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neurologiques paranéoplasiques, Hospices Civils de Lyon, Lyon, France, 9 Université Paris Descartes,
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Abstract

Microglia, the resident immune cells of the brain, are highly ramified and motile and their

morphology is strongly linked to their function. Microglia constantly monitor the brain paren-

chyma and are crucial for maintaining brain homeostasis and fine-tuning neuronal networks.

Besides affecting neurons, anesthetics may have wide-ranging effects mediated by non-

neuronal cells and in particular microglia. We thus examined the effect of two commonly

used anesthetic agents, ketamine/xylazine and barbiturates, on microglial motility and mor-

phology. A combination of two-photon in vivo imaging and electroencephalography (EEG)

recordings in unanesthetized and anesthetized mice as well as automated analysis of ex

vivo sections were used to assess morphology and dynamics of microglia. We found that

administration of ketamine/xylazine and pentobarbital anesthesia resulted in quite distinct

EEG profiles. Both anesthetics reduced microglial motility, but only ketamine/xylazine

administration led to reduction of microglial complexity in vivo. The change of cellular

dynamics in vivo was associated with a region-dependent reduction of several features of

microglial cells ex vivo, such as the complexity index and the ramification length, whereas

thiopental altered the size of the cytoplasm. Our results show that anesthetics have consid-

erable effects on neuronal activity and microglial morphodynamics and that barbiturates

may be a preferred anesthetic agent for the study of microglial morphology. These findings

will undoubtedly raise compelling questions about the functional relevance of anesthetics on

microglial cells in neuronal physiology and anesthesia-induced neurotoxicity.
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Introduction

Anesthetics are widely administered in animal research studies. They are commonly used to

generate a reversible brain state allowing surgery and in vivo imaging of animals with fewer

motion artifacts and less stress during contention. Excess anesthetics can also be used for

euthanasia allowing further anatomical studies, such as immunohistochemistry. As major

pharmacological modulators of neuronal activity, anesthetic agents may alter animal neuro-

physiology. Anesthetic-specific effects are mediated through a combination of channels and

determined circuits and result in distinct neuronal activity patterns depending on the anes-

thetic [1–3]. Furthermore, recent studies revealed detrimental neurotoxic effects of general

anesthetics that lead to morpho-functional changes in the CNS and impaired neurocognitive

performance [1]. The mechanisms leading to modulation of neuronal activity and neurotoxic-

ity are not clearly understood and little consideration has been given to mechanisms mediated

through the action of glial cells. Several recent studies have shown that general anesthetics may

affect glial cell morphology and function [4,5], but more research is needed.

Microglial cells, are the resident immune cells of the brain and are crucial in maintaining

brain homeostasis [6]. In physiological conditions, microglial cells are highly ramified and

dynamic, continuously surveying the surrounding parenchyma in an activity-dependent man-

ner [7–9]. In addition, recent studies attribute essential functions to microglia, including

maintenance of synaptic properties, regulation of neuronal activity and network synchroniza-

tion, and involvement in learning and memory [10,11]. The effect of anesthesia on microglial

morphodynamics and function has just recently started to be investigated and reveals quite

contradictory findings.

Isoflurane effects have been largely studied on microglial cells in situ and in vivo, but no

consensus has been reached with regards to its effect on microglial morphodynamics [5,12,13].

Ketamine/xylazine and urethane were found to increase microglial process area and process

surveillance territory [5], but this was not corroborated by other studies [12,13]. These discrep-

ancies between studies may account for different preparations and/or microglial states. Fur-

thermore, the fact that process ramification and motility can evolve in opposite ways following

fentanyl cocktail administration brings additional confusion [14]. Anesthetics were also tested

on microglial inflammatory response. Ketamine induced the activation of microglial cells in

the retrosplenial cortex, but not in the cingulate cortex of rats [15], while pentobarbital admin-

istration for 24 hours in cell culture changed microglial morphology from a ramified to a

rounded shape [16]. However, neuroleptic anesthetics targeting dopamine and opioid recep-

tors did not cause any activation of microglial cells in the hippocampus of young adult mice

[17].

Microglial morphology has been associated with its different roles in physiological and

pathological conditions. For instance, reduction of microglial ramification, enlargement of cell

bodies, and shortening and thickening of processes are characteristic of brain inflammation or

injury [18,19]. These morphological changes are associated with pro-inflammatory cytokine

secretion, phagocytic activity and neuronal synchrony decrease [11,20]. On the other hand,

microglia may also hyper-ramify in response to sensory deprivation [21], stress [22] and accel-

erated aging [23], but this phenotype and its potential consequences have been much less

described. Considering the importance of microglial cells in brain homeostasis and the routine

usage of anesthetics, a detailed description of the effects of anesthetics on microglial morphol-

ogy and motility is needed.

In our study, we combined immunohistochemistry and two-photon in vivo imaging to

study the effects of two anesthetics on microglial motility and several parameters of microglial

morphology. We chose two commonly used anesthetic agents: pentobarbital/thiopental-based
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anesthetics (GABAAR agonist) and ketamine-xylazine cocktail (NMDAR antagonist). These

act on different neuronal targets and have different effects on neuronal activity. Our findings

indicate that these anesthetics differentially affect microglial motility and morphology and that

their action varies depending on the brain region considered.

Materials and methods

Animals

In vivo and ex vivo experiments used six to ten week-old male heterozygous CX3CR1eGFP(+/-)

mice that expressed enhanced green fluorescent protein (eGFP) under the control of CX3CR1

promoter. Mice were housed in individual cages with bedding and running wheels, normal

light/dark conditions and food and water ad libitum. All experimental procedures were carried

out in accordance with the French institutional guidelines and ethical committee and autho-

rized by the local Ethics Committees: CEEA-55/CETEA-2015-0038 and the Ministry of

National Education and Research (APAFIS#6449–116 2016052515127983 v1).

In vivo experiments

Surgery and habituation. Mice were handled during one week prior to surgery. For sur-

gery, mice were deeply anesthetized with isoflurane (3–4%, Isovet, Piramal Healthcare, UK

Ltd.) and mounted in a stereotaxic apparatus (D. Kopf Instruments). To relieve post-operatory

pain and inflammation, Carprofen (5mg/kg s.c.) was administered at the beginning of the sur-

gery and the following two days. For transcranial imaging, a custom-made head plate implant

was positioned on the left hemisphere and the skull was carefully thinned over the somatosen-

sory cortex using a high-speed dental drill. For electrophysiological recordings, two EEG

screws were inserted in the frontal and parietal cortex of the right hemisphere and two EMG

electrodes were inserted in the neck muscles.

A custom-made restraint system was used during head-restraining habituation sessions.

Our habituation protocol involved daily training sessions over 7–10 days lasting progressively

longer (from 10 minutes to 4 hours). A reward of several drops of sweetened concentrated

milk was administered at the beginning and end of each session. Mice were imaged at the end

of the habituation sessions.

Treatment conditions. Two-photon imaging was performed in the somatosensory cortex

in the same mice (n = 6) pre-anesthesia and during anesthesia. Thus, the same microglial cells

were imaged in pre-anesthesia and subsequently during anesthesia. In the «anesthesia» condi-

tion, mice were injected intraperitoneally with either a mixture of ketamine (100mg/kg) and

xylazine (10mg/kg) or pentobarbital (60mg/kg) dissolved in 0.9% saline.

Two-photon in vivo imaging microscopy. A two-photon microscope (Olympus) with a

mode-locked Ti:Sapphire laser (Mai-Tai, Spectra-Physics) tuned to 900nm (excitation wave-

length for eGFP) was used. eGFP-labeled microglia were imaged under a 20x water-immersion

objective (0.95 N.A. Olympus). Fluorescence was detected using a 560nm dichroic mirror cou-

pled to a 525/50nm emission filter and a photomultiplier tube in whole-field detection mode.

Laser power during imaging was maintained below 20mW.

Microglial cells in the somatosensory cortex were imaged at least 15 minutes after general

anesthesia. The imaging parameters corresponded to 200x200μm field of view and resolution

of 521x521 pixels approximately. Microglia were imaged at a depth of 50–150 μm from the

cortical surface and a typical recording lasted approximately 15–20 minutes (30–40 stacks).

26–37 consecutive Z-stack images were acquired every 30 seconds, 1μm/optical section.

EEG/EMG recordings. During the entire imaging session, the vigilance states were moni-

tored using real-time EEG/EMG differential recordings amplifier (Model 3000, A-M systems).
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Signals were sampled at 1kHz. EEG was filtered in the frequency band [0.5Hz-300Hz], while

EMG was filtered in the [10-500Hz] frequency band. EEG data were analyzed using a custom

MATLAB© software. Power spectra and probability distributions of EEG magnitude were esti-

mated for the total duration of anesthesia. Time-frequency representation was performed with

a 4s duration sliding FFT (fast Fourier transform) window and 0.5s step size.

Imaging analysis. Image processing and analysis were performed using custom-written

MatLab© software. From the original image, we manually delimited regions of interest con-

taining the totality of only one microglial cell. In order to correct the drift in the x, y and z

planes, each volume was registered to a reference volume (the first volume) using shift estima-

tion from the cross-correlation peak by FFT. After realignment, standard deviation intensity

projections of z stacks were created and used to generate 2D time-lapse movies.

For analyses of microglial complexity, we transformed the images into binary and calcu-

lated the Hausdorff fractal dimension, thus providing quantitative measure of the complexity

of microglial cells. For each series of images, cell complexity was determined by averaging the

complexity values obtained for each image.

To analyze microglial motility, subtractions between consecutive Z-stack projections were

performed. The number of summed pixels in subtracted images determined the global motility

coefficient (arbitrary unit). This coefficient was normalized to the volume of the stack.

Ex vivo experiments

Treatment conditions. Three experimental groups were considered. In the anesthesia

group, n = 6 mice were injected intraperitoneally with either with a mixture of ketamine

(100mg/kg) and xylazine (10mg/kg) or thiopental (60mg/kg) dissolved in 0.9% saline and were

euthanized by cervical dislocation 5 minutes after anesthesia, followed by collection of the

brain. In the control group, n = 5 mice were injected with an isotonic saline solution (NaCl

0.9%) and were euthanized by cervical dislocation 5 minutes after injection followed by brain

collection. Cervical dislocation was authorized by the Ethics Committee of the Institute Pas-

teur and the French Ministry of National Education and Research in order to avoid any molec-

ular interaction with any type of anesthesia or with carbon dioxide before brain analysis.

Tissue preparation. After euthanasia by cervical dislocation, the brains were immediately

removed and sectioned along the inter-hemispherical fissure on a sagittal plane. The left hemi-

sphere, dedicated to the morphological analysis, was fixed for 24 hours in a 4% paraformalde-

hyde solution (QPath1, VWR Chemicals, Fontenay Sous Bois, France) and then stored in a

0.1% paraformaldehyde solution until carrying out floating sections of 80μm along a sagittal

plane using a vibratome (VT 1000 S, Leica1, Germany). The most medial section was then

used for the morphological analysis.

Microglial morphology imaging and analysis. Microglial morphologic criteria were

determined with an automated confocal tissue imaging system coupled to morphological

modelling in CX3CR1GFP/+ transgenic mice. This analysis was performed on sagittal cerebral

floating sections of the left hemisphere placed on glass slides with FluoroMount (Fluoro-

Mount-G Mounting Medium, FluoProbes).

The image acquisition was carried out according to a previously validated protocol [24]

using a confocal spinning disk microscope (Cell Voyager—CV1000, Yokogawa1, Japan)

equipped with a UPLSAPO objective 40x/NA 0.9. Automatic analysis was applied using analy-

sis script developed with the image analysis software Acapella™ (version 2.7—Perkin Elmer

Technologies, Waltham, USA). The following morphological criteria have been defined for

each microglial cell on more than 3,000 microglial cells by group: the area of the cell body and

the cytoplasmic area, defined as the area of the cytoplasm included in the primary branches,
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expressed in μm2; a second set of calculated criteria extrapolated from the previous ones

yielded the complexity index (CI) and the covered environment area (CEA). We defined the

CI by the ratio between the number of segments of each ramification of each cell multiplied by

the sum of the nodes on one hand and the number of primary branches on the other hand.

Thus, we obtained an average complexity relative to the number of primary branches for each

microglial cell.

CI ¼
nb of segments� ðnb of nodes1þ nb of nodes 2Þ

nb of roots

The CEA represents the 2D total surface covered by its ramifications and defined as the

area of the polygon formed by linking the extremities of its processes, expressed in μm2.

Statistical analysis

All statistical analyses were performed using the Prism V statistical analysis software (Graph-

Pad, La Jolla, Ca). For in vivo experiments, microglial complexity and motility index were

compared between groups using two-tailed paired t-test. The normal distribution of data was

examined using d’Agostino-Pearson test.

For ex vivo experiments, we assessed a potential microglial effect of ketamine/xylazine or

barbiturates using the Kruskal-Wallis test after the Shapiro-Wilk test showed a non-normal

distribution of the data. The alpha-level of 0.05 was adjusted for the number of comparisons to

control for family-wise error. When multiple comparisons were needed, analysis using Sidak’s

corrections were realized. Significant comparisons between groups are indicated in the figures.

Significance of p<0.05 was used for all analyses.

Results

Ketamine/xylazine and pentobarbital administration generate distinct and

specific patterns of neuronal activity in vivo
Anesthetic effects on global neuronal activity were monitored using EEG/EMG recordings.

EEG signal patterns were different between vigilance states and varied depending on the anes-

thetic agent (Fig 1A, 1C and 1E). The unanaesthetized condition is characterized with a large

spectral range (Width to Mid-Height: WHM) equal to 10Hz, as well as a high dispersion of the

amplitudes’ distribution (Fig 1A, 1B, 1G and 1H). Ketamine/xylazine anesthesia was character-

ized with slow and large amplitude waves (Fig 1C and 1D) close to pure bi-chromatic signal

(0.5Hz and 2Hz, Fig 1I) continuously present during the anesthesia period (Fig 1J). The 0.5 Hz

component is stable during anesthesia while the 2Hz component tends to vanish at the end of

the recoded period (Fig 1J). Pentobarbital anesthesia caused states of low electric activity with

sporadic bursts of high amplitude (Fig 1E), consistent with the high peak at 0 (around baseline)

and the long wings observed on the amplitudes’ distribution (Fig 1F). The EEG signal exhib-

ited a more spread out spectrum in comparison to ketamine/xylazine (Fig 1I and 1J). The

time-frequency representation of pentobarbital anesthesia (Fig 1K and 1L) showed a gradual

increase of the spectral range before continuously decreasing until the end of the recording.

Both anesthetics reduce microglial motility, but only ketamine/xylazine

affects microglial morphology in vivo
We examined, first, microglial morphology, particularly the degree of ramification, assessed by

an overall complexity index, and, second, the motility of microglial processes in vivo in the

somatosensory cortex of CX3CR1eGFP/+ mice. These cellular parameters where compared in
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Fig 1. Ketamine/xylazine and pentobarbital anesthesia are associated with different patterns of neuronal activity. (A-F)

Examples of EEG traces (A, C, E) and their corresponding amplitude distributions (B, D, F) in different conditions: control

(A, B), during ketamine/xylazine (C, D) and pentobarbital (E, F) anesthesia. (G-L) Characteristic power spectrum (G, I, K)

and normalized color-coded logarithmic amplitude of time-frequency graphs (H, J, L) in control condition (G, H), and

during ketamine-xylazine (I, J) and pentobarbital (K, L) anesthesia.

https://doi.org/10.1371/journal.pone.0236594.g001

PLOS ONE Effect of anesthetics on microglial morphology and motility

PLOS ONE | https://doi.org/10.1371/journal.pone.0236594 August 6, 2020 6 / 16

https://doi.org/10.1371/journal.pone.0236594.g001
https://doi.org/10.1371/journal.pone.0236594


unanaesthetized and anesthetized conditions. We found that microglial complexity was signif-

icantly reduced in vivo when mice were injected with ketamine/xylazine (1.545±0.011 vs 1.52

±0.01, p<0.001; Fig 2A and 2C). However, microglial complexity remained unaltered with

thiopental administration (1.565±0.008 vs 1.568±0.008, p>0.05; Fig 2B and 2E). To address

the impact of anesthesia on microglial motility, we recorded 3D time-lapse videos of the same

microglial cells when the mouse was not anesthetized and subsequently during ketamine/xyla-

zine or pentobarbital anesthesia. Both ketamine/xylazine and pentobarbital administration

resulted in a significantly reduced overall process motility when compared to control (860.73

±34 vs 714.82±29.2 motility index/μm3 for ketamine/xylazine and 846.3±32 vs 761.76±27.54

motility index/μm3 for pentobarbital; p<0.0001; Fig 2D and 2F).

Ketamine/xylazine and thiopental affect different parameters of microglial

morphology ex vivo, with inter-regional variability

To further describe the morphological changes of microglia and evaluate their heterogeneity

in different brain areas, we studied microglial morphology in brain sections from CX3CR1GFP/

+ mice administered with ketamine/xylazine, thiopental anesthesia or saline prior to euthana-

sia (Figs 3 and 4).

We quantified these morphological parameters in microglial cells separately in the frontal

cortex (Fig 3) and the hippocampus (Fig 4). In both regions, the complexity of microglial cells

(3.2±0.1 vs 3.4±0.1 for the frontal cortex and 3.3±0.2 vs 3.6±0.2 for the hippocampus; p<0.05,

Figs 3E and 4B) were significantly reduced with ketamine/xylazine anesthesia and not with

thiopental. However, we observed a significant decrease of the total length of the ramifications

in the frontal cortex only (306±16 vs 349±26 μm; p<0.05; Fig 4E). Treatment with thiopental

affected exclusively the cytoplasm area in the hippocampus but not in the frontal cortex (58.5

±4.4 vs 68.3±8.2 μm2; p<0.05; Figs 3D and 4A), which was not the case upon ketamine/xyla-

zine administration. Other morphological features such as the cell environment covered by the

ramifications and the number of segments remained unchanged in both conditions and both

regions.

Discussion

Our current findings demonstrate that administration of two commonly used iv anesthetics in

clinic and in research protocols, ketamine/xylazine and barbiturates, resulted in microglial sur-

veillance reduction in vivo and morphological alterations that depended on the type of anes-

thetics administered and the brain region examined (S1 Table). Ketamine/xylazine

administration resulted in extensive and widespread reduction of microglial process complex-

ity, whereas barbiturates affected the cytoplasm area in a limited manner.

Ketamine/xylazine and barbiturates are commonly used as general anesthetics for surgery,

imaging, or euthanasia preceding immunohistochemistry studies. For anesthesia, ketamine, a

NMDAR antagonist is often used with an α2 adrenergic agonist, in our case xylazine, which

provides sedation and analgesia [25,26]. Importantly, ketamine activates less GABAAR in com-

parison with other anesthetics, which allowed us to distinguish the effects of ketamine/xylazine

and barbiturates that are GABAA agonists [27]. For the ex vivo and in vivo experiments, we

used two types of barbiturates, an oxybarbiturate, i.e. pentobarbital, and thiobarbiturate, i.e.

thiopental, characterized by different duration of action but presenting similar chemical struc-

ture and functions. Both of them act mainly by activating the gamma-aminobutyric acid A

(GABAA) receptors, keeping the chlorine channel open, resulting in hyperpolarization of the

post-synaptic membrane [28]. In the same manner, previous studies have shown that thiopen-

tal administration leads to changes similar to pentobarbital-induced EEG alterations,
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Fig 2. Ketamine/xylazine and pentobarbital anesthesia reduce microglial motility in vivo, while microglial

complexity is reduced by ketamine/xylazine only. (A, B) Individual and color-coded representative images of

microglial cells pre- and post- ketamine/xylazine anesthesia (A) and pentobarbital (B) anesthesia. For quality purposes,

brightness and contrast were enhanced similarly for the two sets of images. The scale bars equal 10μm. (C, D)

Quantification of microglial complexity (C) and motility (D) pre- and post- ketamine/xylazine anesthesia (n = 18 cells,

with 3 microglia analyzed per mouse, two-tailed paired t-test). Microglial cells for which these parameters decrease

during anesthesia are represented in blue. (E, F) Quantification of microglial complexity (E) and motility (F) pre- and

post- pentobarbital anesthesia (n = 18 cells, with 3 microglia analyzed per mouse, two tailed paired t-test). Microglial

cells for which these parameters decrease during anesthesia are represented in blue. Bars represent mean±SEM.
�p<0.05.

https://doi.org/10.1371/journal.pone.0236594.g002
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including burst suppression activity [29]. Thiopental is an ultra-short acting anesthetic that

was used for ex vivo experiments whereas pentobarbital was preferred for the in vivo study

because its action lasts 4 to 8 times longer than thiopental [30].

Interestingly, different anesthetics generate distinct and specific patterns of neuronal activ-

ity. Our EEG recordings indicate that ketamine/xylazine anesthesia is characterized by slow,

large amplitude waves with high delta power. More precise LFP and intracellular recordings

showed that ketamine/xylazine administration results in long duration of silent states and

increased gamma activity power [2]. On the other hand, pentobarbital anesthesia was

Fig 3. Frontal cortex variability by morphological criteria in the different conditions. (A-C) Microglial modelization characterizing a representative panel

of microglial cells in each condition in the frontal cortex. The scale bars equal 10μm. (D-I) Microglial morphology was characterized using the following

parameters: microglial cytoplasm (D), the complexity index (E), the cell environment area in μm2 (F), the number of segments by cell (G), the total ramification

length in μm (H) and the number of nodes (rank #1 & #2) by cell (I). Data shown are mean±SD in the control, ketamine/xylazine and thiopental conditions

(n = 5, n = 6 and n = 6, respectively). In CX3CR1GFP/+ mice, 305 to 582 microglial cells were analyzed by region and by animal, resulting in studying

respectively n = 1975, 2662 and 2495 cells by condition. ANOVA Kruskal-Wallis test was used to compare the different regions. �p<0.05.

https://doi.org/10.1371/journal.pone.0236594.g003
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associated with a different EEG pattern consisting in states of isoelectric activity with bursts of

high-amplitude activity. It has already been shown that propofol, isoflurane and the barbitu-

rate thiopental led to high-amplitude burst suppression activity separated by brief episodes of

isoelectric activity [31]. Interestingly, in our study, the anesthetic inducing the greatest change

in activity in comparison to wake also induced major microglial morphology and dynamics

change. This possibility is supported by a recent study showing that inducing neural spiking

activity at 40Hz leads to morphological changes of microglia [32]. These findings need further

investigation, to determine whether and how different EEG patterns, in terms of frequency

and amplitude, may impact microglial morphology and motility.

Microglial cells continuously survey their surroundings by extending and retracting their

motile processes [7,33]. They make direct contacts with synapses that seem to be dependent, at

least partly, on neuronal activity [8,9,11,34]. We found that both anesthetics induced a reduc-

tion of microglial motility in the somatosensory cortex. Our results are thus in line with previ-

ous studies showing that blocking NMDAR-mediated glutamatergic transmission induced a

significant decrease in microglial motility in retinal explants (−12.5% decrease) while GABA

application decreased microglial motility as well (−7.9% decrease) [35]. However, the reduc-

tion that we observed with ketamine/xylazine does not match a recent study that reports no

effect of ketamine/xylazine anesthesia on microglial motility [13]. Even though both studies

were performed in vivo, several discrepancies should be highlighted: 1) we used a thin-skull

cranial preparation, which is more immunologically inert compared to cranial window prepa-

ration used by this study; 2) Sun et al. imaged different microglia from the two hemispheres

Fig 4. Hippocampus variability by morphological criteria in the different conditions. Microglial morphology was characterized using the following

parameters: microglial cytoplasm (A), the complexity index (B), the cell environment area in μm2 (C), the number of segments by cell (D), the total

ramification length in μm (E) and the number of nodes (rank #1 & #2) by cell (F). Data shown are mean±SD in the control, ketamine/xylazine and thiopental

conditions (n = 5, n = 6 and n = 6, respectively). In CX3CR1GFP/+ mice, 272 to 448 microglial cells were analyzed by region and by animal, resulting in

studying respectively n = 1713, 1808 and 2173 cells by condition. ANOVA Kruskal-Wallis test was used to compare the different regions. �p<0.05.

https://doi.org/10.1371/journal.pone.0236594.g004
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with 2-h rest between conditions, while we imaged the same microglia in presence and absence

of anesthetics within a shorter time lapse, which we believe adds to the precision of the

measurements.

To date, there is no consensus with regards to the effect of anesthetics on microglial motility

and it may well be dependent on the anesthetic agent. For instance, a recent study showed that

isoflurane administration resulted in increased process velocity [5], while fentanyl anesthesia

decreased overall motility [14]. Importantly, the last study reported that the effects of fentanyl

cocktail on motility were quite complex since it increased the motility of terminal processes

but decreased overall motility due to the loss of motile filopodia. Therefore, future research

needs to take into consideration the different aspects of microglial motility.

It is unknown whether the anesthetics we used have a direct action on microglial cells.

Indeed, various evidence report the presence of glutamate and GABA receptors on microglial

surface [36,37]. However microglia lack electrical responses to local application of GABA and

glutamate in retinal slices [35], as well as to puffs of glutamate or NMDA in hippocampal slices

[34] casting doubt on a direct action on microglia. The observed effect could also be due to the

action of anesthetics on sites other than their major target receptors. For example, pentobarbi-

tal also targets alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors

(AMPAR) [38,39] and voltage-dependent Na+ channels, while ketamine affects also the cholin-

ergic muscarinic receptors (antagonistic effect) [40,41] and α(alpha) and β(beta) adrenergic

receptors (agonistic effect) [42]. Ketamine and pentobarbital could also target ion channels

expressed by microglial cells and alter membrane properties [43,44]. A recent study found a

direct impact of gaseous anesthetics on microglial motility by action on tandem pore domain

halothane inhibited K(+) channel (THIK)-1, a two-pore domain K+ channel present on micro-

glial cells [12]. Likewise, possible changes in extracellular ion concentration due to altered neu-

rotransmission by anesthesia might affect microglial resting potential and consequently

microglial motility. Anesthetics could also modulate microglia through indirect action. For

example, extracellular nucleotides, in particular adenosine triphosphate (ATP), elicit mem-

brane currents in microglial cells via ionotropic (P2X) and metabotropic (P2Y) purinergic

receptors and affect microglial motility [34,35,45–48]. Importantly, ATP is co-released with

the main transmitters from neurons [49] and from astrocytes [50] at synapses in response to

neuronal activity. ATP released could lead to a chemotactism of microglial processes toward

highly active spines [11] possibly by a NMDAR-dependent ATP release [34]. Thus, a reduction

of ATP release caused by reduction of neuronal activity may decrease microglial motility.

Finally, both IV and inhaled anesthetics have been shown to disrupt astrocyte calcium signal-

ing in the cortex [4] and consequently the calcium-dependent release of ATP that could regu-

late microglial motility.

Morphological changes of microglial cells are often associated with microglial activation.

Indeed, immunohistochemistry studies rely on quantification of microglial morphology to

characterize inflammation. We found both in vivo and ex vivo that ketamine/xylazine and bar-

biturates affected microglial morphology in different ways. Ketamine/xylazine anesthesia

caused a significant reduction of microglial complexity overall. Previous findings on the effect

of ketamine/xylazine on microglial morphology appear quite divergent. Recently, Liu et al.,
reported that ketamine/xylazine administration resulted in increased process area and micro-

glial surveillance territory in the somatosensory cortex [5], while Sun et al., found no effect on

microglial process length and ramification in cortical microglia [13]. In addition to a salient

difference in the imaging paradigms (thin-skull preparation vs open-skull preparation), the

discrepancies between these studies may arise from two important points. First, each study

uses different approaches for quantifying various aspects of microglial morphology. For

instance, even though we report seemingly opposite effects on microglial morphology in the
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same cortical region with Liu et al., our quantification of microglial complexity is not compa-

rable to their measurement of microglial process area and surveillance territory and therefore

both findings are not necessarily contradictory. Another example is that for the quantification

of microglial process length, Sun et al., takes into consideration only the primary and second-

ary branches, while our method also includes measurements of higher-order branches. Sec-

ondly, we must be aware of inter-regional differences, as highlighted in our study. In the study

of Sun et al., microglial cells are investigated in a large field, possibly comprising measure-

ments of microglia from the somatosensory, motor, and visual cortex, which does not take

into consideration potential regional differences. In favor of our results, it has previously been

found that blocking NMDAR by D-AP5 resulted in significant decreases in all morphological

parameters studied, such as the total dendritic length, the total branch point and the dendritic

tree area in retinal explants [35]. Because β-adrenergic receptor agonist, isoproterenol, has

been shown to induced a considerable decrease in the ramifications of resting microglia in

acute slices [51], another effect of ketamine could be through its agonist action on β-adrenergic

agonist receptors.

We found no effect of pentobarbital on microglial complexity in the somatosensory cortex

in vivo. More precise ex vivo quantifications found that barbiturates affected only the cyto-

plasm area of microglial cells in the hippocampus, which is defined as the cell body area associ-

ated with the cytoplasmic area of the primary ramifications. In that regard, the study of

Fontainhas et al. shows that GABA application in retinal explants affected microglial complex-

ity [35]. The discrepancy between these results could be explained by the heterogeneity of

microglial cells between retina and the brain. Another explanation could be the use of barbitu-

rates that target specifically GABAA while the administration of GABA might also target

GABAC and GABAB receptors.

We assessed changes in microglial morphology induced by anesthetics in the hippocampus

and the frontal cortex, two areas where microglial cells contribute to neuropsychiatric disorders

such as dementia or depression [52,53]. Ketamine/xylazine caused a significant reduction in

microglial complexity in both regions, accompanied with a reduction in microglial ramification

length in the frontal cortex only. This reduction was not accompanied by a significant reduction

in the number of segments and nodes rank 1 and 2 suggesting that ketamine/xylazine induced

distal microglial ramification modifications. The effects of thiopental also differed depending

on the brain region. Thiopental caused a reduction in the cytoplasm area of the hippocampus,

but not the frontal cortex. The discrepancy between the effects of anesthetics on microglial cells

in these different regions may come from several reasons. First, the composition and function

of glutamatergic and GABAergic networks may vary between the hippocampus and cortex. Sec-

ond, the neuronal NMDA and GABAA receptor subtype composition may differ between areas.

Third, microglial phenotypic heterogeneity: microglial expression profiles, receptor and channel

distribution, and the resting potential of microglial cells may vary between different regions

[54–57], thus contributing to different responses of microglial cells.

Conclusions

Overall, our study shows that both anesthetics reduced microglial motility. Ketamine/xylazine

had a greater effect on microglial morphology, whereas the effect of barbiturates was limited to

the cytoplasm area. Even though both anesthetics alter microglial motility, barbiturates might

be appropriate anesthetic agents for the study of microglial morphology, at least for histochem-

ical studies.

Our findings have major implications for research studies. Many ex vivo studies are based

on the characterization of microglial morphology to evaluate the activation status and
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inflammatory profile of microglial cells and may thus be biased by the type of anesthetic used.

Furthermore, the disclosed alterations of microglial motility and morphology may have unin-

tended consequences on microglial responses in vivo and bias experimental results. Future

studies need to assess the potential alterations of additional parameters associated with micro-

glial morphology and motility under anesthesia. These include microglial interaction with

spines and neuronal networks, the phagocytic capacity of microglial cells, and their cytokine

secretion. Furthermore, it is important to determine whether anesthetics maintain their effects

on microglial cells’ morphology and motility in vivo past anesthesia and the potential long-

term effects. If this is the case, multiple imaging sessions with repeated animal exposure to

anesthesia may have serious consequences on the experimental results. Finally, since the devel-

oping brain and the aging brain are more vulnerable to anesthesia-induced neurotoxicity, we

need to study the short-term and long-term effects of anesthetic agents on microglial cells in

these populations.
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