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ABSTRACT
The aim of this study was to assess two protocols for their capacities to simultaneously isolate RNA, mtDNA and ncDNA from mammalian cells.
We compared the Invitrogen TRIzol-based method and Qiagen DNeasy columns, using the HepG2 cell line and human primary glioblastoma stem
cells. Both methods allowed the isolation of all three types of nucleic acids and provided similar yields in mtDNA. However, the yield in ncDNA
was more than tenfold higher on columns, as observed for both cell types. Conversely, the TRIzol method proved more reproducible and was the
method of choice for isolating RNA from glioblastoma cells, as demonstrated for the housekeeping genes RPLP0 and RPS9.

METHOD SUMMARY
Here we compare two methods – Invitrogen TRIzol reagent and Qiagen DNeasy columns – for simultaneously extracting RNA, mtDNA and ncDNA
from mammalian cells.

KEYWORDS:
mammalian cells • mitochondria • mitochondrial DNA (mtDNA) • nuclear DNA (ncDNA) • RNA

Mitochondria are endowed with essential cellular functions. Mitochondrial dysfunctions, which are caused by mutations in both ncDNA
and mtDNA, are associated with a number of severe metabolic diseases [1–3]. Changes in mtDNA copy number have also been directly
associated with aging and disease [4–9]. As demonstrated recently, mitochondria and their intrinsic mtDNA are also exchangeable
between cells, resulting in the metabolic reprogramming of the recipient cells, in tissue repair and cancer progression [1,10–13]. This
metabolic and functional reprogramming is also associated with modifications of the cellular gene expression pattern. In metabolic
diseases originating from mtDNA mutations, the degree of heteroplasmy – the percentage of mutated mtDNA – is an essential crite-
rion for the declaration of the pathology. For intercellular mitochondrial exchange, the concentration of exogenous mitochondria also
determines the phenotype of the recipient cells. Therefore, in both cases, gene expression as measured by mRNA levels needs to be
assessed as a function of the mtDNA concentrations in order to establish mechanistic links. This prompted us to identify robust meth-
ods to concurrently isolate the mtDNA and RNA in these eukaryotic cells. In addition, we were looking for a protocol that allowed the
simultaneous isolation of RNA and DNA in order to save both the starting biological material and isolation time. A number of protocols
have already been proposed to isolate RNA [14–16], mtDNA [15,17,18] or ncDNA [14,15,19] and most commercial kits are recommended
for the exclusive isolation of either RNA or DNA. However, this is more costly and requires more biological material.

We assessed two experimental methods for nucleic acid isolation and tested their yields in mRNA, mtDNA and ncDNA. One of these
methods was based on the Invitrogen TRIzol™ reagent, designed primarily for RNA isolation from the aqueous extraction phase [20]. The
second method used the Qiagen DNeasy Blood & Tissue Kit, based on the known silica-adsorption properties of DNA [21] and designed
for the rapid purification of total DNA (i.e., ncDNA and mtDNA). We tested whether the aqueous phase recovered in the TRIzol-based
protocol also contained ncDNA and mtDNA and allowed their quantitative recovery. Conversely, we tested whether the DNeasy Blood &
Tissue Kit also allowed the quantitative recovery of RNA. We performed these tests on the HepG2 adherent human hepatocyte cell line
and on nonadherent human primary glioblastoma stem cells (GSCs) (clone Gli4) [22].

Materials & methods
Cell culture
The human hepatocyte cell line HepG2 was grown in Minimum Essential Medium Eagle, alpha modification (Lonza Bioscience BE12-
169F), supplemented with 10% fetal bovine serum (Sigma-Aldrich F7524) and 2 mM L-glutamine (Gibco 25030024).
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Human primary GSCs (clone Gli4 [22]) were grown as spheroids in Dulbecco’s Modified Eagle Medium: Nutrient Mixture F-12 (Gibco
21331046), supplemented with 2 mM L-glutamine (Gibco 25030024), 0.3% D-glucose (Sigma-Aldrich G8769), 0.002% bovine insulin
(Sigma-Aldrich I1882), N-2 supplement (Gibco 17502048), B-27 supplement (Gibco 12587010), 10 ng/ml human EGF (Miltenyi Biotec
130-097-750) and 10 ng/ml human FGF-2 (Miltenyi Biotec 130-104-924).

Human mesenchymal stem cells (MSCs) were isolated from the bone marrow of healthy donors at the authorized cell therapy unit
(Biotherapy Team of General Clinic Research Center, French health minister agreement TCG/04/0/008/AA) at the Grenoble University
Hospital. MSCs were cultured in Minimum Essential Medium Eagle, alpha modification (Lonza Bioscience), supplemented with 10% fetal
bovine serum (Sigma-Aldrich), 2 mM L-glutamine (Gibco) and 1 ng/ml FGF-2 (Miltenyi Biotec). All cell types were cultured at 37◦C in 5%
CO2.

Nucleic acid isolation by the TRIzol method & on column
Nucleic acids were isolated from 5 × 105 cells. The TRIzol reagent (Invitrogen 15596026) procedure was performed according to the
manufacturer’s instructions. Briefly, cells were homogenized in 700 μl TRIzol reagent. The solution was separated into the two phases,
aqueous and organic, by adding 200 μl chloroform. The upper aqueous phase was gently recovered, without touching or aspirating the
interphase, and transferred to a microtube containing 1.5 μl glycogen (Invitrogen 10814010). The nucleic acids contained in this phase
were precipitated with 500 μl isopropyl alcohol, washed twice with 900 μl ice-cold 70% ethanol, air-dried and resuspended in RNase-free
water. The centrifugations for collecting and rinsing the nucleic acid pellets were all performed at 12,000×g, 4◦C, for 15 min. Nucleic acid
isolation with the Qiagen DNeasy Blood and Tissue kit (Qiagen 69506) was also performed according to the manufacturer’s instructions.
Briefly, cells were resuspended in 200 μl phosphate-buffered saline to which 20 μl proteinase K was then added. After the addition of
200 μl buffer AL, the samples were vortexed. Ethanol (100%, 200 μl) was then added and the samples vortexed again. The mixture was
pipetted into a spin column which was then centrifuged at 6000×g for 1 min on top of a collecting tube. The column was then rinsed
twice, first with 500 μl buffer AW1 (centrifugation at 6000×g for 1 min) and second with 500 μl buffer AW2 (centrifugation at 20,000×g
for 3 min). Nucleic acids were eluted with 200 μl buffer AE (centrifugation at 6000×g for 1 min). All centrifugations were performed at
room temperature. Nucleic acid concentrations and purity were assessed with a NanoDrop spectrophotometer.

Transfer of MSC mitochondria to GSCs by MitoCeption
The transfer of MSC mitochondria to GSCs was performed as previously described [23,24]. Briefly, GSC spheroids were dissociated 24 h
prior to the mitochondria transfer and seeded as single cells immediately before the mitochondria transfer. On the day of mitochondria
transfer, MSCs (5 × 105) were trypsinized in the absence of EDTA (Gibco 15090046). MSCs were mechanically lysed using a syringe with
25- and 27-gauge needles. MSC mitochondria were isolated by two differential centrifugations of 10 min each, at 800×g and 8000×g
respectively, using a buffer containing 200 mM mannitol (Sigma-Aldrich M1902), 70 mM saccharose (Sigma-Aldrich S0389), 1 mM EDTA
(Sigma-Aldrich E9884), 10 mM HEPES (pH 7.4) (Sigma-Aldrich H3375) and 1× protease and phosphatase inhibitor cocktail (Roche, Mey-
lan, France; 04693159001). MSC mitochondria were then added to the previously-seeded single-cell GSCs and centrifuged at 3000 rpm
for 15 min. GSCs were incubated for 24 h at 37◦C in 5% CO2.

qPCR (mtDNA & ncDNA)
Real-time quantitative PCR to quantify mtDNA and ncDNA was performed on 30 ng nucleic acids, directly after the nucleic acid
isolation step, by using the SYBR Green Master PLUS Mix (Roche 03515885001) and the LightCycler 480 instrument (Roche), with
the following program: 10 min at 95◦C, 50 cycles of 10 s at 95◦C, 15 s at 67◦C and 15 s at 72◦C. ncDNA was quantified by us-
ing the following primers: �globin-F: 5′-ACACAACTGTGTTCACTAGC-3′; �globin-R: 5′-CCAACTTCATCCACGTTCA-3′ , targeting the nu-
clear �-hemoglobin gene. Total mtDNA was quantified by amplifying a DNA domain within the D-loop of mtDNA by using the follow-
ing primers: Universal-F: 5′-TTAACTCCACCATTAGCACC-3′; Universal-R: 5′-GAGGATGGTGGTCAAGGGA-3′ [25]. To specifically amplify
mtDNA from MSCs (donor MSC119), the following set of primers was used: MSC-F: 5′-AAGCAAGTACAGCAATCAACCCC-3′; MSC-R: 5′-
TTAAGGGTGGGTAGGTTTGTAGC-3′. The amplification efficacies with the different sets of primers were verified with serial DNA dilutions.

mRNA quantification
RNAs were reverse transcribed using the M-MLV RT kit (Invitrogen 28025013) and random hexamers (Invitrogen N8080127). Real-
time quantitative PCR was performed using the SYBR Green Master Mix (Roche 04887352001), with 250 nM primer concentrations
and the LightCycler 480 instrument (Roche), with the following program: 10 min at 95◦C, 50 cycles of 10 s at 95◦C, 15 s at 65◦C
and 15 s at 72◦C. The following primer sets were used for RPLP0 and RPS9: RPLP0-F 5′-TCGACAATGGCAGCATCTAC-3′ , RPLP0-R 5′-
GCCTTGACCTTTTCAGCAAG-3′ , RPS9-F 5′-ATGAAGGACGGGATGTTCAC-3′ , RPS9-R 5′-GATTACATCCTGGGCCTGAA-3′.

Statistical analysis
Data were analyzed using GraphPad Prism 7 (GraphPad Software Inc., CA, USA). All data are presented as mean values with standard
deviations. Unpaired Student t-tests with Welch’s correction were performed to compare the concentrations of mtDNA, ncDNA and
mRNA. Differences were considered statistically significant for p < 0.05 (*p < 0.05, **p < 0.01, ***p < 0.001).
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Figure 1. Comparison of the extraction yields by TRIzol reagent and Qiagen DNeasy Blood and Tissue kit of nuclear and mitochondrial DNA. Samples
of (A) hepatocellular carcinoma cells (HepG2) and (B) human primary glioblastoma stem cells (Gli4) were used to extract nucleic acids, by using either
the Invitrogen TRIzol-based method (n = 10) or the Qiagen DNeasy columns (n = 10). The relative concentrations of ncDNA and mtDNA were
determined by qPCR using specific primers. Each dot represents an independent extraction. Represented are the means ± standard deviation. Unpaired
Student t tests with Welch’s correction were performed.
GSC: Glioblastoma stem cell.

Results & discussion
Isolation of mtDNA & ncDNA
We first showed that the TRIzol-based method allowed the isolation of both nuclear and mitochondrial DNA from the HepG2 cell line
(Figure 1A). Both ncDNA and mtDNA were isolated from the aqueous phase also containing RNA, which contributes to a simplified
isolation procedure. Of note, we were unsuccessful in isolating DNA from the TRIzol organic phase as we encountered both low isolation
yields and reproducibility with the two human cell lines we tested. Isolation of mtDNA from the TRIzol aqueous phase showed high
reproducibility and the yield with the column method was only 1.7-fold higher than with the TRIzol method. However, the column appeared
superior for ncDNA isolation, providing a 21.3-fold higher yield than the TRIzol method. Similar results were obtained when DNA was
isolated from human primary GSCs (Gli4 clone [22]). While the mtDNA yields with the column were only slightly higher than with the
TRIzol method (1.3-fold), ncDNA isolation using the column was 14.5-times more efficient than with the TRIzol method (Figure 1B).
Overall, these data show that both methods are highly reliable for quantitatively isolating mtDNA, while the column proved more efficient
than the TRIzol-based method for ncDNA isolation.

Isolation of mRNA
We next checked whether the Qiagen DNeasy column procedure also allowed the isolation of mRNA. For this purpose, we prepared cDNA
from the Qiagen DNeasy column samples, for both the HepG2 cells and the GSCs, and measured the expression of the two housekeeping
genes RPLP0 and RPS9. The same was done with the samples prepared by the TRIzol method. Interestingly, the HepG2 samples prepared
on the Qiagen DNeasy columns yielded mRNAs in amounts close to those obtained with the TRIzol-based isolation method, albeit with
yield differences depending on the analyzed genes (Figure 2A). For GSCs, the mRNA recovery appeared higher with the Qiagen DNeasy
columns (Figure 2B). However, the isolation efficiency appeared less reproducible than with the TRIzol procedure, with more widespread
mRNA concentrations, as indicated by standard deviations that were on average twice as big for the column samples than for the TRIzol-
derived samples. These measures indicated that both the TRIzol-based and column methods allow the concurrent isolation of mRNA,
mtDNA and ncDNA. However, the TRIzol-based method is to be preferred whenever experimental priority needs to be given to mRNA
and mtDNA.

Application of the TRIzol-based method to quantify exogenous mtDNA following mitochondrial intercellular transfer
One of our research goals is to determine changes of gene expression in GSCs following the acquisition of exogenous mitochondria
from MSCs. On the basis of the above study, we opted for the TRIzol-based method because it provides efficient and reproducible
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Figure 2. Comparison of the mRNA extraction yields by TRIzol reagent and Qiagen DNeasy Blood and Tissue kit. Samples of (A) hepatocellular
carcinoma cells (HepG2) and (B) human primary glioblastoma cells (Gli4) were used to extract nucleic acids, by using either the Invitrogen
TRIzol-based method (n = 10) or the Qiagen DNeasy columns (n = 10). cDNA was prepared and the relative concentrations of mRNA for the
housekeeping genes RPLP0 and RPS9 were determined by qPCR. Each dot represents an independent extraction. Represented are the
means ± standard deviation. Unpaired Student t tests with Welch’s correction were performed.
GSC: Glioblastoma stem cell.

isolation of mRNA as well as mtDNA (required to quantify the amounts of acquired exogenous mitochondria). qPCR quantification of
the exogenous mtDNA is based on the recognition of single nucleotide polymorphisms specific to the cell donor [23,24]. We first validated
the qPCR conditions for specifically detecting MSC mtDNA (and not GSC mtDNA). For this, we isolated DNA from both the GSCs (Gli4)
and the MSCs (MSC119) using the TRIzol-based method. We then performed serial dilutions of the MSC DNA (30 to 6 × 10-2 ng) in a
solution containing the GSC DNA (total DNA amount 30 ng) and PCR-amplified the MSC mtDNA. As shown by the linear regression, this
provided the range of quantitative detection for MSC119 mtDNA in GSC-Gli4 by qPCR (Figure 3A). We then transferred mitochondria,
isolated beforehand from MSCs (MSC119), to GSCs (clone Gli4) using the MitoCeption protocol [23,24]. Following the transfer, we used
the TRIzol-based method to isolate DNA from GSCs and determined the concentrations of MSC mtDNA by qPCR. This allowed us to
demonstrate the dose–response acquisition of MSC mitochondria by the GSCs (Figure 3B). Additionally, the functional effects of MSC
mitochondria acquisition were determined by quantifying mRNA concentrations and gene expression in these samples (data not shown).
Overall, these data demonstrate that the TRIzol-based method allows the simultaneous and quantitative isolation of both mtDNA and
mRNA from mammalian cells, and from GSCs in particular, and can be exploited in the context of intercellular mitochondrial transfers.
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Figure 3. Quantification of mesenchymal stem cell mtDNA following the transfer of mitochondria to glioblastoma stem cells. (A) The range of
detection of MSC (donor MSC119) mtDNA in GSCs (Gli4 clone) was determined by qPCR quantification of MSC mtDNA, following serial dilutions of
MSC DNA with GSC DNA, both isolated by the TRIzol method. Two independent experiments were performed. Data are presented on a semi-log scale
and shown are the line and equation of interpolation best-fit. (B) MSC mitochondria were transferred in increasing amounts to GSCs by MitoCeption.
The following day, total DNA was isolated by the TRIzol-based method and the relative concentrations of MSC mtDNA were determined by qPCR and by
using the titration curve shown in (A). Shown are the measured concentrations of MSC mtDNA as a function of transferred MSC mitochondria,
expressed as relative values. Each dot corresponds to an individual TRIzol extraction; data were obtained from four independent MitoCeption
experiments. Data are presented on logarithmic scales (Log2) and shown are the line and equation of best-fit.
GSC: Glioblastoma stem cell; MSC: Mesenchymal stem cell.

As already observed [26–28], the respective yields in mitochondrial and nuclear DNAs are different depending on the DNA isolation
method used. As the concentrations of mtDNA and ncDNA are often used to determine the number of mitochondria per cell, these
method-related differences underline the caution required when drawing this type of conclusion.

Future perspective
The role played by mtDNA is beginning to emerge, in the fields of both mitochondrial intercellular exchanges and mitochondrial diseases
(originating either from mutations in the mitochondrial DNA or from changes in mitochondrial DNA copy number). Studies in these fields
need precise quantification of, first, the mtDNA concentrations of exogenous versus endogenous mitochondria and second, mutant
versus wild-type mtDNA concentrations; therefore protocols enabling quantitative isolation are valuable. This further supports the need
for robust and rapid mtDNA and mRNA isolation methods, as the characterization of the mtDNA sequence and copy number along with
the gene expression pattern will be valuable for more accurate clinical evaluation. Studies on mtDNA characterization constitute an
active and rapidly evolving field, as illustrated by novel technologies aiming at, for instance, single-cell mtDNA PCR detection [29,30]. In
addition to qPCR, other technical approaches to determine mitochondrial DNA copy number have recently been proposed – for example,
whole genome sequencing [31] – opening further possibilities for characterizing mitochondrial DNA sequences and copy number and,
in the longer term, therapeutic manipulation of heteroplasmy [32–34].
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