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ABSTRACT 11 

Recognition of the stop codon by the translation machinery is essential to terminating 12 

translation at the right position and to synthesizing a protein of the correct size. Under certain 13 

conditions, the stop codon can be recognized as a coding codon promoting translation, which 14 

then terminates at a later stop codon. This event, called stop codon readthrough, occurs either 15 

by error, due to a dedicated regulatory environment leading to generation of different protein 16 

isoforms, or through the action of a readthrough compound. This review focuses on the 17 

mechanisms of stop codon readthrough, the nucleotide and protein environments that 18 

facilitate or inhibit it, and the therapeutic interest of stop codon readthrough in the treatment 19 

of genetic diseases caused by nonsense mutations.  20 
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 45 

I. INTRODUCTION  46 

For cells to function properly, genetic information must be faithfully expressed in RNAs or 47 

proteins. A key step in the gene expression pathway is translation from messenger RNA 48 

(mRNA) to protein. Translation obeys very specific rules, such as starting at an initiation 49 

codon (very often an AUG codon) and stopping at one of the three stop codons UAA, UAG, 50 
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or UGA, in order to ensure accurate protein length. Sometimes, however, rules can be 51 

bypassed, and translation is no exception. Under specific conditions, ribosomes may ignore 52 

stop codons, continuing with translation and extending the C-terminal part of the nascent 53 

protein. The C-terminally extended protein may acquire a new functional domain in this way. 54 

The absence of termination codon recognition is called stop codon readthrough. Although this 55 

can constitute a decoding error, stop codon readthrough can also be a means of expressing 56 

different protein isoforms and may represent a therapeutic solution for some pathologies. 57 

This review discusses the different molecular factors that regulate translation termination and 58 

stop codon readthrough, mainly in higher eukaryotes. It also outlines the potential of this 59 

mechanism in terms of basic science and clinical applications to advance understanding of 60 

pathways of gene expression and in the development of therapeutic approaches for nonsense-61 

mutation-related genetic diseases. Potential clinical applications of a stop codon readthrough 62 

strategy have recently been discussed in several reviews (Morais, Adachi & Yu, 2020; 63 

Dabrowski, Bukowy-Bieryllo & Zietkiewicz, 2018; Sharma, Keeling & Rowe, 2020; Bezzerri 64 

et al., 2020), hence we focus here on the molecular mechanisms leading to stop codon 65 

readthrough.  66 

 67 

II. TRANSLATION TERMINATION 68 

Translation is a process that promotes amino acid polymerization leading to a peptide 69 

sequence based on an mRNA sequence. The ribosome carries out translation with the help of 70 

cofactors, ensuring accurate decoding of the open reading frame (ORF) (Dever, Kinzy & 71 

Pavitt, 2016; Merrick, 1992; Kapur, Monaghan & Ackerman, 2017). Misincorporation of an 72 

amino acid occurs at a very low rate. For example, misincorporation of a lysine instead of an 73 

arginine during translation of protamine mRNA has been estimated at only 0.06% to 0.2% 74 

(Mori et al., 1985). Site A of the ribosome is where the transfer RNA (tRNA) carrying an 75 
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amino acid hybridizes with a codon via its anticodon sequence, thus bringing to the growing 76 

polypeptide chain the next amino acid to be incorporated (Fig. 1A). tRNAs are subject to 77 

numerous post-transcriptional modifications that stabilize their tertiary and quaternary 78 

structures and also favour codon–anticodon interaction in the ribosome by changing the 79 

polarity of the modified base and allowing additional interactions with the ribosome 80 

(Grosjean & Westhof, 2016). It is established that post-transcriptional modifications of tRNAs 81 

play a role in the fidelity of codon recognition, and their absence can lead to increased codon 82 

recognition by near-cognate tRNAs (Blanchet et al., 2018).  83 

Translation termination occurs when site A of the ribosome reaches one of three stop codons 84 

(UAA, UAG or UGA) in frame with the translation initiation codon (Fig. 1A). In human cells, 85 

the only tRNA to recognize these stop codons is tRNA
[Ser]Sec

, which carries the amino acid 86 

selenocysteine and pairs with UGA stop codons in a dedicated environment such as a 87 

selenocysteine insertion sequence (SECIS) combined with the presence of SECIS binding-88 

protein 2 (SBP2) (Labunskyy, Hatfield & Gladyshev, 2014). When the ribosome reaches a 89 

stop codon, competition occurs between the translation termination complex and near-cognate 90 

tRNAs recognizing two of the three bases constituting the stop codon. Likely because of a 91 

lower energetic stability of stop codon recognition by a near-cognate tRNA, the translation 92 

termination complex is recruited in more than 99.9% of cases (Floquet et al., 2012; Rajon & 93 

Masel, 2011). UAG and UAA stop codons share the same near-cognate tRNAs, which differ 94 

from those recognizing UGA stop codons. The amino acids glutamine, tyrosine, and lysine 95 

are incorporated during UAG or UAA readthrough, whereas arginine, cysteine, and 96 

tryptophan can be incorporated during UGA readthrough, consistent with their positions in the 97 

genetic code table (Feng et al., 1990; Roy et al., 2015). Yet our understanding of stop codon 98 

misdecoding by near-cognate tRNAs is far from complete, since other amino acids have also 99 

been found to be incorporated during readthrough, according to the nonsense mutation and its 100 
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nucleotide context. In particular, leucine is the main amino acid incorporated during 101 

readthrough of the UGA nonsense mutation at position 1282 (mutation W1282X) of the cystic 102 

fibrosis transmembrane conductance regulator (CFTR) gene (Xue et al., 2017). It is important 103 

to note that the protein synthesized may or may not be functional according to the amino acid 104 

incorporated at the site of the nonsense mutation, if this position is crucial for the function or 105 

stability of the protein.  106 

The translation termination complex is composed of at least two subunits, called eukaryotic 107 

release factors (eRFs) 1 and 3 (Fig. 1A). The eRF1 subunit mimics a tRNA and enters the A 108 

site of the ribosome to recognize the stop codon (Muramatsu et al., 2001; Song et al., 2000). 109 

In eukaryotic cells, interestingly, eRF1 recognizes all three stop codons, whereas in 110 

prokaryotic cells, two release factors (RFs) are necessary: RF-1 recognizes UAA and UAG 111 

stop codons, whereas RF-2 recognizes UAA and UGA stop codons. To understand how eRF1 112 

recognizes all three stop codons, Brown et al. (2015) used cryo-electron microscopy and a 113 

catalytically inactive eRF1 to show that glutamic acid at position 55 and tyrosine at position 114 

125 of eRF1 discriminate between purines and pyrimidines at the second and third base 115 

positions of a codon. They thus play a crucial role in the ability of eRF1 to recognize stop 116 

codons (Brown et al., 2015). The eRF3 subunit is a GTPase whose activity is stimulated 117 

mainly by interaction with either the polyA-binding protein (PABP), when translation 118 

termination occurs at the physiological stop codon, or the nonsense-mediated mRNA decay 119 

(NMD) factor UPF3X (also called UPF3B), when translation termination occurs at a 120 

premature termination codon (PTC) (Neu-Yilik et al., 2017). When eRF3 catalyses 121 

conversion of GTP to GDP, it induces a conformational change in the structure of eRF1, 122 

promoting translation termination through release of the nascent peptide chain and 123 

replacement of eRF3 by the ATPase ABCE1 (ATP Binding Cassette Subfamily E Member 1). 124 

ABCE1 will then hydrolyse ATP to ADP to promote recycling of the two ribosomal subunits 125 
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(Fig. 1A). In addition to the stop codon and to certain proteins located downstream of the stop 126 

codon (PABP or UPF3X for instance), the nucleotide environment around the stop codon, and 127 

particularly certain post-transcriptional modifications, may influence the translation 128 

termination process. A transcriptome-wide mRNA methylation analysis has revealed a high 129 

level of methylation at position 6 of adenosine (m6A) at the end of the ORF and the beginning 130 

of the 3' untranslated region (UTR), in the vicinity of the stop codon. This deserves further 131 

investigation and clarification, as it suggests a possible role of this mark in translation 132 

termination (Meyer et al., 2012; Li et al., 2014).  133 

 134 

III. DIFFERENT TYPES OF STOP CODON READTHROUGH  135 

Although translation termination must be a very efficient process to ensure the correct protein 136 

size, under certain conditions or at a very low rate, a near-cognate tRNA can be recruited to 137 

the A site of the ribosome when the latter reaches a stop codon. The consequence of this is 138 

that translation continues until a later stop codon that promotes translation termination. This 139 

event is called stop codon readthrough (Fig. 1B). Several types of readthrough can occur at 140 

stop codons, depending on the presence of regulatory elements or of readthrough-promoting 141 

molecules (Fig. 2). 142 

 143 

(1) Non-programmed translational readthrough 144 

In the absence of any readthrough molecules, readthrough of any physiological stop codon or 145 

PTC can occur at a basal level. This readthrough can be considered a translation error and is 146 

referred to here as non-programmed translational readthrough (Fig. 2A). This type of 147 

readthrough is a rare event, calculated as less than 0.1% in more than 80% of cases (Rajon & 148 

Masel, 2011; Floquet et al., 2012; Fearon et al., 1994). Interestingly, the likelihood of non-149 

programmed translational readthrough depends on the identity of the stop codon. It is highest 150 
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at the UGA stop codon, whereas translation termination is most efficient at the UAA stop 151 

codon. In the case of PTCs, this very low readthrough rate is partly due to competition 152 

between near-cognate tRNAs and release factors, in favour of the former, but it is also due in 153 

part to activation of the surveillance mechanism provided by NMD, which results in silencing 154 

of the gene (Gupta & Li, 2018; Lejeune, 2017; Kurosaki & Maquat, 2016; He & Jacobson, 155 

2015). Non-programmed translational readthrough thus occurs on the fraction of PTC-156 

carrying mRNAs that escape NMD (Kuzmiak & Maquat, 2006). 157 

Although the amount of protein generated by non-programmed translational readthrough is 158 

minute compared to the amount of protein produced without readthrough of a physiological 159 

stop codon or from the wild-type mRNA in the case of a PTC, the consequences of non-160 

programmed translational readthrough can be considerable. For example, the phenotypes of 161 

patients suffering from the same pathology and carrying the same nonsense mutation may 162 

vary even though they should be identical due to silencing of the mutant gene. Some cystic 163 

fibrosis patients with a nonsense mutation that one would assume to cause a severe phenotype 164 

due to the absence of the CFTR protein actually show mild pulmonary damage (Cutting et al., 165 

1990; Kerem et al., 1990). The level of non-programmed translational readthrough has been 166 

proposed to explain this mild phenotype, allowing some functional full-length CFTR protein 167 

to be synthesized.  168 

  169 

(2) Programmed translational readthrough 170 

The second type of readthrough is called programmed translational readthrough (Fig. 2B). It 171 

targets specific mRNAs (Loughran et al., 2018; Freitag, Ast & Bolker, 2012; Dunn et al., 172 

2013) and is a proteome-expanding mechanism allowing synthesis of specific protein 173 

isoforms with particular functions. It is thus a way to synthesize two isoforms of a protein 174 

from one mRNA. A specific regulatory mechanism intervenes at the physiological stop codon 175 
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either to terminate translation at the first stop codon in phase with the initiation codon starting 176 

the ORF or to promote its readthrough so as to terminate translation at one of the downstream 177 

stop codons in phase with the initiation codon. This type of readthrough has been identified in 178 

viruses, fungi, Drosophila spp., and mammals. In human cells, programmed translational 179 

readthrough is thought to be a very rare event, reported to affect the expression of only a 180 

dozen genes: the opioid receptor Kappa 1 (OPRK1), opioid related nociceptin receptor 1 181 

(OPRL1), aquaporin 4 (AQP4), mitogen-activated protein kinase 10 (MAPK10), peroxisomal 182 

lactate dehydrogenase B (LDHB), malate dehydrogenase (MDH1), vitamin D receptor (VDR), 183 

vascular endothelial growth factor A (VEGFA), myelin protein zero (MPZ), and beta-globin 184 

genes (Loughran et al., 2014, 2018; Chittum et al., 1998; Yamaguchi et al., 2012; Eswarappa 185 

et al., 2014; Schueren et al., 2014; Geller & Rich, 1980). It appears more frequent in other 186 

species. In Drosophila melanogaster, for example, the expression of several hundred genes is 187 

regulated via this readthrough process (Lin et al., 2007). Similarly, some 5% of yeast genes 188 

appear to be subject to programmed translational readthrough (Kleppe & Bornberg-Bauer, 189 

2018). An in silico analysis aiming to identify physiological stop codons putatively subject to 190 

programmed translational readthrough suggests that this process may actually occur more 191 

frequently than previously thought in many species, including humans (Jungreis et al., 2016; 192 

Dunn et al., 2013). Consistent with these results, ribosome profiling performed on human 193 

foreskin fibroblasts revealed 42 genes as potentially subject to programmed translational 194 

readthrough. Interestingly, this process has been shown to generate C-terminally extended 195 

proteins very efficiently, with the amount of protein formed exceeding the amount of 196 

unextended product protein by up to 30% (Loughran et al., 2014; Singh et al., 2019). This 197 

suggests that specific translation termination regulation occurs at these physiological stop 198 

codons and that cis elements and trans-acting factors must be involved in promoting an 199 
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exceptionally high rate of readthrough. Some such elements have been identified and are 200 

described in Section IV. 201 

 202 

(3) Induced translational readthrough  203 

The third type of stop codon readthrough is PTC readthrough promoted by certain molecules 204 

(Fig. 2C), here termed induced stop codon readthrough. When the ribosome reaches a stop 205 

codon, the presence of such molecules favour recruitment of near-cognate tRNAs instead of 206 

the translation termination complex. In early studies, aminoglycosides were shown to 207 

facilitate this type of readthrough process in bacteria and yeast (Singh, Ursic & Davies, 1979). 208 

The first evidence of induced nonsense mutation readthrough in mammalian cells was 209 

reported a few years later in a study of G418 and paromomycin aminoglycosides (Burke & 210 

Mogg, 1985). Since then, both aminoglycoside and non-aminoglycoside molecules have been 211 

identified as readthrough molecules (see Section IV) that might potentially be used to treat 212 

nonsense-mutation-related pathologies.  213 

Several lines of evidence indicate that induced translational readthrough occurs at PTCs and 214 

not at physiological stop codons. The nucleotide and protein environments around 215 

physiological stop codons have been evolutionarily selected to facilitate translation 216 

termination. This is not true of PTCs, since they appear through mutation in an environment 217 

selected to promote translation and not translation termination. While PTCs do promote 218 

translation termination, they are more sensitive to readthrough than physiological stop codons. 219 

Although several studies using readthrough molecules have shown the absence of readthrough 220 

at physiological stop codons (Benhabiles et al., 2017; Trzaska et al., 2020; Welch et al., 2007), 221 

it remains necessary to demonstrate for each new molecule that it does not impact translation 222 

termination at physiological stop codons.  223 
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Interestingly, the efficiency of translational readthrough induced by a molecule may be related 224 

to the level of non-programmed translational readthrough (basal level of readthrough) 225 

occurring at the stop codon in the absence of that molecule: the higher the level of basal 226 

readthrough, the more efficient the readthrough promoted by molecules such as 227 

aminoglycosides (Floquet et al., 2012), which should be taken into account when 228 

implementing a therapeutic approach for a given nonsense mutation. 229 

 230 

IV. PARAMETERS INFLUENCING STOP CODON READTHROUGH 231 

The basal readthrough level varies from one stop codon to another, as shown in various 232 

studies (Fearon et al., 1994; Floquet et al., 2012; Rajon & Masel, 2011). The identity of the 233 

stop codon influences this level, but other elements acting in cis or trans can also modulate the 234 

efficiency of PTC or physiological stop codon readthrough. Such elements can influence all 235 

three types of stop codon readthrough. 236 

  237 

(1) Cis elements activating stop codon readthrough 238 

Stop codon readthrough efficiency can be influenced by various factors, including the identity 239 

of the stop codon and the nucleotide sequence surrounding it (Bidou et al., 2004; Howard et 240 

al., 2000). Results from studies where a PTC was introduced into a reporter gene show that 241 

the UGA stop codon is the most permissive to readthrough and the UAA stop codon is the 242 

least permissive (Bidou et al., 2004; Floquet et al., 2012; Howard et al., 2000; Wangen & 243 

Green, 2020; Manuvakhova, Keeling & Bedwell, 2000). However, these properties can be 244 

altered by the nucleotide context of the stop codon (Bonetti et al., 1995; McCaughan et al., 245 

1995; Cassan & Rousset, 2001). In particular, counting the first nucleotide of the stop codon 246 

as position +1, the nucleotide at position +4 strongly influences translation termination 247 

efficiency. It appears that a purine at this position, as found in about 90% of the most highly 248 
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expressed human genes, favours translation termination (Tate & Mannering, 1996), whereas a 249 

pyrimidine facilitates readthrough (Brown et al., 1990; McCaughan et al., 1995; Tate & 250 

Mannering, 1996). In particular, the presence of a cytosine at position +4 has been shown to 251 

allow, in most cases, the most efficient stop codon suppression (Floquet et al., 2012; Howard 252 

et al., 2000; Phillips-Jones, Watson & Martin, 1993; Wangen & Green, 2020), although this is 253 

not an absolute rule. The nucleotide environment most favourable to efficient readthrough 254 

also depends on the identity of the stop codon. Manuvakhova et al. (2000) found cytosine to 255 

be the most favourable nucleotide at position +4 for promoting readthrough of UGA and 256 

UAA stop codons, but readthrough of UAG stop codons was most efficient when the other 257 

pyrimidine, uracil, is present at that position. 258 

The nucleotide immediately following the stop codon is not the only nucleotide that can 259 

influence readthrough efficiency. Several studies have demonstrated that some downstream 260 

nucleotides can favour readthrough. Recently, a study measuring stop codon readthrough by 261 

ribosome profiling showed that the two nucleotides immediately downstream of the stop 262 

codon strongly influence readthrough efficiency (Wangen & Green, 2020). The authors 263 

concluded that enrichment in adenosines or uridines in the vicinity of the stop codon favours 264 

stop codon readthrough, whereas enrichment in guanosines or cytosines favours translation 265 

termination. Other studies have demonstrated that both upstream and downstream sequences 266 

influence the readthrough rate at a stop codon. In particular, CAA sequences upstream and 267 

downstream of a UAG stop codon in the ste6 gene in yeast or in a reporter gene have been 268 

shown to act synergistically to promote readthrough (Fearon et al., 1994; Manuvakhova et al., 269 

2000; Bonetti et al., 1995; Xue et al., 2014).  270 

According to the reporter system used to investigate readthrough efficiency, the upstream and 271 

downstream consensus sequences favouring stop codon readthrough may differ slightly. For 272 

example, the downstream sequences CAR YYA (where R is a purine and Y is a pyrimidine) 273 
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and CAR NBA (where N is any of the four nucleotides and B can be U, C or G) seem to 274 

favour stop codon readthrough (Namy, Hatin & Rousset, 2001; Harrell, Melcher & Atkins, 275 

2002; Beier & Grimm, 2001). These hexanucleotide sequences are found in several virus and 276 

cell genes associated with the regulation of programmed translational readthrough (Skuzeski 277 

et al., 1991). The upstream sequence can also affect readthrough efficiency. For example, one 278 

study found that the nucleotide sequence spanning positions –6 to +9 influences readthrough 279 

rate. In particular, positions –1 and +4 were crucial for readthrough activation, and the 280 

sequence U STOP C has been reported as the consensus sequence for efficient readthrough 281 

(Floquet et al., 2012). Supporting the idea of involvement of the upstream sequence in 282 

promoting readthrough, a recent study on the glycosyltransferase gene B4GALNT1 has 283 

demonstrated that the base triplet AGC, immediately upstream and downstream of the PTC, is 284 

required for efficient basal readthrough generated by the M4 nonsense mutation at amino acid 285 

228 (Yesmin et al., 2020). Overall, all these studies indicate that stop codon readthrough 286 

efficiency is modulated by cis elements that have not yet been clearly identified and that are 287 

likely to differ among genes. It remains very difficult to predict with certainty the rate of 288 

readthrough of a stop codon without additional experimental data. For instance, when 289 

attempting to explain why a given readthrough molecule has variable effects on the same 290 

nonsense mutation located at different positions in a gene, one must consider the influence of 291 

the stop-codon-surrounding sequence on readthrough efficiency. This is especially true when 292 

the goal is to develop a therapeutic approach (Martorell et al., 2020).  293 

Besides the immediate primary sequence surrounding the stop codon, some secondary 294 

structures have been shown to facilitate stop codon readthrough. In the Moloney murine 295 

leukemia virus, a pseudoknot located eight nucleotides downstream of the stop codon 296 

separating the gag and pol ORFs promotes readthrough by about 5% of the ribosomes 297 

reaching this stop codon (Wills, Gesteland & Atkins, 1991). Since this discovery, efficient 298 
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readthroughs have been found to require other secondary structures (e.g. conserved hairpins) 299 

occurring at stop codons from various virus genomes (Firth et al., 2011). The exact 300 

mechanism remains obscure, but these results suggest that certain proteins could be recruited 301 

by these secondary structures to promote readthrough.  302 

 303 

(2) Trans elements activating readthrough  304 

When the ribosome reaches a stop codon, it must terminate translation or ignore this 305 

translation termination signal by incorporating an amino acid and continuing translation of the 306 

ORF to a downstream stop codon. To understand the mechanisms underlying the ‘decision’ to 307 

stop translation or to continue, specific factors dedicated to stop codon readthrough have been 308 

sought. Some endogenous trans elements have been identified as proteins or RNAs required 309 

either for readthrough of specific stop codons or for the general readthrough mechanism. 310 

Molecules with the capacity to promote readthrough are of particular interest because of their 311 

potential in treating nonsense-mutation-related pathologies. Finally, the cell environment has 312 

been shown to influence readthrough efficiency, suggesting that regulation of the readthrough 313 

process may occur according to culture conditions. 314 

 315 

(a) Proteins and RNAs 316 

To date, only a few factors have been implicated in the readthrough process, some affecting 317 

all stop codon readthroughs and some that are specific to readthrough of one particular stop 318 

codon.  319 

 320 

(i) Factors involved in the general process of stop codon readthrough 321 

As readthrough opposes translation termination and vice versa, it is not surprising that loss of 322 

function of proteins involved in translation termination leads to increased levels of stop codon 323 
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readthrough. For example, the proteins termination and polyadenylation 1 (TPA1) and Ccr4 324 

associated factor 1 (CAF1 also called POP2) involved in regulating the length of the poly(A) 325 

tail also participate in the translation termination process. In experiments using the firefly 326 

luciferase reporter gene carrying a PTC, loss of TPA1 or POP2 function in yeast resulted in 327 

increased basal readthrough levels (Keeling et al., 2006). These proteins can thus be viewed 328 

as inhibitors of stop codon readthrough. However, in both yeast and human cells, the 329 

nucleotide context appears to determine whether TPA1 exerts a positive or a negative 330 

influence on stop codon readthrough (Loenarz et al., 2014). In yeast, the balance between 331 

translation termination efficiency and stop codon readthrough efficiency can be altered by the 332 

expression levels of the inhibitor of translation termination 1 (ITT1) gene. This was 333 

demonstrated in experiments using a PGK1-STOP-LacZ reporter construct, in which 334 

overexpression of ITT1 caused increased basal levels of readthrough (Urakov et al., 2001).  335 

Another example of the antagonism between translation termination efficiency and stop codon 336 

readthrough activation is illustrated by the dead-box RNA helicase Dbp5/DDX19, which is 337 

involved in translation termination. Dbp5/DDX19 interacts with eRF1, bringing it into contact 338 

with eRF3 so as to promote translation termination (Fig. 1). If the function of Dbp5/DDX19 is 339 

impaired, eRF1 interacts prematurely with eRF3 leading to failure of the translation 340 

termination process, thus allowing near-cognate tRNAs to enter the A site of the ribosome, 341 

recognize the stop codon, and promote readthrough (Gross et al., 2007; Mikhailova et al., 342 

2017; Beissel et al., 2019). 343 

Although it makes sense that proteins involved in the translation termination process can 344 

interfere with stop codon readthrough, it is surprising to note the presence of translation 345 

initiation factors among the proteins that modulate stop codon readthrough. In both yeast and 346 

human cells, the eukaryotic initiation translation factor 3 (eIF3) seems to play a general role 347 

in programmed translational readthrough. The absence of functional eIF3 reduces the basal 348 
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level of readthrough of all three stop codons, provided they are in a readthrough-favourable 349 

nucleotide context (Beznoskova et al., 2015). To promote readthrough, eIF3 appears to act as 350 

an inhibitor of eRF1 by interacting with the pre-termination complex and interfering with 351 

pairing between eRF1 and the third base of the codon. By preventing recognition of the stop 352 

codon by eRF1, eIF3 favours recognition of the stop codon by a near-cognate tRNA, thus 353 

promoting stop codon readthrough.  354 

It is also possible to modulate the efficiency of stop codon readthrough by acting on the 355 

fidelity of the translation process. tRNAs are subject to various post-transcriptional 356 

modifications that prevent erroneous codon recognition by the tRNA. For example, the 357 

wobble effect, proposed to explain recognition of the first two bases of a codon by a near-358 

cognate tRNA independently of the third nucleotide (Crick, 1966), is strongly increased when 359 

these post-transcriptional modifications are not present (Duechler et al., 2016; Hagervall et al., 360 

1990; Bednarova et al., 2017; Agris et al., 2017). Interestingly, the rules governing 361 

recognition of a stop codon by a near-cognate tRNA appear less restrictive than proposed by 362 

the wobble effect, as more tRNAs than expected can recognize a stop codon (Roy et al., 2015). 363 

Not only can codon recognition by a near-cognate tRNA occur via the first two bases of the 364 

codon independently of the third nucleotide, but it can also occur via the last two bases of the 365 

codon independently of the first. Similarly, the discovery that leucine is the amino acid most 366 

abundantly incorporated at the nonsense mutation W1282X in the CFTR gene suggests that a 367 

tRNA may recognize a stop codon with a mismatch at the central base of the triplet forming 368 

the codon (Xue et al., 2017).  369 

Note also that, before being substrates of stop codon readthrough, PTC-carrying mRNAs are 370 

substrates of NMD. It is therefore tempting to connect these two mechanisms and to 371 

hypothesize that they share factors in common. In humans at least, this is indeed the case for 372 

some NMD factors: downregulation of the NMD factors Up frameshift (UPF) 1, 2, or 3X/3B 373 



16 
 

impairs readthrough, indicating that these factors are necessary for this process (Jia et al., 374 

2017; Ivanov et al., 2008). The exact roles of these NMD proteins in readthrough remain to be 375 

clarified, especially because contradictory reports have been published on this role of UPF 376 

proteins in other organisms such as yeast. It has notably been claimed that UPF proteins 377 

inhibit readthrough, since knockout of one UPF gene in yeast results in an increased 378 

readthrough rate (Salas-Marco & Bedwell, 2005; Wang et al., 2001). However, another study 379 

failed to observe any effect of UPF gene knockout on the readthrough rate, suggesting that 380 

these proteins are not involved in readthrough (Harger & Dinman, 2004). The role of the UPF 381 

proteins in stop codon readthrough thus may differ between yeast and humans. This warrants 382 

in-depth investigations into the connection between NMD and stop codon readthrough.  383 

Translation takes place a priori throughout the cytoplasm, and since stop codon readthrough 384 

shares the same translation machinery, it can be expected also to occur in the cytoplasm, 385 

without any dedicated sites. Yet a recent study demonstrated that the cytoskeleton influences 386 

PTC readthrough (Jia et al., 2017). In particular, basal readthrough is activated when 387 

formation of actin filaments is impaired. It thus seems that actin filaments are neither required 388 

for readthrough nor favourable to it, meaning that they may participate in some form of 389 

readthrough inhibition. The same study showed that non-programmed translational 390 

readthrough occurs at specific cytoplasmic foci different from P-bodies and named 391 

readthrough bodies (Jia et al., 2017). Their results suggest that PTC-containing mRNAs are 392 

actively targeted either to degradation by NMD or to undergo PTC readthrough. Although 393 

UPF proteins have been found in readthrough bodies (unlike the P-body marker decapping 394 

protein 1a (DCP1a), which is involved in NMD), readthrough body characterization remains 395 

poor and no specific proteins have been identified. 396 

 397 

(ii) Factors involved in specific stop codon readthrough events 398 
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To explain programmed translational readthrough on an mRNA, cis elements have been 399 

identified (see Section IV.1). Often these cis elements work together with or recruit factors to 400 

promote readthrough of a specific stop codon. For example, heterogeneous nuclear 401 

ribonucleoprotein (hnRNP) A2/B1, an RNA-binding protein involved in primary microRNA 402 

(pri-miRNA) processing and in the trafficking and assembly of the human immunodeficiency 403 

virus (HIV) genome (Alarcon et al., 2015; Beriault et al., 2004; Levesque et al., 2006), is 404 

involved in programmed translational readthrough on VEGFA mRNA (Eswarappa et al., 405 

2014; Houck-Loomis et al., 2011). HnRNP A2/B1 interacts with an A2 response element 406 

(A2RE) located downstream of the physiological stop codon to promote stop codon 407 

readthrough. Mutating the A2RE sequence or downregulating hnRNP A2/B1 impairs 408 

readthrough of the physiological stop codon of VEGFA mRNA. Whether hnRNP A2/B1 409 

interacts with VEGFA pre-messenger RNA (pre-mRNA) or mRNA only has not yet been 410 

investigated, but given the nuclear localization of this protein, it could be an early mark for 411 

specific programmed translational readthrough.  412 

More recently, Lethal 7a (Let7a) microRNA (miRNA) has been shown to promote 413 

programmed translational readthrough on Argonaute 1 (Ago1) mRNA, generating a longer 414 

isoform called Ago1x. The miRNA binds a sequence downstream of the physiological stop 415 

codon and upstream of the subsequent in-phase downstream stop codon. This sequence is 416 

sufficient to promote readthrough when introduced into a heterologous 3’ UTR (Singh et al., 417 

2019). This indicates that the mechanism is independent of the identity of the stop codon or of 418 

the mRNA, as long as a Let7a miRNA binding site is present downstream of the stop codon to 419 

be read through. 420 

Both hnRNP A2/B1 and Let7a miRNA bind an RNA sequence located about 10 nucleotides 421 

downstream of the stop codon whose readthrough they promote. This suggests a possible 422 

interaction with the translation machinery pausing on the stop codon. In both cases, 423 
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interestingly, the rate of translational readthrough of the canonical stop codon reaches at least 424 

20%, which can be considered very efficient stop codon readthrough (Eswarappa et al., 2014; 425 

Singh et al., 2019). Unfortunately, the precise mechanism remains to be determined in order 426 

to understand how these trans elements impair translation termination and efficiently promote 427 

synthesis of a C-terminally extended protein. 428 

All factors involved in translation termination or stop codon readthrough constitute targets for 429 

the development of therapeutic approaches to treating genetic diseases caused by nonsense 430 

mutations. By inhibiting the synthesis of these factors or in some cases by overproducing 431 

them, stop codon readthrough is activated. Readthrough activation could thus represent a 432 

potential way to correct a nonsense mutation responsible for a pathology. Molecules capable 433 

of targeting the trans factors described in this section could be sought in the framework of 434 

developing a therapeutic approach. Yet to date, as discussed in Section V, this is not yet a 435 

common approach to identify readthrough molecules. The strategy used focuses on searching 436 

for molecules that target the readthrough mechanism as a whole, rather than targeting a 437 

specific factor.  438 

 439 

(b) Small molecules 440 

Because of their potential therapeutic interest, molecules activating PTC readthrough have 441 

been the focus of many studies. Historically, some members of the aminoglycoside family 442 

have shown the capacity to promote PTC readthrough (Burke & Mogg, 1985). This family of 443 

molecules is composed of a sugar substituted with one amino group. However, not all 444 

members of this family promote significant stop codon readthrough: gentamicin, geneticin 445 

(G418), paromomycin, neomycin, and lividomycin do have this effect (Table 1), but 446 

hygromycin, streptomycin, kanamycin, tobramycin, and amikacin do not (Manuvakhova et al., 447 

2000). Aminoglycosides promote stop codon readthrough by interacting with the 16S 448 
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ribosomal RNA located in the decoding centre of the ribosome (Carter et al., 2000; Ogle, 449 

Carter & Ramakrishnan, 2003; Prokhorova et al., 2017; Zingman et al., 2007). Besides 450 

aminoglycosides, several non-aminoglycoside molecules have also been shown to promote 451 

PTC readthrough (Table 2). PTC124/ataluren/translarna, an oxadiazole derivative, is the only 452 

molecule to have reached clinical phase II/III trials for the treatment of genetic diseases 453 

caused by nonsense mutations (Welch et al., 2007; Kerem et al., 2014). This molecule, which 454 

can rescue expression of genes carrying UGA, UAG, or UAA nonsense mutations, has a 455 

mode of action that remains to be clarified, but might either target the A site of the ribosome 456 

as do aminoglycosides or interact directly with the stop codon to promote readthrough (Roy et 457 

al., 2016; Tutone et al., 2019). Even though the efficacy of this molecule seems too low for 458 

clinical development aimed at treating, for example, cystic fibrosis or Duchenne muscular 459 

dystrophy (Haas et al., 2015; Kerem et al., 2014), it does illustrate the need to identify 460 

readthrough molecules that might enhance the treatment of nonsense-mutation-related genetic 461 

diseases (Kong et al., 2019). Among other readthrough molecules, a dipeptide-like hydrazide 462 

antibiotic negamycin, originally purified from Streptomyces purpeofuscus, appears more 463 

potent than aminoglycosides and less toxic, as do negamycin derivatives (Arakawa et al., 464 

2003; Taguchi et al., 2014; Hamada et al., 2019) (Table 2). 465 

For more than 10 years, various screening systems have been used to identify compounds 466 

more potent than aminoglycosides and ataluren (Fig. 3). The readthrough compounds (RTCs) 467 

RTC13, RTC14, RTC204, RTC219, GJ071, GJ072, NV2907, NV2909, NV2899 and NV2913 468 

(Du et al., 2009, 2013; Tutone et al., 2020) (Table 2) have been identified and tested on 469 

different constructs and cell models of nonsense-mutation-related genetic diseases. In most 470 

cases, these molecules have shown a readthrough activity similar to that of ataluren or 471 

aminoglycosides such as gentamicin (G418) (Du et al., 2009; Tutone et al., 2020; Gomez-472 

Grau et al., 2015). 473 
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Among the compounds identified as promoting induced translational readthrough, some have 474 

remarkable characteristics. The anti-allergy and anti-asthma drug Amlexanox, for example, 475 

has shown the capacity to both inhibit NMD and activate readthrough of UGA, UAG, and 476 

UAA nonsense mutations (Atanasova et al., 2017; Banning, Schiff & Tikkanen, 2017; 477 

Gonzalez-Hilarion et al., 2012). The clinically approved molecule Escin has also been shown 478 

to exert this dual action (Mutyam et al., 2016). In theory, such molecules should be more 479 

effective than molecules that only activate readthrough, since inhibiting NMD leads to an 480 

increased amount of RNA substrates for readthrough (Linde et al., 2007; Gonzalez-Hilarion et 481 

al., 2012). It seems, however, that this is not an absolute rule, as some readthrough activators 482 

with no NMD-inhibiting action promote greater synthesis of full-length proteins than do dual-483 

action molecules. For instance, the readthrough activators Lepista flaccida extract H7 and 2,6-484 

diaminopurine, which do not inhibit NMD, correct UGA and UAA (extract H7) or UGA only 485 

(2,6-diaminopurine) more effectively than dual-action G418 (Benhabiles et al., 2017; Trzaska 486 

et al., 2020; Correa-Cerro et al., 2005).  487 

Clitocine is another molecule with a high readthrough-promoting capacity. However, this 488 

molecule, found in various mushroom species (including Leucopaxillus giganteus and Lepista 489 

flaccida) (Trzaska et al., 2020; Kubo et al., 1986; Wilde et al., 2007; Ren et al., 2008; 490 

Benhabiles et al., 2017; Fortin et al., 2006) unfortunately shows high toxicity, which limits its 491 

potential therapeutic development (Fortin et al., 2006; Sun et al., 2012). The mode of action 492 

of clitocine has been studied. Interestingly, this molecule, whose structure resembles that of a 493 

nucleoside, is incorporated into RNA molecules during transcription, substituting for 494 

adenosines. Like adenosine, clitocine can preferentially pair with uracil, but it has been 495 

proposed that the translation termination factor eRF1 weakly recognizes stop codons 496 

containing clitocine, increasing the chance of near-cognate tRNA recruitment (Friesen et al., 497 

2017). 498 
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 499 

(c) Cell environment 500 

Cell culture conditions can also influence readthrough efficiency. In ribosome profiling 501 

experiments performed on the neural cell line PC12, oxygen and glucose deprivation were 502 

shown to inhibit programmed translational readthrough of 18 mRNAs with a UGA 503 

physiological stop codon followed by a cytosine: Fkbp1a, Hadhb, Hs1bp3, Klc1, 504 

LOC102554884, Mdh1, Mrto4, Nedd8, Nudcd2, Plat, Polr2l, Ppp4c, Rfc2, Rnf111, Sec13, 505 

Slc7a1, Ssna1 and Thy1 (Andreev et al., 2015). Interestingly, this regulation occurs very 506 

rapidly: less than 20 min after starting hypoxia and low glucose, programmed translational 507 

readthrough was strongly reduced. Although the mode of action is not clear, it could be 508 

related to the loss of protein hydroxylation at the decoding centre of the ribosome.  509 

Other cell culture conditions that seem to potentiate PTC readthrough notably include serum 510 

starvation. In a medium containing 1% serum, the PTC-readthrough efficacy of 511 

aminoglycosides can increase two- to threefold without modifying the translation activity on 512 

the mRNA substrates, as demonstrated using a dual-reporter green fluorescent protein (GFP)-513 

blue fluorescent protein (BFP) construct (Wittenstein et al., 2019). How serum starvation 514 

potentiates the readthrough activity of aminoglycosides is not yet understood, but given the 515 

influence of serum on gene expression, it seems likely that specific gene products acting as 516 

cofactors are overexpressed or repressed.  517 

 518 

V. THERAPEUTIC INTEREST OF STOP CODON READTHROUGH 519 

Favouring stop codon readthrough to correct a nonsense mutation represents an attractive 520 

approach to the treatment of certain genetic diseases. About 11% of patients with a genetic 521 

disease carry a nonsense mutation responsible for its pathology (Mort et al., 2008). The use of 522 

readthrough molecules was first tested in patients with cystic fibrosis caused by a nonsense 523 
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mutation in the CFTR gene. The aminoglycoside gentamicin was administered intravenously, 524 

at 2.5 mg/kg every 8 h for seven days, to five patients carrying nonsense mutations and five 525 

patients without nonsense mutation in CFTR (Clancy et al., 2001). The results showed a mild 526 

but encouraging rescue of CFTR expression and function. Another study on cystic fibrosis 527 

patients demonstrated that rescue of CFTR function depends strongly on the nonsense 528 

mutation: patients with the Y122X nonsense mutation seemed to respond better than patients 529 

carrying G542X, R1162X, or W1282X (Sermet-Gaudelus et al., 2007). Aminoglycosides 530 

(particularly gentamicin) have also been tested in patients with Duchenne muscular dystrophy 531 

(DMD) carrying a nonsense mutation in the DMD gene encoding dystrophin. Gentamicin has 532 

been tested in several studies with different protocols. In one study, four DMD patients with a 533 

nonsense mutation in the DMD gene were treated daily for 14 days with gentamicin at 7.5 534 

mg/kg (Wagner et al., 2001). This study concluded that the administered gentamicin treatment 535 

was unable to promote the synthesis of full-length dystrophin protein. In another study, 536 

positive results were obtained by intravenous administration of 7.5 mg/kg gentamicin, once or 537 

twice a week for 6 months, to patients carrying a nonsense mutation in the DMD gene, as 538 

compared to control patients carrying a frameshift mutation in the DMD gene (Malik et al., 539 

2010). The treatment was well tolerated by patients, without any sign of toxicity. The level of 540 

dystrophin protein increased in gentamicin-treated patients carrying a nonsense mutation, 541 

indicating that readthrough of the nonsense mutation occurred. However, the physical strength 542 

of these patients was unaffected by the treatment, implying that dystrophin rescue was 543 

insufficient.  544 

The non-aminoglycoside molecule ataluren has also been tested on cystic fibrosis and DMD 545 

patients carrying nonsense mutations. This molecule was well tolerated by patients. DMD 546 

patients received ataluren orally three times daily at 4–4–8 mg/kg, 10–10–20 mg/kg, or 20–547 

20–40 mg/kg for 28 days. At the end of the study, dystrophin was detected in patients at the 548 
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lowest and middle doses but not in patients at the highest dose (Namgoong & Bertoni, 2016). 549 

After a 48-week exposure to ataluren or placebo, drug-treated patients showed no significant 550 

improvement in a 6-min walking-distance test as compared to the placebo group (Finkel et al., 551 

2013; Bushby et al., 2014). For patients with cystic fibrosis caused by nonsense mutations, 552 

several phase II and III clinical trials have been completed. Physical improvement was 553 

observed in patients having received ataluren versus placebo, although this improvement 554 

remained modest (Kerem et al., 2008; Sermet-Gaudelus et al., 2010; Lee & Dougherty, 2012). 555 

The results of the clinical trials performed with gentamicin or ataluren clearly demonstrate 556 

that it is possible to correct nonsense mutations by inducing PTC readthrough in patients. 557 

Although no cure for patients with nonsense-mutation-related genetic diseases is yet available, 558 

these encouraging results warrant both optimization of the tested protocols and a search for 559 

new therapeutic approaches. 560 

 561 

VI. NEW DEVELOPMENTS AND THERAPEUTIC TARGETS 562 

As described below, aminoglycosides have high potential to correct nonsense mutations. Yet 563 

because of their oto- and nephrotoxicity, their clinical development has been limited (Hock & 564 

Anderson, 1995; Mingeot-Leclercq & Tulkens, 1999; Swan, 1997; Greenwood, 1959; Heck, 565 

Hinshaw & Parsons, 1963; Matz, 1993; Wu et al., 2001). To address this issue, 566 

aminoglycoside derivatives have been synthesized and tested for the capacity to correct 567 

nonsense mutations while showing lower toxicity. Several molecules meeting these criteria 568 

appear to be good candidates for treating genetic diseases caused by nonsense mutations, their 569 

efficacy having been demonstrated on cell lines and in vivo mouse models (Goldmann et al., 570 

2012; Nudelman et al., 2009, 2006; Shulman et al., 2014; Wang et al., 2012; Xue et al., 2014). 571 

One of these molecules, named ELX-02 (from Eloxx Pharmaceuticals), has already 572 

successfully passed clinical phase I (Leubitz et al., 2019), and clinical phase II is ongoing. 573 
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ELX-02 is much less toxic than gentamicin or G418, and no nephrotoxicity has been detected. 574 

Its readthrough efficiency is similar to that of G418, making this molecule an excellent drug 575 

candidate (Brasell et al., 2019).  576 

Regarding ataluren (from PTC Therapeutics), the quest to identify derivative molecules with 577 

higher efficacy has already begun. Molecules such as NV2445 and PTC414 seem to offer a 578 

slightly higher readthrough efficiency. Provided their toxicity is no higher than that of 579 

ataluren, they could represent optimized versions of this drug (Pibiri et al., 2018; Moosajee et 580 

al., 2016). 581 

One of the biggest challenges is to identify low-toxicity molecules with a significantly higher 582 

readthrough efficiency than reference molecules such as G418. To identify readthrough 583 

molecules, many screening systems have been devised (Fig. 3). They are based on the use of 584 

either (i) one cDNA encoding a fluorescent protein or enzyme, in which a stop codon has 585 

been introduced to interrupt the ORF and prevent synthesis of the functional protein (Fig. 3A) 586 

(Du et al., 2009; Manuvakhova et al., 2000; Welch et al., 2007; Burke & Mogg, 1985; 587 

Sogaard, Jakobsen & Justesen, 1999) or (ii) two cDNAs encoding fluorescent proteins or 588 

enzymes, separated by a stop codon (Fig. 3B) (Bidou et al., 2004; Xue et al., 2014; Cardno et 589 

al., 2009). In the latter case, the level of protein produced from the first cDNA is used to 590 

normalize measurements between samples, and the level of protein produced from the second 591 

ORF reflects the readthrough efficiency. The advantage of these constructs is that they are not 592 

spliced downstream of the premature termination codon, so that the corresponding mRNA is 593 

not subject to NMD (Lejeune & Maquat, 2005). This makes it possible to identify molecules 594 

on the sole basis of their readthrough-promoting activity. However, with such constructs there 595 

is a risk of selecting molecules with low readthrough efficiency (and hence low therapeutic 596 

efficacy), as testing is done on mRNAs present in huge copy numbers. In addition, as the pre-597 

mRNAs of more than 90% of human genes are subject to splicing, the corresponding PTC-598 
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carrying mRNAs will be substrates for NMD, which will strongly reduce the copy number of 599 

substrates for readthrough. It is important to bear in mind that this is the prevailing situation in 600 

patient cells. To identify molecules capable of correcting nonsense mutations in these cells, 601 

screening systems should be designed with constructs subject to NMD. Such a screening 602 

system has been described: it consists of a cDNA encoding the firefly luciferase interrupted 603 

by an intron and an upstream PTC (Fig. 3C) (Benhabiles et al., 2017). It has been shown that 604 

the firefly luciferase pre-mRNA is spliced and the mRNA degraded by NMD. The luciferase 605 

activity measured in this screening system thus depends on the efficiency of readthrough 606 

occurring on the number of firefly luciferase mRNAs that have escaped NMD. This screening 607 

system has been used successfully to identify Lepista flaccida fungus extract H7 and 2,6-608 

diaminopurine as two highly potent correctors of nonsense mutations in human cells 609 

(Benhabiles et al., 2017; Trzaska et al., 2020). 610 

Studies aiming to increase the effectiveness of readthrough compounds have identified some 611 

molecules that potentiate the readthrough activity of aminoglycosides (Table 3). Interestingly, 612 

these molecules do not promote readthrough by themselves. For example, the phthalimide 613 

derivative CDX5-1 increases about 180-fold the readthrough efficiency of G418 in both yeast 614 

and human cells (Baradaran-Heravi et al., 2016). More recently discovered potentiators of 615 

aminoglycosides include the antimalarial mefloquine (Ferguson et al., 2019) and 2-616 

aminothiazole-4-carboxamides (Rabea et al., 2019). How these molecules improve the 617 

readthrough efficiency of aminoglycosides is unclear, but by making it possible to administer 618 

lower doses of aminoglycosides, they should reduce aminoglycoside-linked toxic effects. 619 

As the use of screening systems to identify molecules with readthrough activity takes time 620 

and money, new targeted approaches are being or could be developed to promote efficient 621 

readthrough. One such approach is based on the mechanism of action of 2,6-diaminopurine, 622 

recently shown to promote readthrough of UGA premature stop codons by interfering with the 623 
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function of filamentous temperature sensitive J1 (FTSJ1). This enzyme is a methyltransferase 624 

targeting position C34 of the tRNA carrying tryptophan and recognizing the UGG codon 625 

(Trzaska et al., 2020). Decreased C34 methylation allows this tRNA to recognize also the 626 

UGA stop codon (Trzaska et al., 2020). Hence, tRNA-modifying enzymes appear as 627 

interesting targets. This readthrough-activating strategy seems more effective than targeting 628 

the ribosome, but it remains to be validated through identification of new molecules targeting 629 

other tRNA-modification enzymes. Another potential target in the search for readthrough-630 

promoting molecules is the ATP-binding domain 3/cytosolic thiouridylase subunit 1 631 

(ATPBD3/CTU1) protein. This tRNA-modifying enzyme notably acts at the anticodon loop 632 

of near-cognate tRNAs, enabling them to recognize a UAG or UAA stop codon (Blanchet et 633 

al., 2018).  634 

Pseudouridylation is another post-transcriptional modification occurring on RNA molecules 635 

that might be used to activate stop codon readthrough. Interestingly, pseudouridylation 636 

converts a uridine to a pseudouridine, which can pair with all four conventional bases 637 

(Kierzek et al., 2014). Protocols have been designed to induce site-directed pseudouridylation 638 

at the uridine constituting the first base of all three stop codons (Wu, Huang & Yu, 2015). The 639 

idea is that the presence of a pseudouridine at this position will stabilize near-cognate tRNAs 640 

and increase basal readthrough of this stop codon.  641 

A final approach worth mentioning is direct modification of tRNA anticodon sequences, 642 

enabling them to pair with stop codons. Such tRNAs, called suppressor tRNAs, have been 643 

investigated as potential therapeutics for almost 40 years (Temple et al., 1982), and research 644 

is still ongoing. Very recently, investigators have described a high-throughput cloning system 645 

for identifying tRNAs that suppress nonsense mutations with high efficiency (Lueck et al., 646 

2019). Interestingly, a comparative study of suppressor tRNAs and readthrough molecules 647 

such as gentamicin and G418 demonstrated a superior nonsense-mutation-correcting 648 
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efficiency of the tested tRNAs. A legitimate question is whether such molecules affect 649 

translation termination at physiological stop codons. Lueck et al. (2019), using ribosome 650 

profiling, showed that suppressor tRNAs do read through physiological stop codons in rare 651 

cases, but that this readthrough is much less efficient than PTC readthrough. A limitation of 652 

this very promising approach remains delivery of the suppressor tRNA to the cells of patients 653 

liable to benefit from correction of a nonsense mutation responsible for a genetic disease.  654 

 655 

VII. CONCLUSIONS 656 

(1) Stop codon readthrough is a natural process resulting in continuation of translation beyond 657 

the first stop codon encountered in phase with the translation initiation codon. The mechanism 658 

determining whether the translation machinery recruits a tRNA to promote translational 659 

readthrough, or the translation termination complex to the stop codon remains poorly 660 

understood. 661 

(2) Several types of stop codon readthrough can be identified. Non-programmed translational 662 

readthrough or basal stop codon readthrough arises as a translational error without any cis 663 

and/or trans facilitator elements and at a very low rate. Programmed translational readthrough 664 

involves cis and/or trans activator elements, and often reaches more than 20% efficiency. The 665 

cis and trans elements described herein constitute first steps in understanding of the molecular 666 

mechanisms involved. Induced translational readthrough involves small molecules that 667 

increase the recruitment of near-cognate tRNAs when the ribosome pauses at a stop codon. 668 

(3) Several regulator elements have been reported to modulate stop codon readthrough. The 669 

nucleotide sequence in the vicinity of the stop codon has been reported strongly to influence 670 

the stop codon readthrough rate. RNAs, proteins and small molecules also play a role in stop 671 

codon readthrough efficacy. Given the therapeutic potential of activators of PTC-readthrough, 672 

regulator elements responsible for high efficiency of readthrough deserve in-depth study. It is 673 
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essential to fill the gaps in our knowledge of the molecular events leading to stop codon 674 

readthrough and its regulation. This should be accomplished by studying the molecular 675 

mechanism of stop codon recognition and the mode of action of readthrough molecules. 676 

(4) None of the therapeutic approaches under development to correct nonsense mutations 677 

responsible for genetic diseases has yet come to fruition. However, the diversity of strategies 678 

explored makes the field of nonsense mutation correction highly dynamic. Step by step, 679 

personalized therapeutic strategies based on stop codon readthrough are taking form. They 680 

should, in the near future, yield treatments for genetic diseases caused by nonsense mutations. 681 
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 1159 

Figure Legends 1160 

Fig. 1. Comparison of translation termination and stop codon readthrough mechanisms. (A) 1161 

Translation termination. When the ribosome reaches a stop codon, in most cases the 1162 

translation termination complex is recruited. When the A site of the ribosome covers a stop 1163 
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codon, eRF3 and ABCE1 interact with the ribosome. ABCE1 recruits the Dbp5/DDX19-eRF1 1164 

complex, likely with the help of PABPC1. Dbp5/DDX19 then hydrolyses ATP to ADP, 1165 

promoting its own departure. The energy supplied by eRF3-driven GTP hydrolysis favours a 1166 

change in the conformational structure of eRF1, with subsequent dissociation of the 1167 

synthesised peptide. ABCE1-driven ATP hydrolysis supplies energy for the release of the 1168 

ribosome, which is then recycled. (B) Stop codon readthrough. At a very low rate or under 1169 

certain conditions (drugs, eIF3, regulatory elements), a near-cognate tRNA, rather than the 1170 

translation termination complex, is recruited when the ribosome reaches a stop codon. The 1171 

elongation factor EF-Tu allows polymerization of the peptide, with GTP hydrolysis leading to 1172 

continuation of translation to the next stop codon. ABCE1, ATP-binding cassette sub-family 1173 

E member 1; DDX19, DEAD-box helicase 19B; EF-Tu, elongation factor thermo unstable; 1174 

eIF3, eukaryotic initiation factor 3; eRF, eukaryotic release factor; GGQ, glycine-glycine-1175 

glutamine motif; mRNA, messenger RNA; PABP, polyA-binding protein; tRNA, transfer 1176 

RNA. 1177 

 1178 

Fig. 2. Different types of stop codon readthrough. (A) Non-programmed translational 1179 

readthrough. This type of readthrough occurs at a basal level without any regulatory elements 1180 

and without the presence of readthrough molecules. This readthrough happens at premature 1181 

termination codons (PTCs) and physiological stop codons at a very low rate. (B) Programmed 1182 

translational readthrough. Some mRNAs are subject to readthrough of the physiological stop 1183 

codon, due to the presence of regulatory elements. This type of readthrough is more efficient 1184 

than that shown in A. (C) Induced translational readthrough. The presence of molecules 1185 

(aminoglycosides or non-aminoglycosides) promotes activation of readthrough. This type of 1186 

readthrough is more efficient than that shown in A. DDX19, DEAD-box helicase 19B; eRF, 1187 
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eukaryotic release factor; GGQ, glycine-glycine-glutamine motif; mRNA, messenger RNA; 1188 

PABP, polyA-binding protein; tRNA, transfer RNA; UTR, untranslated region. 1189 

 1190 

Fig. 3. Strategies used to screen molecules for readthrough-promoting activity. (A) A 1191 

premature termination codon (PTC) is introduced into a cDNA encoding an enzyme or a 1192 

fluorescent protein. Measurement of the enzymatic activity or fluorescence related to this 1193 

protein will indicate that readthrough has occurred. (B) Use of two cDNAs encoding an 1194 

enzymatic activity or a fluorescence separated by a stop codon. The product of the first cDNA 1195 

is used to normalize the signal. Measurement of the product of the second cDNA will indicate 1196 

that readthrough has occurred. (C) Screening system with an intron introduced into a cDNA to 1197 

promote a splicing event. The PTC is introduced more than 55 nucleotides upstream of the 1198 

intronic sequence to activate nonsense-mediated mRNA decay (NMD) of the corresponding 1199 

mRNA.  1200 

 1201 

Table 1. Aminoglycoside molecules with known readthrough activity. 1202 

Table 2. Non-aminoglycoside molecules with known readthrough activity. 1203 

Table 3. Readthrough potentiator molecules. 1204 
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