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Leptin down‑regulates KCC2 activity 
and controls chloride homeostasis 
in the neonatal rat hippocampus
Camille Dumon1,3, Yasmine Belaidouni1, Diabe Diabira1, Suzanne M. Appleyard2, Gary A. Wayman2 
and Jean‑Luc Gaiarsa1* 

Abstract 

The canonical physiological role of leptin is to regulate hunger and satiety acting on specific hypothalamic nuclei. 
Beyond this key metabolic function; leptin also regulates many aspects of development and functioning of neuronal 
hippocampal networks throughout life. Here we show that leptin controls chloride homeostasis in the developing 
rat hippocampus in vitro. The effect of leptin relies on the down-regulation of the potassium/chloride extruder KCC2 
activity and is present during a restricted period of postnatal development. This study confirms and extends the role 
of leptin in the ontogenesis of functional GABAergic inhibition and helps understanding how abnormal levels of 
leptin may contribute to neurological disorders.
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Introduction
Leptin, the product of the obese (ob) gene, is a circulating 
hormone secreted mainly from the white adipocytes and 
transported across the blood brain barrier to the hypo-
thalamus to suppress appetite and enhance metabolism 
in adult [1]. The hypothalamus is not the only central 
nervous system target for leptin, as a high density of lep-
tin receptors are expressed in other brain areas including 
the hippocampus where leptin receptors regulate many 
aspects of synaptic plasticity and cognitive function [2, 
3]. A large body of evidence indicates that leptin also acts 
as an important neurodevelopmental factor during the 
perinatal period [4–6]. Thus, while plasma leptin levels 
reflect adiposity in adult rodents, leptin levels surge dur-
ing the two first postnatal weeks of life regardless of the 
animal’s weight or body fat mass [1]. A similar restricted 

surge of plasma levels is observed during the last trimes-
ter of gestation in human [7]. Along with the leptin surge, 
leptin receptors are expressed and functional in several 
brain regions at embryonic and postnatal stages and acti-
vation of these receptors promote neuronal networks 
development [8–14]. Due to the many important physi-
ological and developmental functions of leptin, dysregu-
lation in its availability or signaling has been proposed as 
causal factors for the occurrence of neurological disor-
ders [15–23].

Abnormalities in GABAergic synaptic transmission 
are strongly associated with neurological disorders [24, 
25]. Therefore, understanding whether and how leptin 
controls the development and efficacy of the GABAergic 
transmission is warranted. Leptin deficient (ob/ob) mice 
exhibit a lower number of GABAergic synapses imping-
ing hypothalamic [26] and hippocampal [12] neurons 
highlighting the role of leptin in GABAergic synaptogen-
esis. Likewise, leptin modulates the GABAergic synaptic 
activity in  vitro in the hypothalamus [27, 28] and hip-
pocampus [12, 29]. The homeostasis of intra-neuronal 
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Cl− concentration ([Cl−]i) is an essential determinant of 
GABA functioning and alterations in [Cl−]i is implicated 
in the etiology of numerous neurological and psychiatric 
disorders [30–32]. In a previous study, we reported that 
the absence of leptin signaling accelerates the ontogen-
esis of functional GABAergic inhibition in the newborn 
mice hippocampus in vivo [13]. In the present study we 
show that leptin acts directly on hippocampal neurons to 
control Cl− homeostasis and the activity of the K+-Cl− 
co-transporter KCC2 in the rat hippocampus during a 
restricted developmental window.

Materials and methods
All animal procedures were carried out in accord-
ance with the European Union Directive of 22 Septem-
ber (2010/63/EU). The protocol was approved by the 
INSERM Local committee (Number 0287.01, delivered 
by the French Ministry of Education and Research). 
Experiments were performed on both male and female 
postnatal day (P) 1 to 10 Wistar rats. Animals were 
housed in a temperature-controlled environment with a 
12 light/dark cycle and free access to food and water.

Hippocampal slice preparation
Brains were removed and immersed into ice-cold 
(2–4 °C) artificial cerebrospinal fluid (ACSF) with the fol-
lowing composition (in mM): 126 NaCl, 3.5 KCl, 2 CaCl2, 
1.3 MgCl2, 1.2 NaH2PO4, 25 NaHCO3 and 11 glucose, pH 
7.4 equilibrated with 95% O2 and 5% CO2. Hippocam-
pal slices (600 µm thick) were cut with a McIlwain tissue 
chopper (Campden Instruments Ltd.) and kept in ACSF 
at room temperature (25 °C) for at least one hour before 
recording. Slices were then transferred to a submerged 
recording chamber perfused with oxygenated (95% O2 
and 5% CO2) ACSF (3 ml/min) at 34 °C.

Electrophysiological recordings
Perforated patch-clamp recordings were made from CA3 
pyramidal neurons. The pipettes (4–7 MΩ) were tip filled 
with an internal solution of 150  mM KCl and 10  mM 
HEPES, (pH adjusted to 7.2 with Tris-OH) and then 
backfilled with the same solution containing gramicidin 
A (50 µg/ml, diluted from a stock solution of 50 mg/ml 
in DMSO). Data were acquired with an axopatch 200B 
amplifier (Molecular Devices LLC, San Jose, USA). A 
stimulating bipolar tungsten electrode was placed in 
the CA3 stratum radiatum to evoke GABAA receptor-
mediated postsynaptic currents (eGABAA-PSCs) at a 
frequency of 0.01  Hz in the presence of glutamatergic 
receptor antagonists (NBQX 5 µM and D-APV 40 µM). 
After the access resistance had dropped to 40–80 MΩ 
and stabilized (15–30 min), we varied the starting hold-
ing potential (−  70  mV) in increasing and decreasing 

steps of 10  mV and measured the peak amplitude of 
averaged eGABAA-PSCs (3 single sweeps) to construct 
a current–voltage relationship. Leptin was applied for 
20  min and a second current–voltage relationship was 
conducted. Measurements were not corrected for the liq-
uid junction potentials. A linear regression was used to 
calculate the best-fit line of the voltage dependence of the 
synaptic currents. Spontaneous rupture into whole-cell 
was evidenced by large inward synaptic currents due to 
ECl of 0 mV.

Loose cell attached patch clamp recordings of action 
potential firing were performed from CA3 pyramidal 
neurons in the voltage-clamp mode at pipette potential of 
0  mV using an axopatch 200B (Molecular Devices LLC, 
San Jose, USA). The glass electrodes (4–7 MΩ) filled with 
an internal solution of 150 mM KCl and 10 mM HEPES 
(pH adjusted to 7.2 with Tris–OH). After a baseline 
period of at least 10 min in the presence of NBQX (5 µM) 
and D-APV (40 µM), Leptin was bath applied for 20 min. 
The effect of leptin was quantified as the mean frequency 
of action potential at the end of the leptin application 
(15–20 min) versus baseline frequency (− 10–0 min).

Evoked synaptic activity and spontaneous action 
potentials were recorded with Axoscope software ver-
sion 8.1 (Molecular Devices LLC, San Jose, USA) and 
analyzed offline with Mini Analysis Program version 6.0 
(Synaptosoft).

Drugs
The following reagents were purchased from the indi-
cated sources: 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-
benzo [f ]quinoxaline-7-sulfonamide (NBQX) and 
D-2-amino-5-phospho-valeric acid (D-APV) from 
the Molecular, Cellular, and Genomic Neuroscience 
Research Branch (MCGNRB) of the National Institute 
of Mental Health (NIMH, Bethesda, MD, USA). Lep-
tin and VU0463271from Tocris Cookson (Bristol, UK). 
Bumetanide and Gabazine from Sigma (St Louis, MN, 
USA).

Statistics
Statistical analyses were conducted with GraphPad Prism 
(GraphPad software 5.01). Shapiro–Wilk normality test 
was used to determine the normality of distributions. 
P < 0.05 was considered significant for this and all subse-
quent tests. Our data displaying non-normal distribution, 
we used a Two-tailed Mann–Whitney U test for compar-
ison between two independent groups, and a Two-tailed 
Wilcoxon matched-pairs signed rank test to compare 
paired data. To ensure the consistency and reproducibil-
ity of our results, we conducted repeated trials in differ-
ent acute hippocampal slices prepared from at least three 
different animals for each experimental condition. All 
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data are expressed as mean ± standard error to the mean 
(S.E.M.). In the figures, box plots represent the 1st and 
3rd quartiles; whiskers show data range; horizontal lines 
show the median.

Results
Leptin controls chloride homeostasis in vitro
Our first aim was to determine whether leptin directly 
acts on hippocampal cells to control Cl− homeosta-
sis in the neonatal rat. We used acute postnatal (P) day 
5 rat hippocampal slices and stimulated presynap-
tic GABAergic neurons while gramicidin perforated 
patch-clamp recordings were made from CA3 pyrami-
dal neurons in the presence of the glutamatergic recep-
tor blockers NBQX (5  µM) and D-APV (40  µM). 

GABAA receptor-mediated postsynaptic currents 
(eGABAA-PSCs) were evoked at different holding 
potentials, before and during the application of leptin 
(100  nM, 20  min), to determine the impact of the adi-
pocyte hormone on their reversal potential (EGABA). We 
found that leptin induced an average depolarizing shift 
of EGABA (∆EGABA) of 5.4 ± 1.7  mV (from −  48.2 ± 2.8 
to − 42.8 ± 3.7 mV, n = 10, z = − 2.5, p = 0.005, Fig. 1a1, 
b). In control experiments in which leptin was omitted 
EGABA did not change over the same recording duration 
(from −  45.6 ± 3.8 to −  45.2 ± 3.8  mV, n = 8, z = −  1.2, 
p = 0.21, ∆EGABA = 1.3 ± 0.5 mV, U = 16.5, p = 0.03 vs lep-
tin 100 nM response, Fig. 1a2, b). Leptin applied at a con-
centration of 20 nM for 20 min had no effect on EGABA 
(from −  53.6 ± 2.4 to −  54.8 ± 3.1  mV, n = 6, z = −  1.5, 

Fig. 1  Leptin controls chloride homeostasis in rat hippocampal slices. a Current–voltage (I–V) relationships for evoked GABAergic synaptic currents 
before and during leptin application (100 nM, 20 min) a1 and in control experiments a2 during which neurons were recorded following the same 
protocol but leptin was omitted. The intercepts of the linear regression of the I–V curves was used to calculate EGABA changes induced by leptin 
(∆EGABA). Insets depict the GABAergic synaptic currents. Scale bars, 10 ms, 20 pA. b Box plots of ∆EGABA induced by leptin 100 and 20 nM applied 
during 20 min. In control experiments (Ctr), neurons were recorded following the same protocol in the absence of leptin. c Loose patch recordings 
of CA3 pyramidal neurons on acute hippocampal slices before (− 10–0 min) and during (15–20 min) the application of leptin (100 nM, 20 min) and 
in control experiment, during which neurons recorded following the same protocol in the absence of leptin. Scale bar, 2 min, 50pA. d Box plots of 
leptin action on spike activity in the indicated conditions. ##P < 0.01 when compared to pre-leptin values, two-tailed Wilcoxon paired test. *P < 0.05 
when compared to leptin experiments, two-tailed Mann Whitney test
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p = 0.5, ∆EGABA = − 0.5 ± 1.6 mV, U = 11, p = 0.09 vs con-
trol experiment, Fig.  1b). We next determined whether 
the depolarizing shift of EGABA induced by leptin was 
associated with increased neuronal excitation. To this 
end we recorded action potentials in loose patch mode in 
the presence of NBQX (5 µM) and D-APV (40 µM). After 
a baseline period (10 min), leptin (100 nM) was added to 
the perfusion medium for 20 min. We assessed the effect 
of leptin on action potential firing at the end of the lep-
tin application (15–20  min) versus the baseline period 
(− 10–0 min, Fig. 1c). Leptin led to a significant increase 
in the frequency of action potentials (from 0.46 ± 0.14 Hz 
to 1.02 ± 0.32  Hz, n = 7, z = −  2.1, p = 0.03, Fig.  1c, 
d). In interleaved control experiments in which leptin 
was omitted the spike firing remained constant (from 
0.32 ± 0.12 to 0.43 ± 0.16 Hz, n = 7, z = − 1.1, p = 0.29 vs 
baseline and U = 16, p = 0.04 vs leptin 100 nM response, 
Fig. 1c, d). In agreement with the lack of effect of leptin at 
20 nM on EGABA (Fig. 1b), bath applied leptin at the same 
concentration (20 nM, 20 min) had no effect on the firing 
frequency of CA3 pyramidal neurons (from 0.47 ± 0.14 to 
0.44 ± 0.16 Hz, n = 6, z = −  0.5, p = 0.68 vs baseline and 
U = 17, p = 0.12 vs control experiment, Fig.  1b). Alto-
gether these data show that bath applied leptin shifts 
EGABA towards depolarizing values and increases the neu-
ronal excitation of P5 CA3 pyramidal neurons on rat hip-
pocampal slices.

Leptin controls KCC2 activity in vitro
Chloride homeostasis and the strength of 
GABAA-mediated synaptic inhibition are mainly con-
trolled by the activity of two cation-chloride cotrans-
porters: the Na+-K+-2Cl− (NKCC1) co-transporter that 
accumulates Cl− intracellularly and the K+-Cl− (KCC2) 

co-transporter that lowers intracellular Cl− concentra-
tion [33, 34]. We therefore asked whether leptin acts 
on KCC2 and/or NKCC1 activity. We found that the 
diuretic bumetanide at a concentration of 100  µM, to 
block both NKCC1 and KCC2 had no effect on EGABA 
(from −  51.4 ± 2.9 (n = 20) to −  55.6 ± 4.2 mV, (n = 15), 
U = 135, p = 0.6, Fig.  2b) but prevented the depolar-
izing shift of EGABA induced by leptin (100 nM, 20 min) 
(from − 54.7 ± 4.4 to − 54.6 ± 5.7 mV, n = 10, z = − 0.02, 
p = 0.85, ∆EGABA = −  0.1 ± 2.0  mV, U = 22.5, p = 0.03 vs 
leptin 100 nM response, Fig. 2a). However, bumetanide at 
20 µM to block NKCC1 shifted EGABA toward hyperpolar-
izing values (from − 51.4 ± 2.9 (n = 20) to − 75.4 ± 4.4 mV 
(n = 10), U = 23.5, p = 0.009, Fig. 2b) but failed to prevent 
the effect of leptin (100  nM, 20  min) on EGABA (from 
− 75.4 ± 5.8 to − 67.4 ± 6.2 mV, n = 7, z = − 2.1, p = 0.04, 
∆EGABA = 8.2 ± 2.9 mV, U = 28, p = 0.51 vs leptin 100 nM 
response, Fig.  2a). These results suggest that leptin 
down-regulates KCC2 activity. Accordingly, the selective 
KCC2 blocker VU0463271 (20  µM) led to a non-signif-
icant depolarizing shift of EGABA (from −  57.5 ± 6.1 to 
−  42.3 ± 4.0  mV, n = 6, z = −  1.9, p = 0.06, Fig.  2b) and 
prevented the effect of leptin (100  nM, 20  min) (from 
− 43.8 ± 3.2 to − 44.7 ± 3.8 mV, n = 7, z = − 0.6, P = 0.65, 
∆EGABA = −  0.8 ± 1.2  mV, U = 9.5, p = 0.01 vs leptin 
100 nM response, Fig. 2a).

To determine whether the increase in spike firing 
induced by bath applied leptin (Fig.  1c, d) also resulted 
from a down regulation of KCC2 activity and a modi-
fication of GABAergic strength, the same experiment 
was repeated in the continuous presence of the selec-
tive GABAA receptor antagonist Gabazine (5  µM) or in 
the presence of the selective KCC2 blocker VU0463271. 
We found that Gabazine (5  µM) completely abolished 

Fig. 2  Leptin controls KCC2 activity in rat hippocampal slices. a Box plots of ∆EGABA induced by leptin 100 nM (20 min) in control condition (Lep), in 
the presence of bumetanide 100 and 20 µM, or in the presence of VU0423271 (VU0, 10 µM). b Bar plots of the mean and standard error to the mean 
of the reversal potential of GABAA receptor-mediated postsynaptic currents (EGABA) in the indicated conditions. c Box plots of leptin action (100 nm, 
20 min) on spike activity in the presence of Gabazine (GBZ, 5 µM), or in the presence of VU0423271 (VU0, 10 µM). #P < 0.05 and ###P < 0.01 when 
compared to pre-leptin values, two-tailed Wilcoxon paired test. *P < 0.05 and ***P < 0.001 when compared to leptin experiments, two-tailed Mann 
Whitney test
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the leptin-induced (100  nM, 20  min) increase in fir-
ing. The frequency of action potential was respectively 
0.81 ± 0.22  Hz and 0.85 ± 0.28  Hz before and during 
the application of leptin (n = 8, z = −  0.07, p = 0.96 vs 
baseline and U = 7, p = 0.01 vs leptin 100  nM response, 
Fig. 2c). Likewise, the selective KCC2 blocker VU0463271 
(20  µM) also prevented the effect of leptin (100  nM, 
20  min) (from 0.23 ± 0.06 to 0.21 ± 0.04  Hz before and 
during the application of leptin, n = 6, z = − 0.4, p = 0.72 
vs baseline and U = 6, p = 0.03 vs leptin 100 nM response, 
Fig.  2c). Altogether, these data show that leptin down-
regulates KCC2 activity shifting EGABA towards depolar-
izing values in P5 rat hippocampal slices.

The action of leptin in vitro on chloride homeostasis 
is developmentally regulated
Previous studies reported that the responsiveness of 
leptin is regulated during development [29, 35–37]. We 
therefore asked whether the leptin-induced depolar-
izing shift of EGABA is developmentally regulated. We 
found a non-linear bell-shaped relationship between the 
age of the rats and the responsiveness of leptin. Thus, 
while bath applied leptin (100 nM, 20 min) led to a sig-
nificant depolarizing shift of EGABA at P5 (Fig.  1b), the 
same application had no effect on the reversal potential 
of GABAA-PSCs evoked on hippocampal slices at P2 
(from −  45.6 ± 7.1 to −  47.6 ± 6.4  mV, n = 5, z = −  0.9, 
p = 0.43, ∆EGABA = −  0.7 ± 2.1  mV, U = 7, P = 0.02 vs 
leptin 100  nM response at P5, Fig.  3a) and P10 (from 
− 70.8 ± 2.1 to − 70.3 ± 2.7 mV, n = 6, z = − 0.1, p = 0.99, 
∆EGABA = 0.5 ± 1.6 mV, U = 14, p = 0.08 vs leptin 100 nM 
response at P5, Fig.  3a). Of note, the effect of leptin on 
EGABA was not correlated to the initial polarity of the 
GABAergic responses (Fig. 3b). Likewise, leptin (100 nM, 

20  min) failed to increase the firing frequency of CA3 
pyramidal neurons when applied at P10 (from 0.55 ± 0.13 
to 0.64 ± 0.13  Hz before and during the application 
of leptin, n = 11, z = −  1.8, p = 0.1 and U = 16, p = 0.9 
vs baseline leptin 100  nM response at P5, Fig.  3c). We 
were unable to test the effect of leptin at P2 because of 
a sparse action potentials and low frequency discharge. 
Altogether, these data show that the effects of leptin on 
chloride homeostasis in vitro are restricted to a narrowed 
developmental window.

Discussion
Besides its key role in regulating energy balance, leptin 
exerts many other important developmental and physi-
ological functions throughout life [1, 2, 4, 7, 38]. In the 
present study, we show that leptin acts directly on new-
born rat hippocampal neurons to control the chloride 
homeostasis and the strength of GABAergic inhibition 
in  vitro. We further show that the effects of leptin rely 
on the control of the activity of the K/Cl cotransporter 
KCC2 and are present during a restricted developmen-
tal window. The present study complements previous 
reports of leptin modulating GABAergic synaptic trans-
mission in the developing rat hippocampus in vitro [12, 
29] and extends our previous report of leptin controlling 
the ontogenesis of functional GABAergic inhibition in 
the developing mice hippocampus in vivo [13].

Our data demonstrate that bath applied leptin regulates 
the activity of KCC2 in the developing rat hippocampus. 
We have shown that leptin treatment induces a depolar-
izing shift of EGABA and increases the firing frequency 
of CA3 pyramidal neurons. Both effects were prevented 
by the selective KCC2 blocker VU0463271. How acute 
(20  min) application of leptin controls KCC2 activity is 

Fig. 3  The action of leptin of chloride homeostasis is developmentally regulated. a Box plots of ∆EGABA induced by leptin (100 nM, 20 min) at 
postnatal (P) day 2, 5 and 10. b Plots of mean and standard error to the mean of the ∆EGABA induced by leptin (100 nM, 20 min) versus the reversal 
potential of GABAA receptor-mediated postsynaptic currents (EGABA) at P2, P5 and P10. c Box plots of leptin action (100 nM, 20 min) on spike activity 
at P5 and P10. #P < 0.05 when compared to pre-leptin values, two-tailed Wilcoxon paired test. *P < 0.05 when compared to leptin response at P5, 
two-tailed Mann Whitney test
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presently unknown. The ion transport activity of KCC2 
depends on transcriptional factors (i.e. the protein abun-
dance) as well as post-translational regulations by (de)
phosphorylation of the protein [33, 34]. We previously 
showed that newborn leptin receptor deficient (db/db) 
mice showed an increased expression of KCC2 compared 
to their wild type littermates [13]. We also showed that 
chronic (24  h) treatment of rat hippocampal neuronal 
cultures with leptin decreased the amount of KCC2 and 
increased the phosphorylation of the threonine 906 and 
1007 residues (Thr906/Thr1007) of KCC2 [13], known 
to decrease the membrane expression and activity of 
the transporter [39, 40]. In the presence study, the acute 
(20 min) application of leptin was unlikely to induce tran-
scriptional modifications, and a post-translational regula-
tion is the most expected mechanism to account for the 
reduced activity of KCC2.

Developmental changes in leptin’s actions and down-
stream signaling pathways have been reported in the hip-
pocampus [29, 35, 37] and hypothalamus [36]. We found 
that the effects of an acute (20  min) leptin (100  nM) 
application on EGABA and firing of CA3 pyramidal neu-
rons are also developmentally regulated been observed 
at P5 but not at P2 and P10 on rat hippocampal slices. 
We previously reported that a chronic (24  h) leptin 
(100 nM)-treatment had no effect on immature rat hip-
pocampal neurons (DIV6), when KCC2 activity is low, 
but led to a depolarizing shift of EGABA in more mature 
cultures (DIV15), when GABA had shifted to hyperpo-
larized values [13]. Differences in experimental systems 
and/or treatment protocols are possible explanations for 
the difference in leptin’s action in neuronal cultures ver-
sus acute slices at a time when the developmental shift 
of GABAergic responses had occurred (i.e. at DIV15 and 
P10 respectively). However, our observation that an acute 
application of leptin (100 nM, 20 min) induced a depolar-
izing shift of EGABA in DIV15 neuronal cultures (unpub-
lished observation) strongly suggest that differences in 
experimental system is the most likely explanation.

Different mechanisms, including a developmentally 
regulated expression of the leptin receptors as well as 
downstream signaling pathways and/or effectors could 
account for the developmental changes in leptin’s actions 
observed in hippocampal slices. The former hypothesis 
is unlikely since both molecular [8, 10] and functional 
[11, 12] studies revealed the presence of functional leptin 
receptors in the newborn rodent hippocampus. Accord-
ingly, real-time qRT-PCR revealed the presence of Leptin 
receptor transcript in rat hippocampi at P2, P5 and P10 
(unpublished observation). The latter hypothesis could 
be considered even if the downstream pathway linking 
leptin and the activity of KCC2 remains to be elucidated. 
The With No lysine family of serine/threonine kinase 

(WNK)-dependent phosphorylation of the Thr906/
Thr1007 residues of KCC2 is a key player in the regula-
tion of chloride homeostasis during development [39, 
40]. We previously obtained evidence that a chronic lep-
tin-treatment (24 h) promotes the phosphorylation of the 
Thr906/Thr1007 residues of KCC2 via a WNK-dependent 
pathway on hippocampal neuronal cultures [13]. Devel-
opmental changes in WNK signaling and WNK-depend-
ent control of chloride homeostasis have been observed 
both in  vitro and in  vivo in cortical and hippocampal 
neurons [39, 40]. Moreover, Thr906/Thr1007 residues 
becomes progressively dephosphorylated during neu-
ronal development [40, 41]. Thus, the high level of endog-
enous Thr906/Thr1007 phosphorylated KCC2 at birth 
and the absence of KCC2-dependent control of chloride 
homeostasis by endogenous WNK in mature neurons are 
possible explanations for the restricted effects of leptin.

A variety of factors control the activity of KCC2 and/
or NKCC1 (for review see [42]). Among this array of 
factors, Neurturin, BDNF and oxytocin also displayed 
specific age-dependent actions on KCC2. Neurturin pro-
motes the activity of KCC2 in hippocampal neuronal cul-
tures [43]. This facilitatory effect peaked at DIV11 and 
declined with neuronal culture maturation, likely as a 
consequence of corresponding receptors expression. The 
effect of BDNF on KCC2 encompasses up regulation in 
immatures neuronal cultures [44] and down regulation 
in matures neuronal cultures [45] as a consequence of 
a change in the BDNF-receptor activated pathway [45]. 
Finally, oxytocin increases the membrane expression/
stabilization of KCC2 during a very narrow time window 
(i.e. DIV3 and DIV4) in hippocampal neuronal cultures, 
but induced no significant change at DIV5 and a reduc-
tion at DIV6, most likely as a developmental change in 
oxytocin receptor activated pathway [46].

We have shown that an acute elevated concentration 
(i.e. 100  nM, but not 20  nM) of leptin affects the chlo-
ride homeostasis of the CA3 pyramidal neurons on 
newborn rat hippocampal slices. Likewise, in a previous 
study we reported that chronic hyperleptinemia, induced 
in  vivo by daily sub-cutaneous injections of leptin from 
P2 to P10, delayed the emergence of functional GABAe-
rgic inhibition in the newborn mice hippocampus [13], 
while the same injections from P20 to P30 has no effect 
on GABAergic inhibition (unpublished observation). 
Elevated circulating leptin levels have been observed 
in patient with neurodevelopmental disorders such as 
Autistic spectrum disorder (ASD) and Rett syndrome 
[15, 16, 18, 46, 47] and in animal models of the diseases 
[48, 49]. Moreover, accumulating evidence indicate that 
impaired chloride homeostasis is a common feature of 
numerous neurological disorders associated with impair-
ments in hippocampal-dependent cognitive processes 
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[30–32]. Although translating animal research to the 
human situation is difficult, the developmental window 
of the actions of elevated leptin levels on GABAergic 
inhibition in vivo and in vitro is consistent with a possi-
ble role of elevated leptin levels in neurodevelopmental 
disorders. Targeting the leptin signaling pathway may 
therefore have therapeutic potential in neurological and 
neuropsychiatric disorders.
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