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Simple Summary: Multiple myeloma is a cancer that remains incurable. Among the many therapies
under evaluation, antibodies can be used as vehicles to target and deliver toxic radiation to the tumour
cells. Our objective was therefore to investigate the potential of targeted alpha therapy, combining
an anti-CD138 mAb with astatine-211, to destroy the residual cells responsible for relapse. We have
shown in a mouse model that mimics human disease, that destroying multiple myeloma cells is
feasible with low toxicity by injecting an anti-CD138 mAb coupled with astatine-211. This approach
could eradicate residual cells after initial treatment and thus prevent recurrence.

Abstract: Despite therapeutic progress in recent years with the introduction of targeted therapies
(daratumumab, elotuzumab), multiple myeloma remains an incurable cancer. The question is
therefore to investigate the potential of targeted alpha therapy, combining an anti-CD138 antibody
with astatine-211, to destroy the residual cells that cause relapses. A preclinical syngeneic mouse
model, consisting of IV injection of 1 million of 5T33 cells in a KaLwRij C57/BL6 mouse, was treated 10
days later with an anti-mCD138 antibody, called 9E7.4, radiolabeled with astatine-211. Four activities
of the 211At-9E7.4 radioimmunoconjugate were tested in two independent experiments: 370 kBq
(n = 16), 555 kBq (n = 10), 740 kBq (n = 17) and 1100 kBq (n = 6). An isotype control was also tested at
555 kBq (n = 10). Biodistribution, survival rate, hematological parameters, enzymatic hepatic toxicity,
histological examination and organ dosimetry were considered. The survival median of untreated
mice was 45 days after engraftment. While the activity of 1100 kBq was highly toxic, the activity of
740 kBq offered the best efficacy with 65% of overall survival 150 days after the treatment with no
evident sign of toxicity. This work demonstrates the pertinence of treating minimal residual disease
of multiple myeloma with an anti-CD138 antibody coupled to astatine-211.
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1. Introduction

Symptomatic multiple myeloma (MM) is a malignant gammopathy characterized by an abnormal
abundance of monoclonal plasma cells within the bone marrow. With ~150,000 new cases per year
diagnosed in the world (source: World Health Organization), MM represents 1.9% of all cancers [1]
and is the second most common blood cancer.

Thanks to new therapeutic regimens based on combinations of several classes of drugs (including
proteasome inhibitors and immunomodulatory drugs) and the benefit of autologous stem cell transplant
for eligible patients, median survival has been increased by 2 years in the past decade [2,3]. However,
MM remains incurable because current treatments are unable to eradicate all malignant cells, notably
because of drug resistance [4]. To overcome these resistances, immunotherapeutic strategies based
on targeted therapies with monoclonal antibodies have been approved in 2015 for targeting SLAMF7
with elotuzumab or CD38 with daratumumab [5]. Although these therapies are gaining in importance,
they are still mainly administered on relapsed or refractory multiple myeloma patients. While these
therapies bring patients benefits, some resistances have also been reported [6].

In this context where relapse is inevitable, our strategy is to eradicate the minimal residual disease
(MRD) using a monoclonal antibody as a vector of an α-particle-emitting radionuclide. This strategy is
called Targeted-Alpha-Therapy (TAT). The chosen targeted antigen is CD138, also called syndecan-1,
which is a proteoglycan expressed on epithelial cells and broadly overexpressed on the extracellular
membrane of myeloma cells [7–9]. CD138 plays a major role of cell survival by participating in cell
adhesion and cell proliferation [10].

Alpha particles seem to be particularly suitable to achieve this objective. Indeed, their path length
of around 70 µm in tissue and their high linear energy transfer (~100 keV/µm) confer to α-particles a
high cytotoxic potential suited to eradicating isolated cells or small clusters of cells [11–13]. Among
α-particle-emitting radionuclides, only a few are relevant for clinical application considering their
half-lives and their ability to be stably conjugated to a biomolecule. Furthermore, the supply of
certain radionuclides could be a problem, notably for actinium-225 and, consequently, for bismuth-213
whose global production is currently very limited. Astatine-211 provides the advantage of being
produced in cyclotron by irradiation of a natural bismuth target and, according to Lindegren et al. [14],
around 30 cyclotrons in the world are fit for its production. Moreover, astatine-211 exhibits a half-life
of 7.2 h which is appropriate with antibody biodistribution and is theoretically more suitable than
bismuth-213 and its significantly shorter half-life of 45 min. To our knowledge and to date, five clinical
trials (NCT04083183, NCT03128034, NCT03670966, NCT00003461) [15–17] with astatine-211 have been
approved, following promising preclinical studies conducted on mice [18–20]. The aim of this new
study was to evaluate the efficacy of an anti-mCD138 antibody radiolabeled with astatine-211 to treat
MRD in a syngeneic preclinical model of MM. This study is a follow-up of our work carried out with
bismuth-213 [21,22].

2. Results

2.1. Anti-CD138 Antibody, 211At Radiolabeling, Immunoreactivity and Flow Cytometry

As previously described by Fichou et al. [22], the 9E7.4 anti-mCD138 mAb was the result
of a rat immunization with a 40-amino-acid peptide issued from the extramembranous part
of murine syndecan-1. Its specificity has been studied by ELSA assay, cytometry [22] and by
immunohistochemistry on skin tissue, spleen tissue, liver tissue and lung tissue. This antibody has
also been used with PET imaging to detect MM subcutaneous and intramedular lesions [23,24].
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Three independent productions of the N-succinimidyl-3-[211At]astatobenzoate prosthetic group
(SAB) were performed using aryliodonium salt chemistry [25], and conjugations on the 9E7.4
anti-mCD138 antibody and an isotype control mAb were achieved with respective conjugation
yields of 68 ± 2% (n = 3) and 65% (n = 1). After purification using a size exclusion chromatography
column, the radiochemical purity of 211At-9E7.4 mAb and 211At-isotypic control mAb was greater than
99%. The immunoreactivity of 211At-9E7.4 mAb was 83.0 ± 3.0% and in parallel, after radioactive decay,
the specific binding of 211At-9E7.4 mAb was validated by cytometry on 5T33 MM cells (Figure 1). The
results show that the radiolabeling process did not affect the ability of the mAb to bind the targeted cells.
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Figure 1. Flow cytometry data on 5T33 MM (multiple myeloma) cells showing the specific binding
of unmodified 9E7.4 and modified 9E7.4 SAB (N-succinimidyl-3-[211At]astatobenzoate prosthetic
group). Antibodies were incubated for 1 h and revealed with an anti-rat secondary antibody labeled
with phycoerythrin.

2.2. Biodistribution Study

We previously reported biodistribution data of 9E7.4 [22–24] but it was radiolabeled with other
radionuclides (lutetium-177, copper-64 and zirconium-89). Considering the potential impact of
the radionuclide and its radiolabeling method, a biodistribution study with 211At-9E7.4 mAb has
been performed (Figure 2a). Sacrifices were conducted at 15 min, 1 h, 4 h, 7 h, 14 h and 21 h
post-administration of 211At-9E7.4 mAb on C57BL/KaLwRij mice (3 mice/group). Several occurrences
were observed. The first one was linked to the nature of the vector and its persistence in the blood
compartment (14.9 ± 4.5% ID/g at 21 h) and in highly perfused tissues. The second one was linked
to the deastatination of radiolabeled mAb. Because of similarities in behavior between astatine and
iodine, two halogens, an iodine solution (called Lugol’s solution) was administrated before injection of
radioimmunoconjugate [26]. So, the uptake of free 211At was low in the thyroid (Figure 2b). However,
radioactivity increased over time in the lung, stomach and intestine due to the dehalogenation and
the inability of Lugol’s solution to block free astatine in these organs [26]. The third phenomenon is
associated with the specific binding of 9E7.4 mAb to CD138 and specific pharmacodynamic behavior
was observed for spleen and skin. For the liver, a particular distribution was observed with a high
level of 33.0 ± 2.2%ID/g at 15 min followed by a progressive decrease from 4h to 21h to 16.4 ± 2.5%.
Liver uptake was investigated by immunofluorescence assay in order to evaluate the uptake’s part due
to the Fc binding. Figure 2c shows that, unlike 9E7.4, isotype control mAb was unable to bind liver’s
frozen sections. Therefore, the liver’s uptake appeared to be the result of a specific binding.
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to 20% or initial weight 14 days after radiopharmaceutical injection. Except for this weight loss, no 
other macroscopic signs of toxicity have been revealed during the autopsy.  

Figure 2. Biodistribution data analysis of the immunoconjugate 211At-9E7.4 and immunofluorescence
data of CD138 expression on liver tissue. (a) Biodistribution data of 211At-9E7.4 mAb. Three animals
were sacrificed at each time point. Data are expressed at the percentages of injected dose per gram of
tissue (%ID/g). Means and SD are depicted. (b) Biodistribution data of 211At-9E7.4 mAb in thyroid.
Three animals were sacrificed at each time point. As it is difficult to collect the thyroid, the neck was
collected, counted and the data are expressed at the percentages of injected dose (%ID). Means and SD
are depicted. (c) Immunofluorescence analysis of liver section with 9E7.4 or isotype control IgG2a, κ
labeling with Alexa Fluor 647(pink). Nuclei are visualized with DAPI (blue). Scans were performed
using a slide-scanner Nanozoomer (Hamamatsu®).

2.3. 211At-anti-mCD138 TAT in a Disseminated Murine MM

We have assessed the efficacy of 211At-9E7.4 in a mouse model of MRD in MM. The experimental
model was obtained 10 days after intravenous injection of 106 5T33 MM cells in C57BL/KaLwRij mice.
At this time point, secreted immunoglobulins were undetectable and intramedullary lesions were
not yet detectable with PET imaging [21,24]. Then 370, 555, 740 or 1110 kBq of 211At-9E7.4 mAb was
injected intravenously into 16, 10, 17 and 6 mice, respectively. A group of 10 mice was injected with
isotype control IgG2a, κ with an activity of 555 kBq (Figure 3). Sixteen mice received no treatment
and showed a median survival of 45 days. Mice were euthanized when they became moribund, when
a weight loss of more than 20% was measured, when signs of paraplegia were observed or when
extramedullary lesions were visible. Death causes are listed in Table 1. Studies demonstrated a highly
statistically significant survival benefit for the mice treated with 211At-9E7.4 at 555 kBq (p = 0.0006)
and 740 kBq (p < 0.0001). At 555 kBq, the median survival was increased by 34 days and at 740 kBq
11/17 mice survived for 160 days after engraftment. For treatments with 211At-9E7.4 at 370 kBq or
211At-isotype control at 555 kBq no significant benefit was observed. The highest activity with 1110
kBq of 211At-9E7.4 was clearly radiotoxic. All mice were euthanized after a drastic weight loss superior
to 20% or initial weight 14 days after radiopharmaceutical injection. Except for this weight loss, no
other macroscopic signs of toxicity have been revealed during the autopsy.
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Figure 3. Kaplan–Meier survival curves of TAT (Targeted-Alpha-Therapy) in a disseminated MM
mouse model. C57BL/KaLwRij mice received 106 5T33 MM cells followed 10 days later by injection
of 211At-9E7.4 at 370 (n = 16), 555 (n = 10), 740 (n = 17) and 1110 (n = 6) kBq. Control mice received
211At-IgG2a isotype control at 555 kBq (n = 10) or no treatment (n = 16). Data were issued from 2
independent experiments.

Table 1. Summary of the survival study and cause of death. Numbers in brackets indicate paraplegic
mice with extramedullary lesions. Data were issued from 2 independent experiments.

Group Mice/Group Surviving
Mice

Dead
Mice

Cause of Death

Acute
Toxicity Paraplegia Extramedullary

Lesions

No Macroscopic
Lesion but
High Serum
IgG Level

Undetermined
Death

Control 16 0 16 - 7 9 (2) 1 1

9E7.4 at
370 kBq 16 2 14 - 4 10 (2) - 2

9E7.4 at
555 kBq 10 3 7 - 4 5 (3) - 1

9E7.4 at
740 kBq 16 10 6 - 3 4 (1) - -

9E7.4 at
1110 kBq 6 0 6 6 - - - -

Isotype
control at
555 kBq

10 0 10 - 5 5 (1) 1 -

2.4. Monitoring of Early Toxicity of the Treatment

Besides the deterioration of the general condition, the group receiving 1110 kBq of 211At-9E7.4
exhibited a severe but transient leukopenia 3 days after treatment injection and a high but transient
decrease (39.0% ± 7.8%) of platelets 10 days after treatment injection (Figure 4). Red blood cells were
impacted too and, in contrast to leukocytes and platelets, their levels were low until the mice died.
For the other groups, transient decreases of leukocytes proportionally to the injected activities were
measured (69.9% ± 6.3%, 56.1% ± 14.7%, 53.6% ± 7.5% at 740, 555 and 370 kBq, respectively). A
leucocyte drop was also observed in the isotype control due to the persistence of the antibody into the
bloodstream. As for leukocytes, the level of red blood cell decrease was transient and proportional to
the injected activity.



Cancers 2020, 12, 2721 6 of 18
Cancers 2020, 12, x 6 of 18 

 

 
Figure 4. Weight (a) and hematologic toxicity of mice grafted with 106 5T33 MM cells then treated 
with 211At-mAb. Leucocytes (b), red blood cells (c) and platelets (d) were analyzed using quantitative 
automated hematology analyzer and are given as means and SD of surviving mice. 

2.5. Monitoring of Late Toxicity of the Treatment by ASAT (Aspartate Aminotransferase) and ALAT 
(Alanine Aminotransferase) Enzymatic Assay 

In surviving mice, no clinical signs were visible during the follow-up period (weight, Figure 4a). 
However, since the radiopharmaceutical presented a high distribution into the liver within the first 
hours, we evaluated the long-term toxicity by ASAT (aspartate aminotransferase) and ALAT (alanine 
aminotransferase) measurement on surviving animals at the end of the study (Figure 5). Our previous 
study [21] had demonstrated the relevance of studying these parameters in TAT. There is no 
significant difference for ASAT level at D150 between the three injected activities (370 kBq, 555 kBq 
and 740 kBq) while ALAT levels were increased in the 555 kBq and 740 kBq groups but remained into 
the normal ranges described in the literature for C57Bl6 mice [27]. 

Figure 4. Weight (a) and hematologic toxicity of mice grafted with 106 5T33 MM cells then treated
with 211At-mAb. Leucocytes (b), red blood cells (c) and platelets (d) were analyzed using quantitative
automated hematology analyzer and are given as means and SD of surviving mice.

2.5. Monitoring of Late Toxicity of the Treatment by ASAT (Aspartate Aminotransferase) and ALAT (Alanine
Aminotransferase) Enzymatic Assay

In surviving mice, no clinical signs were visible during the follow-up period (weight, Figure 4a).
However, since the radiopharmaceutical presented a high distribution into the liver within the first
hours, we evaluated the long-term toxicity by ASAT (aspartate aminotransferase) and ALAT (alanine
aminotransferase) measurement on surviving animals at the end of the study (Figure 5). Our previous
study [21] had demonstrated the relevance of studying these parameters in TAT. There is no significant
difference for ASAT level at D150 between the three injected activities (370 kBq, 555 kBq and 740 kBq)
while ALAT levels were increased in the 555 kBq and 740 kBq groups but remained into the normal
ranges described in the literature for C57Bl6 mice [27].
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Figure 5. Hepatic toxicity of mice grafted with 106 5T33 MM cells then treated with 211At-9E7.4. ASAT
(aspartate aminotransferase) (a) and ALAT (alanine aminotransferase) (b) were measured on serum
from all surviving mice 150 days after engraftment. Dashed lines on ALAT graphs indicated the upper
normal limit for ALAT parameter (issued from [27]).

2.6. Monitoring of Late Toxicity of the Treatment by Histology

2.6.1. Histological Examination of the Liver

Macroscopic inspection of animal’s livers after sacrifice as well as histologic examinations did not
show any sign of toxic effects of all injected activities (Figure 6a,c,e). Classic radiation-induced
abnormalities [28], such as cytomegaly, karyomegaly, intra-nuclear cytoplasmic invagination,
inflammation and fibrosis were not observed. Foci of extramedullary hematopoiesis (EMH) were
encountered in all injected mice. EMH is characterized by groups of dozens of hematopoietic precursors
randomly distributed in the hepatic sinusoids as well as around central veins and in portal areas. EMH
could be the reflection of radiation-induced myelotoxicity and failure of central hematopoiesis, yet it is
also commonly found in rodents’ liver in physiological conditions. In our study, EMH was found in
both control and injected mice in similar proportions.

2.6.2. Histological Examination of the Kidney

Kidneys of injected rodents showed no histological alterations (Figure 6b,d). Classic radiation-induced
abnormalities [29], such as cellular atypies, proteinaceous casts, glomerulosclerosis or tubular injuries were
not observed.
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Figure 6. Liver and kidney histology of control and 211At-9E7.4 injected mice. Control liver (a) and
kidneys (b), as well as livers (c) and kidneys (d) of mice 160 days after injection of 740 kBq of 211At-9E7.4
were histologically examined. No significant histological injury was observed. Livers of mice injected
with 211At-9E7.4 show extramedullary hematopoiesis (e, arrow), yet in a similar proportion to control
mice. Hematoxylin-Phloxin-Saffron.

2.6.3. Histological Examination of the Spleen

Only organs of mice injected with 740 kBq of 211At-9E7.4 showed histological changes as lymphoid
follicular hyperplasia was observed (Figure 7). This reactive response yet appears non-specific and
classic radiation-induced alterations, such as lymphoid depletion in the white pulp or diffuse fibrosis
of the red pulp, were not observed in any group.
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Figure 7. Spleen histology of control and 211At-9E7.4 injected mice. Comparison between spleen of
control rodent (a) and of mice 160 days after injection of 740 kBq of 211At-9E7.4 (b) showing lymphoid
follicular hyperplasia in this latter. Hematoxylin-Phloxin-Saffron.

2.7. Dosimetry Study

Based on the 211At-9E7.4 biodistribution depicted in Figure 2, the blood absorbed dose was
calculated to be 8.0 Gy/MBq (+/− 0.7). For liver, spleen and kidney, absorbed doses were found to be
10.9 (+/− 1), 8.2 (+/− 1.7) and 3.6 (+/− 0.3) Gy/MBq. With the most efficient activity of 740 kBq, the
absorbed doses are 6.0, 8.0, 6.1, 2.7 Gy for blood, liver, spleen and kidneys. All dosimetry results are
listed in Table 2.

Table 2. 211At-9E7.4 dosimetry study. Mean absorbed doses, expressed in Gy/MBq, and their standard
error for the different organs.

Organs Absorbed Dose (Gy/MBq) SE (Gy/MBq)

Blood 8.0 0.7
Flat Bone 1.5 0.2

Liver 10.9 1.0
Kidneys 3.6 0.3

Gut 6.6 1.3
Lungs 5.8 0.8
Muscle 0.8 0.3
Spleen 8.2 1.7

Skin 2.6 0.9
Brain 0.2 0.0
Heart 3.8 0.6
Femur 1.7 0.3

Stomach 9.5 4.7

3. Discussion

Using a syngeneic mouse model of MM, we demonstrated the efficacy of combining an anti-CD138
antibody with astatine-211, a radioisotope that emits alpha particles. In this disseminated 5T33 MM
model, where the median survival was 45 days without treatment, the 740 kBq activity appeared to be
the most efficient with nearly 65% of mice having no clinical signs of pathology 150 days after the graft
and no treatment-induced toxicity. Because of the aggressivity of the 5T33-induced MM model, where
only 500 cells can lead to a paraplegia 40 days after engraftment [30], we can consider that mice were
cured by TAT. This study confirms the potential of TAT demonstrated previously with another alpha
particle emitter, bismuth-213 [21], which outperforms the clinical treatments based on chemotherapy
(Melphalan, Bortezomib) studied in this model [31,32].

The study was conducted in the specific context of MM where, despite the addition of new
molecules to the therapeutic arsenal, the pathology is still considered as incurable [33]. Drug resistance
through adaptive mechanisms is the major reason for this, with an almost inevitable relapse that
will have to be treated with new approaches [34–36]. To avoid these relapses, the idea would be to
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eliminate the residual cancer cells by using TAT after the first lines of treatment. Indeed, few resistances
to alpha particles have been reported in the literature due to their high cytotoxic potential [37–39].
In vitro experiments conducted on a 5T33 cell line demonstrated that alpha particles induce DNA
double strand breaks followed by cell proliferation arrest and a cell cycle blockade in G2 phase, finally
leading to necrosis in most cases [40]. Furthermore, we observed in more than 10 human MM lines
that whatever their cytogenetic status (p53 status, translocations...), they were all sensitive to alpha
particles. Indeed, with a linear energy transfer around 100 keV/µm, it has been shown that a small
number of alpha particles crossing an isolated cell were sufficient to cause cell death [41]. Because of
this high cytotoxic potential, radionuclides must be stably driven as close as possible to the targeted
cells. The SAB prosthetic group was chosen for its simplicity and the low impact of this radiolabeling
approach on antibody pharmacokinetic profiles. However, with regard to the uptake observed in the
lungs and stomach due to the dehalogenation of astatine-211 (Figure 2a) it is clear that there is room
for improvement of the radiolabeling strategy with this radionuclide.

For the targeting of malignant cells, a therapeutic approach with antibodies seems to be appropriate,
with the 7.2-h half-life of astatine-211 and the antibodies’ robustness with high affinity which have
been proven. For the antigenic target, several surface molecules have been explored as potential
targets of mAb, including SLAMF7 (CS1), CD38, CD40, CD138, CD56, CD54, IL-6, PD1, CD74, CD162,
β2-macroglobulin, and GM-2 [42]. We have particularly considered CD38 or SLAMF7 which are
the subject of immunotherapies that have received approval in 2015 for the treatment of MM [43].
However, the expression of these molecules on the surface of many immune cells [44–46] would a
priori lead to a significant irradiation of secondary lymphoid organs. However, this approach has
been investigated by Quelven et al. and O’Steen et al. [47,48] using an anti-CD38 antibody coupled
respectively with 212Pb and 211At as alpha particle emitters. However, preclinical therapies were
conducted on a xenograft model which is not suitable for assessing toxicities related to physiological
uptake. Therefore, building on our previous promising results obtained with bismuth-213 or during
the imaging of MM with copper-64, we have once more favored CD138 as a target antigen [21–23,49].
CD138 or syndecan-1 has long been considered as the most reliable marker of MM and is still widely
used for the diagnosis of MM. Among all immune cells, this molecule is specifically expressed by
mature B-cells only. Furthermore, CD138 has been targeted with Chimeric Antigen Receptor T cells in a
clinical trial in an MM context [50]. Although this molecule is expressed on all epithelial cells, the skin
data in Figure 2 show that 9E7.4 mAb cannot reach epithelial cells in the early stage of injection. So,
considering the short half-life of astatine-211, the major part of the activity is deposited on accessible
cells, including plasma cells. However, targeting mouse CD138 with the 9E7.4 antibody results in a
rapid liver uptake. This uptake appears to be a specific binding with immunofluorescence labeling
(Figure 2c). Furthermore, this hepatic binding did not follow the specific binding kinetics usually
found with an antibody. Indeed, the binding is rapid (33% 15 min post-injection) and decreases over
time (16%, 21 h post-injection), potentially due to hepatic metabolism. The derived absorbed dose
to the liver is 8 Gy for the most effective dose of 740 kBq. Applying a RBE or RBE2(α/β) factor of
4–5 [51], to take into account the high cytotoxicity of alpha particles as compared to photons, leads to
an absorbed dose to the liver superior to 26 Gy, considered as a toxicity threshold for human external
beam radiotherapy protocols. However, in the present study, ALAT level, measured 150 days after
treatment, indicated values within the normal range for a C57BL6 mouse [27]. Concerning ASAT, levels
measured 150 days after TAT are equivalent at all injected activities. In addition, we were unable to
observe any histological abnormalities within the liver. This result is in contradiction with a previous
study we published, in which we had shown histological but non-enzymatic differences (ASAT, ALAT)
as early as 1.4 Gy on nude mice that were injected with 213Bi-BSA [52]. We have no explanation for this
apparent discrepancy. Different microscopic absorbed dose distributions within the liver could play a
role here since BSA remains mainly confined into the blood compartment whereas the anti-mCD138
mAb exhibits a specific binding to the liver. Finally, although no radiation-induced tumors were
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observed on surviving mice during autopsies, stochastic effects will need to be investigated in the
event of a transition to the clinic.

Early hematological toxicity was monitored and was shown to be proportional to the activity
administered. From 370 kBq to 740 kBq, this toxicity was transient and did not affect the parameters
more than 25 days after treatment. For the lethal activity of 1110 kBq, a nearly complete depletion of
white blood cells (WBC) 3 days after therapy was observed (835 +/− 289 WBC/mm3) but a rise was
seen as early as 4 days later. While the activities of 740 and 1110 kBq led to a decrease in red blood cells
count, only the activity of 740 kBq resulted in a rise in the red blood cell rate to a level close to that
before the therapy. The times and activities of occurrence of radiotoxicity are in agreement with the
literature [19].

Compared to the various studies we have conducted with bismuth-213 [21,22], TAT with
astatine-211 showed similar results in terms of survival at 150 days. The study by Chérel et al.
showed a mouse survival of 70% with bismuth-213 but described a long-term hepatic toxicity with an
increase of ASAT and ALAT. It must however be pointed out that this study was conducted with a
different anti-mCD138 mAb that had a higher uptake in the liver. Herein, treatment with astatine-211
demonstrated a comparable overall cure rate (65% vs 70%) without histological alterations or major
enzymatic problems.

Regarding the benefits of the treatment demonstrated in this preclinical study, the question of the
place of this new strategy into the clinical therapeutic arsenal may be asked. Firstly, we must keep in
mind that TAT should be considered in clinical settings to eradicate MRD in order to avoid relapse.
This new therapy must not change the current therapeutic protocols based on chemotherapies that
allow us to decrease the tumor burden and provide a therapeutic window under the scope of alpha
particle emitters. Concerning the vector that can drive alpha particle emitters, several anti-human
CD138 antibodies are already routinely used for diagnosis (notably, the B-B4 clone that helped us
to produce the 9E7.4). Indeed, we used the recognized sequence by B-B4 to design a similar region
into the mouse CD138 sequence to immunize the rat and obtain 9E7.4. Furthermore, the B-B4 clone
has already been used in humans to perform a feasibility study on radioimmunotherapy using
beta emitters [53]. Nevertheless, a dosimetric study will have to be conducted and adapted to the
particularity of astatine-211. Results from the clinical trial (NCT03128034) from Fred Hutchinson
Cancer Research Center (Seattle, WA, USA) should help us to determine the tolerated activities, too. To
date, results issued from this clinical phase I/II study enrolling patients with acute myeloid leukemia
and acute lymphoblastic leukemia for treatment with an anti-CD45 antibody, 211At-BC8-B10, before
donor stem cell transplant, have not yet been published.

4. Materials and Methods

4.1. Mice

Female C57BL/KaLwRij mice, 9 to 11 weeks old at the beginning of the experiments, were
purchased from Envigo and housed under conventional conditions in the experimental therapeutic
unit of IRS UN (Institut de Recherche en Santé de l’Université de Nantes). Experiments performed in
this study were approved by the local veterinary services (license no. B44.565).

4.2. 5T33 Cell Line

The 5T33 murine MM cell line was kindly provided by Dr. Harvey Turner (Nuclear Medicine
Service, Fremantle Hospital, Western Australia) with the permission of Dr. Jiri Radl (TNO Institute,
Leiden, Netherlands). Cells were cultured in RPMI 1640 medium (Gibco) containing 2 mM L-glutamine
(Gibco) and 10% heat-inactivated fetal calf serum (PAA Laboratories/GE Healthcare Europe GmbH,
Cölbe, Germany) at 37 ◦C, 5% CO2, 95% humidity.
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4.3. Antibodies

At our request, the anti-CD138 mAb, 9E7.4, was produced by GeneCust (Dudelange, Luxembourg)
by immunization of a rat with a 40-amino-acid peptide derived from the murine CD138 protein.
The 9E7.4 mAb was a rat IgG2a, κ and presented a Kd about 10−10 M. For cytometry experiments
and for immunofluorescence experiments, 9E7.4 mAb was respectively labeled with Dylight 650
and with Alexa Fluor 647 with a protein labeling kit provided by Life Technologies according to the
supplier’s protocol.

The isotype control used for the therapy was a rat IgG2a, κ purchased from R&D Systems.
The labeling Alexa Fluor 647-isotype control IgG2a, κ for the immunofluorescence experiments

was purchased from Biolegend (San Diego, CA, USA).

4.4. Flow Cytometry

The binding of the 211At radiolabeling 9E7.4 mAb was assessed by flow cytometry. MM 5T33 cells
were incubated for 1h with conjugated 9E7.4 or unmodified 9E7.4 and washed 3 times in PBS-BSA
0.1%. Then, secondary antibody anti-Rat-PE (Jackson Immunoresearch) was added and incubated for
1h. Three washings were performed and cells were analyzed on a FACSCalibur (BD Biosciences, Le
Pont de Claix, France). Data were analyzed using FlowJo software (Becton Dickinson & Company,
Franklin Lakes, NJ, USA).

4.5. 211At Antibody Radiolabeling

211At was produced at the Arronax cyclotron facility and provided as a chloroform solution
as reported elsewhere [54]. From this solution, the activity needed was evaporated to dryness and
redissolved in 10 mg/mL aqueous sodium sulfite providing the [211At] NaAt species necessary for
the radiolabeling.

211At-9E7.4 mAb and 211At-isotype control were then produced in two steps from a biaryliodonium
salt precursor of N-succinimidyl-3-[211At]astatobenzoate (SAB) as reported previously [25]. Briefly,
to succinimidyloxycarbonyl)phenyl(4-methoxyphenyl)iodonium triflate (2.5 mM in CH3CN, 190 µL)
we added [211At]NaAt (≈ 100 MBq, 10 µL) and the solution was heated for 30 min at 60 ◦C. SAB
was then isolated by passing the reaction solution through a disposable Sep-Pak Vac 3cc (500 mg)
silica cartridge (Waters) using ethyl acetate as eluent. After evaporation of AcOEt to dryness under a
gentle stream of nitrogen, SAB was dissolved in 10 µL DMSO and 9E7.4 mAb or isotype control was
added (concentrated adjusted at 5 mg/mL-1 in borate buffer (0.3M, pH 8.7) using a disposable Amicon
Ultra-4 centrifugal unit (Millipore)). The solution was incubated for 30 min at 20 ◦C. Conjugation
yields were assessed by silica gel impregnated paper strips (ITLC-SG) analysis of an aliquot using
MeOH as eluent and a Cyclone phosphorimaging scanner. The unbound SAB was eliminated using a
PD-10 size exclusion chromatography column (Sephadex G25, GE Healthcare, Little Chalfont, UK) and
PBS as eluent. The radiochemical purity was finally assessed by ITLC-SG.

4.6. Immunoreactivity Assay

The immunoreactivity of 211At-9E7.4 mAb was assessed using magnetic beads (Pierce, Thermo
Scientific, Waltham, Mass., USA) labeled with a 40-amino-acid peptide recognized by the 9E7.4
antibody. One picomole of 211At-9E7.4 mAb in 100 µL of PBS-BSA 0.1% was incubated 15 min at room
temperature with 20 µL of coated magnetic beads (10 mg/mL). Using a magnetic rack, supernatants
containing non-reactive antibodies and magnetic beads containing reactive antibodies were collected
separately and counted on a gamma counter (Perkin Elmer). The immunoreactivity was 83.0 ± 3.0%.

4.7. 211At-9E7.4 Biodistribution

Two days before administration of the radioimmunoconjugate, Lugol’s 1% solution was added
to the drinking water of the mice (0.1 mL/L). Mice received 370 kBq of 211At-9E7.4 mAb at a specific
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activity of 85 MBq/mg. Fifteen minutes, 1 h, 4 h, 7 h, 14 h and 21 h after radioimmunoconjugate injection,
blood sample, neck (for thyroid), liver, kidney, gut, lungs, muscle, spleen, skin, brain, heart, flat bone,
femur, and stomach were collected, weighed and counted on a calibrated and normalized gamma
counter (Perkin Elmer, Waltham, MA, USA). The experiment was approved by the local veterinary
committee (APAFIS #6145) and carried out in accordance with relevant guidelines and regulations.

4.8. Immunofluorescence

In order to study the specific binding of the 9E7.4 antibody on the liver, 10 µm frozen liver sections
were stained with the 9E7.4 antibody labeled with Alexa Fluor 647. Briefly, frozen sections were fixed
in 4% paraformaldehyde for 15 min, washed 3 times with PBS, incubated with a normal rat serum
for 10 min and incubated overnight with the 9E7.4 mAb or with the isotype control IgG2a, κ labeled
with Alexa Fluor 647 at 5 µg/mL−1. The sections were washed 3 times with PBS and incubated with a
DAPI solution at 30 µM for 5 min. After 3 washes in PBS, sections were mounted in Prolong gold (Life
technologies Carlsbad, CA, USA) and scanned using a slide scanner, Nanozoomer Hamamatsu®.

4.9. 211At-9E7.4 TAT Study

C57BL/KaLwRij mice received one million 5T33 cells into a tail vein 10 days before TAT. Two
independent studies were performed.

Two days before administration of the radioimmunoconjugate, Lugol’s 1% solution was added to
the drinking water of the mice (0.1 mL/L).

In the first study, groups of 6 mice each were injected via the tail vein with PBS (control group),
370, 740 or 1110 kBq of 211At-9E7.4 at a specific activity of 89 MBq/mg.

In the second study, groups of 10 mice each were injected via the tail vein with PBS, 370, 555 or
740 kBq of 211At-9E7.4 at a specific activity of 94.9 MBq/mg. An isotype control group (n = 10) was
injected with 555 kBq of 211At-IgG2a, κ at a specific activity of 28.3 MBq/mg. Body weights were
measured every week and blood samples were collected by retroorbital bleeding to assess blood counts
(Melet-Schloesing Laboratories Osny, France), renal and hepatic function and level of 5T33-secreted
immunoglobulin. Mice were sacrificed when the body weight loss was greater than 20% of initial body
weight or when the mice presented signs of pain, signs of paraplegia or extramedullary tumor mass.
The experiment was approved by the local veterinary committee (APAFIS #7414) and carried out in
accordance with relevant guidelines and regulations.

4.10. Serum Toxicity Assessments

Serum was assayed for kidney function by measuring creatinine level using the assay kit from
SIGMA-ALDRICH. To test hepatic function, serum aspartate aminotransferase (ASAT) and alanine
aminotransferase (ALAT) activities were measured using kits from SIGMA-ALDRICH.

4.11. Histological Examination of Mouse Organs

Mice injected with 370 kBq (n = 2), 555 kBq (n = 2) and 740 kBq (n = 3) were sacrificed 160 days
after injection, for histological examination. Two age-matched mice were used as control. The liver,
kidney and spleen from each mouse were fixed in 4% neutral-buffered formalin and processed by
routine methods. Liver and spleen sections were stained with Hematoxylin-Phloxin-Saffron (HPS),
Periodic Acid Schiff (PAS) and Sirius Red (SR) by Cellular and Tissular Imaging Core Facility of Nantes
University (MicroPICell). Kidney sections were stained with HPS, PAS and Masson’s Trichrome (MT).
All slides were scanned using a slide scanner, Nanozoomer Hamamatsu® and evaluated by a certified
pathologist. Toxicity was assessed as previously described [52] and as defined by the INHAND
Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and
Mice) [28,29].
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4.12. Quantification of Mouse Myeloma IgG2b

The levels of monoclonal IgG2b produced by 5T33 cells in vivo were measured in the serum
of mice by Enzyme-Linked Immunosorbent Assay (ELISA) according to the procedure previously
described [21]. Briefly, wells of ELISA microplates were coated overnight with a goat antibody directed
against mouse IgG2b (BD Biosciences), washed 3 times with PBS-tween 0.05% and diluted mice serum
(1/100,000) was deposited. After 2 h of incubation, 3 washes were performed and a biotin goat antibody
directed against another epitope of mouse IgG2b (BD Biosciences) was deposited. Two hours later,
wells were washed 3 times and a solution of streptavidin-horseradish peroxidase (R&D) was incubated
for 20 min. After 3 washes, the enzyme substrate was added and the reaction was stopped by adding
H2SO4 (2N). Measurements were performed at 405 nm using an ELISA microplate reader.

4.13. Dosimetry

Time–activity curves (not corrected for physical decays) were derived from the biodistribution
study for each organ and fitted, using PRISM software (Version 7, GraphPad Software, Inc., San Diego,
CA, USA), with either a mono-exponential decay function (blood, flat bones, femurs, muscle, liver,
kidneys, lungs, spleen, brain, heart) or with the following bi-exponential function (intestine, skin,
stomach):

ƒ(t) = A1.[e− λ1.t − e− λ2.t]

with A1, λ1 and λ2 being adjustable parameters.
The time-integrated activity for each organ was then derived by calculating the area under each

fitted time–activity curve.
Finally, absorbed doses were calculated assuming a local energy deposition within all organs:

time-integrated activities, weighed by the tissue mass, were multiplied by the energy of the emitted
α-particles (6.79 MeV per decay, considering the contribution of 211At and 211Po with the appropriate
branching ratio, according to the MIRD radionuclide data and decay schemes) [55].

4.14. Statistical Considerations

All data are presented as mean ± standard deviation. Groups were compared using Prism 7.0
(GraphPad Software, Inc., San Diego, CA, USA). Survival curves were compared using a log-rank
(Mantel–Cox) test. For toxicity measurements (ASAT, ALAT, creatinine), a non-parametric t-test was
performed. p values of less than 0.05 were considered statistically significant.

5. Conclusions

In the treatment of multiple myeloma, TAT associating the alpha particle emitter, astatine-211, and
a full size anti-CD138 antibody appears to be a beneficial combination that provides complete responses
in 65% of cases without long-term radiotoxicity. As efficient as bismuth-213, TAT with astatine-211 is a
good alternative therapy as its production in cyclotron can prevent the supply problems encountered
with actinium-225/bismuth-213 generators.
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