as 

well on images of potential new patients included in the study. 

Considering radiomic features computed inside thirty similar regions, statistical tests showed that N4 

correction combined with histogram matching normalisation could not completely remove the scanner effects. 
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Each stage of the pipeline decreased the number of features that were significantly different between the 

three coils, but it was not sufficient to harmonise all radiomic features. This result agrees with the trends 

reported in glioblastoma [28, 29] and prostate [16, 30] cancer patients. Further harmonisation of the radiomic 

features is needed and ComBat succeeded in realigning feature distributions across scanners.  Some studies 

normalise the features using scaling or z-score [44, 45] separately for each centre but unlike ComBat, these 

methods cannot model possible co-variates that could affect the features [31, 41, 42]. Performance in 

separating two different models of dense lesions was preserved (for T2 sequences) or largely improved (for T1-

based sequences) by ComBat harmonisation, suggesting that ComBat successfully harmonises features across 

coils without removing differences mimicking biological variations. Though ComBat has a major role in reducing 

the scanner effect, the N4 correction and the normalisation are also needed to reduce intra-image and inter-

acquisition variabilities that cannot be accurately compensated by the ComBat affine transformation. 

Combining the corrections is thus essential to correct for the different sources of variabilities. 

The present study has several limitations. First, the CIRS model was built to be usable in multiple imaging 

modalities and not specifically in MRI.  The phantom was also aimed at biopsy training providing lesions that 

could be biopsied multiple times and was therefore not designed for radiomic studies unlike phantoms used in 

normalisation [12, 15, 46]. The phantom was made from simple materials to capture the global breast 

heterogeneous appearance but not to mimic the very fine heterogeneity that could be observed in tumours 

and modelled in other phantoms [47]. Another limitation is that our experiments were performed using two 

MR scanners and three coils at the same institution, but we are confident in the possibility to extend our 

results to other scanners, centres and acquisitions protocols. Finally, there is always an inherent limit in using a 

phantom to assess performances of methods that we want to apply in clinical settings. Nevertheless, phantoms 

offered the opportunity to properly monitor the effects of standardisation without any interference of 

biological covariates. 

 

Conclusion 
 

This study shows the necessity to use a standardisation pipeline before performing radiomic studies involving 

MR breast images acquired using multiple settings. A retrospective bias field correction dedicated to dual 
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breast coils and non-linear MR intensity normalisation reduced the scanner effect for subsets of radiomic 

features, but further statistical harmonisation was needed to fully correct for it. The results were obtained on 

breast phantoms and future work will assess the pipeline on patient data, where biological and pathological 

variations increase the sources of MR intensity variations.  
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