

Chronic exposure to benzo(a)pyrene-coupled nanoparticles worsens inflammation in a mite-induced asthma mouse model

Julie Carrard, Philippe Marquillies, Muriel Pichavant, Nicolas Visez, Sophie Lanone, Anne Tsicopoulos, Cécile Chenivesse, Arnaud Scherpereel, Patricia de

Nadaï

▶ To cite this version:

Julie Carrard, Philippe Marquillies, Muriel Pichavant, Nicolas Visez, Sophie Lanone, et al.. Chronic exposure to benzo(a)pyrene-coupled nanoparticles worsens inflammation in a mite-induced asthma mouse model. Allergy, 2020, Online ahead of print. 10.1111/all.14619. inserm-03029234

HAL Id: inserm-03029234 https://inserm.hal.science/inserm-03029234

Submitted on 27 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Chronic exposure to benzo(a)pyrene-coupled nanoparticles worsens inflammation in a mite-induced asthma mouse model

To the editor,

1 Asthma is a highly prevalent chronic inflammatory disease of the airways characterized by airway 2 hyperresponsiveness (AHR) and mucus hyperproduction. In the last decades, asthma has been 3 affecting approximately 20% of the population worldwide and genetic changes alone cannot explain 4 this rapid increase. During the same period, increased vehicular traffic and other combustion 5 processes have resulted in a significant increase in ambient particle matter (PM) that can bind 6 polycyclic aromatic hydrocarbons (PAHs) on their surface. PAHs from diesel exhaust and other 7 sources were shown to play a role in the exacerbation of allergic immune responses in human.⁽¹⁾ In 8 acute asthma models, co-exposure to the PAH, benzo(a)pyrene (B(a)P), and ovalbumin enhances the 9 production of allergen-specific IgE, systemic Th2 response, and airway inflammation in mice.⁽²⁾

10 Nanoparticles (<0.1 µm), that represent only 2.3% of total PM mass, contribute to 23-30% of the PAHs 11 alveolar deposition coming from roadside sources. Moreover, their small size allows evading clearance from the lung, leading to long-term retention.⁽³⁾ This suggests that nanoparticles are 12 13 significant contributors of PAHs deposition in the lung and thus, may contribute to acute and chronic 14 inflammation. However, few studies have evaluated the impact of chronic exposure to this pollutant on 15 allergic asthma. Therefore, we established a murine allergic asthma model using the house dust mite 16 (HDM) allergen, to explore the impact of chronic exposure to nanoparticles coupled to PAHs on airway 17 inflammation (Figure S1A for exposure model). In this study, we used carbon black nanoparticles from 18 printers uncoated as reference (NP-Ø) and B(a)P-coated (NP-B(a)P) as a model of nano-particulate 19 pollutant.

We analyzed the effects of chronic exposure to NP-B(a)P on different asthma parameters. As expected, exposure to HDM induced allergic asthma including increased AHR (Figure S1B), HDMspecific IgE and IgG1 in sera (Figure S1C) and pulmonary inflammation, characterized by elevated total cell numbers in the broncho-alveolar lavage (BAL) composed of eosinophils, neutrophils, lymphocytes and macrophages compared to PBS control mice (Figure 1A). Moreover in this model, we did not observe airway remodeling (data not shown). Neither NP-Ø nor NP-B(a)P nanoparticles alone induced airway inflammation. However, NP-B(a)P but not NP-Ø increased AHR in non27 sensitized mice, suggesting that B(a)P has a specific effect on AHR independently of HDM. In HDM-28 sensitized mice, HDM-induced AHR was abolished by NP-Ø and decreased by NP-B(a)P although 29 this one remained increased compared to the PBS control group. Surprisingly, both nanoparticles co-30 exposed with HDM did not modify inflammatory cell recruitment in the BAL (Figure 1A) and did not 31 induce bronchial remodeling (data not shown). However this result was not supported by cellular 32 infiltration of lung tissue as shown by hematoxylin and eosin histological stain (Figure S1D) and total 33 lung single cell suspension (Figure 1B). Indeed, increased total cell numbers were enhanced in the 34 lungs of HDM+NP-B(a)P mice compared to HDM-sensitized mice (Figure 1B). This cellular infiltration 35 was mainly due to a significant increase of eosinophils, Ly6C monocytes/macrophages and CD4⁺ T 36 cells in HDM-sensitized mice compared to the PBS group (Figure 1B). Interestingly, NP-B(a)P 37 significantly modifies the HDM-induced cell recruitment. Indeed, Ly6C⁺ as well as Ly6C⁻ 38 monocytes/macrophages were significantly elevated in HDM+NP-B(a)P compared to HDM-sensitized 39 mice. Moreover, neutrophils, NKT-like cells and CD8⁺ T cells, not recruited in HDM-sensitized mice, 40 were significantly increased in lungs from HDM+NP-B(a)P mice (Figure 1B). NKT-like cells differ from 41 classical NKT by recognizing antigen presented through major histocompatibility complex and not 42 through CD1d, and can be either CD4⁺, CD8⁺, or double-negative T cells expressing NK-cell markers. 43 In our study, NKT-like cells may participate in the increase of CD8⁺ T cells in HDM+NP-B(a)P mice.⁽⁴⁾ 44 Thus NP-B(a)P is increasing the inflammatory infiltration due to an additional response to it and not a 45 shift of HDM-induced response. Since pulmonary inflammation was increased in HDM-sensitized mice 46 exposed NP-B(a)P, we analyzed the expression of cytokines in the lung tissue to better characterize 47 the NPs-induced inflammation. As the nanoparticles adsorbed cytokines, we were unable to measure 48 them by conventional enzyme-linked immunosorbent assay, so we use quantitative RT-PCR. Levels of 49 mRNA coding for IFN-y and IL-17 cytokines were not modulated between HDM groups (figures 2A 50 and 2B). This suggests that Tc1 and Tc17 CD8⁺ T cells did not participate in the increase of CD8⁺ T 51 cells observed in HDM+NP-B(a)P exposed mice. However, type 2 cytokines including IL-4, IL-5, IL-13 52 and IL-10 were significantly increased in HDM-sensitized mice compared to PBS control group and 53 NP-B(a)P exposure facilitated these increased expressions in HDM+NP-B(a)P compared to HDM 54 group (Figure 2C-F). These results suggest that NP-B(a)P can exacerbate the type 2 response induced by HDM and that an increase in CD8⁺ T cells could include a population of Tc2 cells since 55 56 CD4⁺ T cells were not increased. As IL-13 and IL-4 participate in mucus production by bronchial epithelium, lung sections were stained with periodic acid-Schiff reagent and mRNA encoding for
Muc5b and Muc5ac mucins were evaluated. Mucus production was induced but not significantly
different between all HDM groups (Figure S2).

60 In human, higher neutrophil counts were associated with high level of IL-6 regardless of eosinophils in sputum.⁽⁵⁾ Moreover, IL-6 can play a role on monocyte recruitment in vivo through induction of C-61 chemokine ligand 2 (CCL2).⁽⁶⁾ Ly6C⁺ monocytes also called classical monocytes express the CCL2 62 63 receptor and are highly recruited in lungs of mice co-exposed with HDM and NP-B(a)P. Accordingly, 64 we have observed a significant increase in *il-6* and *ccl2* mRNA expression in the lung in response to 65 HDM+NP-B(a)P exposure (Figure S3A and B). Systemic IL-6 inflammation and metabolic dysfunction are associated with more severe asthma⁽⁷⁾, the induction of IL-6 by HDM+NP-B(a)P could reflect a 66 67 switch towards an IL-6-high severe asthma endotype. In human studies, airway neutrophils and CD8⁺ 68 T cells were found to be increased in severe forms of asthma and these cell types are described as resistant to corticosteroids.^(8, 9) Therefore, the recruitment of these cells suggests that HDM+NP-B(a)P 69 70 co-exposure may participate in the induction of severe cortico-resistant asthma endotype.

In conclusion, our results suggest that chronic exposure to NP-B(a)P can have a summative effect with allergen exposure in potentiating type 2 inflammation thereby inducing a neutrophil, NKT-like, and CD8⁺ T cell lung inflammatory response. A better understanding of mechanisms responsible for these modifications is required in order to develop effective drugs to treat specifically this asthma endotype.

75 References

Ple C, Fan Y, Ait Yahia S, Vorng H, Everaere L, Chenivesse C, et al. Polycyclic aromatic
 hydrocarbons reciprocally regulate IL-22 and IL-17 cytokines in peripheral blood mononuclear cells
 from both healthy and asthmatic subjects. PLoS One. 2015;10(4):e0122372.

Yanagisawa R, Koike E, Win-Shwe TT, Ichinose T, Takano H. Low-dose benzo[a]pyrene
aggravates allergic airway inflammation in mice. J Appl Toxicol. 2016;36(11):1496-504.

Li N, Georas S, Alexis N, Fritz P, Xia T, Williams MA, et al. A work group report on ultrafine
 particles (American Academy of Allergy, Asthma & Immunology): Why ambient ultrafine and
 engineered nanoparticles should receive special attention for possible adverse health outcomes in
 human subjects. J Allergy Clin Immunol. 2016;138(2):386-96.

Rijavec M, Volarevic S, Osolnik K, Kosnik M, Korosec P. Natural killer T cells in pulmonary
 disorders. Respir Med. 2011;105 Suppl 1:S20-5.

5. Turan N, Edwards MJ, Bates S, Shaw D, Chung KF, Loza MJ, et al. IL-6 pathway upregulation
in subgroup of severe asthma is associated with neutrophilia and poor lung function. Clin Exp Allergy.
2018;48(4):475-8.

8. Kaplanski G, Marin V, Montero-Julian F, Mantovani A, Farnarier C. IL-6: a regulator of the
transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol.
2003;24(1):25-9.

93 7. Peters MC, McGrath KW, Hawkins GA, Hastie AT, Levy BD, Israel E, et al. Plasma interleukin94 6 concentrations, metabolic dysfunction, and asthma severity: a cross-sectional analysis of two
95 cohorts. Lancet Respir Med. 2016;4(7):574-84.

96 8. Ciepiela O, Ostafin M, Demkow U. Neutrophils in asthma--a review. Respir Physiol Neurobiol.
97 2015;209:13-6.

98 9. Hinks TSC, Hoyle RD, Gelfand EW. CD8(+) Tc2 cells: underappreciated contributors to
99 severe asthma. Eur Respir Rev. 2019;28(154).

100 Authors

Julie Carrard¹, Philippe Marquillies¹, Muriel Pichavant¹, Nicolas Visez², Sophie Lanone³, Anne
 Tsicopoulos^{1,4}, Cécile Chenivesse^{1,4}, Arnaud Scherpereel⁵, Patricia de Nadaï¹*

- Univ Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 UMR9017 CIIL –
 center for infection and Immunity of Lille, France
- Univ. Lille, CNRS, UMR 8522 PC2A Physicochimie des Processus de Combustion et de
 l'Atmosphère, Lille, France
- 107 3. Univ Paris Est Créteil, INSERM, IMRB, F-94010 Créteil, France
- CHU Lille, Service de Pneumologie et Immuno-allergologie, Centre constitutif des Maladies
 Pulmonaires Rares, Lille, France ; CRISALIS/F-CRIN network
- 110 5. Pulmonary and Thoracic Oncology Dept, CHU Lille, France.
- 111
- 112 * : corresponding author : Dr Patricia de Nadaï
- 113 Center for Infection and Immunity of Lille,
- 114 Institut Pasteur de Lille, 1 rue du Pr Calmette,
- 115 59000, Lille, France

116	Phone: (33) 3 20 87 71 83
117	e-mail :patricia.de-nadai@pasteur-lille.fr
118	
119	Acknowledgements
120	We would like to thank Dr Catherine Duez for the critical reading of this article.
121	We would also like to thank the BioImaging Center Lille Nord-de-France (Bicel) for the microscopy and
122	flow cytometry part, especially Sophie Salome-Desnoulez, Elisabeth Werkmeister and Hélène
123	Bauderlique and the staff of the animal facility of Lille Pasteur Institute.

- 124 J. Carrard is supported by a grant from University of Lille.
- 125

126 Conflicts of interest

Pr. Scherpereel reports personal fees from Astra-Zeneca, BMS, MSD, Roche, outside the submitted work. Pr. Chenivesse reports grants from AstraZeneca, Santélys, personal fees from ALK-Abello, AstraZeneca, Boehringer Ingelheim, GlaxoSmithKlein, Novartis, Roche, Sanofi, and TEVA, nonfinancial support from ALK-Abello, AstraZeneca, Boehringer Ingelheim, Chiesi, GlaxoSmithKlein, MEDA Pharma, Medexact, Novartis, Pierre Fabre, Pfizer, outside the submitted work. All others authors declare that they have no relevant conflicts of interest.

133 Authors' contribution

JC, PdN, SL, CC, AT and AS contributed to conception and design of the study. JC, MP and PdN performed in vivo experiments and analysis. PM performed in vivo experiments. NV performed nanoparticle coating, drafted the associated methods, and revised the manuscript. JC and PdN drafted the manuscript. MP, CC and AT have substantially revised the manuscript. All authors read and approved the manuscript.

139

140 Figure legends

141

Figure 1: HDM+NP-B(a)P chronic administration modifies lung tissue cells but not BAL cell count. (A) Total cell, eosinophils, neutrophils, lymphocytes and macrophages absolute numbers in BAL. (B) Total cells from lung single cell suspensions and eosinophils, neutrophils, Ly6C⁺ and Ly6C⁻ macrophages/monocytes, NKT-like, CD4⁺ and CD8⁺ T cells identified by flow cytometry. Data are representatives of two independent experiments (n=10-21 mice per group) and expressed as median

147 min. to max. and plots. * p<0.05, ** p<0.01, *** p<0.005 vs PBS; [§] p<0.05 between HDM+NP-Ø and
148 HDM+NP-B(a)P, [#] p<0.05, ^{##} p<0.01 ^{####} p<0.001 between HDM and HDM+NP-B(a)P).

149

150 Figure 2: HDM+NP-B(a)P chronic administration increases Th2 cytokine expression in the lung.

151 Relative expression of *IFN-g* (A), *IL-17a* (B), *IL-4* (C), *IL-5* (D), *IL-13* (E) and *IL-10* (F) mRNA in lung

- 152 tissues compared to *rplp0* housekeeping gene. Data are representatives of two independent
- 153 experiments (n=10-21 mice per group) and expressed as median min. to max. and plots. * p<0.05, **
- 154 p<0.01, *** p<0.001 vs PBS; § p<0.05 between HDM+NP-Ø and HDM+NP-B(a)P , # p<0.05, ## p<0.01,
- 155 ^{####} p<0.001 between HDM and HDM+NP-B(a)P)

156