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Abstract

Background: In malaria endemic areas, identifying spatio-temporal hotspots is becoming an important element of
innovative control strategies targeting transmission bottlenecks. The aim of this work was to describe the spatio-
temporal variation of malaria hotspots in central Senegal and to identify the meteorological, environmental, and
preventive factors that influence this variation.

Methods: This study analysed the weekly incidence of malaria cases recorded from 2008 to 2012 in 575 villages of
central Senegal (total population approximately 500,000) as part of a trial of seasonal malaria chemoprevention
(SMC). Data on weekly rainfall and annual vegetation types were obtained for each village through remote sensing.
The time series of weekly malaria incidence for the entire study area was divided into periods of high and low
transmission using change-point analysis. Malaria hotspots were detected during each transmission period with the
SaTScan method. The effects of rainfall, vegetation type, and SMC intervention on the spatio-temporal variation of
malaria hotspots were assessed using a General Additive Mixed Model.

Results: The malaria incidence for the entire area varied between 0 and 115.34 cases/100,000 person weeks during
the study period. During high transmission periods, the cumulative malaria incidence rate varied between 7.53 and
38.1 cases/100,000 person-weeks, and the number of hotspot villages varied between 62 and 147. During low
transmission periods, the cumulative malaria incidence rate varied between 0.83 and 2.73 cases/100,000 person-
weeks, and the number of hotspot villages varied between 10 and 43. Villages with SMC were less likely to be
hotspots (OR = 0.48, IC95%: 0.33–0.68). The association between rainfall and hotspot status was non-linear and
depended on both vegetation type and amount of rainfall. The association between village location in the study
area and hotspot status was also shown.

Conclusion: In our study, malaria hotspots varied over space and time according to a combination of
meteorological, environmental, and preventive factors. By taking into consideration the environmental and
meteorological characteristics common to all hotspots, monitoring of these factors could lead targeted public
health interventions at the local level. Moreover, spatial hotspots and foci of malaria persisting during LTPs need to
be further addressed.
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Trial registration: The data used in this work were obtained from a clinical trial registered on July 10, 2008 at
www.clinicaltrials.gov under NCT00712374.
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Background
Of the 435,000 deaths attributed to malaria worldwide
in 2017, 93% were recorded in sub-Saharan Africa [1]. In
Senegal, annual malaria incidence rose from 14 to 25.94
cases/1000 person-years between 2009 and 2017, despite
the strengthening of control strategies. In 2017, malaria
incidence varied between 0.4 (Saint-Louis) and 473.9
cases/1000 person-years (Kedougou) across the country’s
72 health districts [2].
It is now known that spatial heterogeneity of malaria

distribution reduces the effectiveness of malaria control.
Thus, this spatial heterogeneity may contribute to the
persistence of transmission at a significant level [3]. The
detection of heterogeneity patterns in malaria endemic
areas is therefore becoming an important element in re-
cent approaches that seek to identify transmission bot-
tlenecks [4–13]. Variations in heterogeneity have been
observed even at a very local scale—for example, within
8-km radius areas in Kenya [7], at the village level in
Senegal (KeurSocé) [14], and at the household level in
Tanzania (Korogwe District) and Mali (Bandiagara) [9,
15]. Central Senegal has a surveillance system which
provides data on malaria cases and population at the vil-
lage level [16]. Moreover, the heterogeneous distribution
of malaria has been shown to depend on a series of en-
vironmental factors that favour vectors development and
host-vector interactions [17, 18].

In view of these findings, the WHO (World Health
Organization) recommends developing targeted strat-
egies aimed at accelerating the malaria elimination
process [5, 19]. The first step to ensure the effectiveness
of these strategies is to accurately identify geographical
areas of greatest risk, the so-called hotspots, where they
are expected to exert a stronger impact on malaria trans-
mission. Indeed, hotspots can maintain transmission
during the dry season, and they can be the source of epi-
demic episodes during the rainy season [5].

However, while some locations exhibit constant hotspot
status, certain hotspots can be unstable over time [8]. This
instability adds a layer of complexity to the process of
malaria transmission, and may consequently hinder the ef-
fectiveness of prevention strategies. Yet, while a number
of studies on malaria have explored the environmental
factors that may influence spatial hotspot distribution [5,
7, 8, 20, 21], few have attempted to explain the spatio-
temporal dynamics of malaria hotspots [22].

The aim of this work was to describe the spatio-
temporal variation of malaria incidence hotspots in vil-
lages of central Senegal and to identify the meteoro-
logical, environmental, and preventive factors that
influence this variation.

Methods
Study area and dataset
The study area included 575 villages that spanned 2
health districts, Bambey and Fatick, which are located in
west-central Senegal [16]. The total population of the
study area was approximately 500,000. The median
population of the villages was 499 [interquartile range
233; 1029]. Each of the village was linked to one of the
38 health posts covering the 2 health districts. The me-
dian number of villages linked to each health post was
11 [interquartile range 8; 19].
In 2017, 1.2 cases/1000 person-years were recorded in

the Bambey health district and 2.1 cases/1000 person-
years were recorded in the Fatick health district [2].
The trial of seasonal malaria chemoprevention (SMC)

was implemented in this area from 2008 to 2010 [16,
23–25]. The SMC protocol consisted in administering a
combination of sulfadoxine-pyrimethamine and amodia-
quine to children (under 5 years of age in 2008 and
under 10 years of age in 2009–2010) once a month from
September to November. As part of this trial [16, 25], a
surveillance system was put in place in each health post
of the study area. A list of GPS-positioned villages was
established for each health post. A census of the popula-
tion in each village was conducted annually from January
2008 to December 2012. Malaria cases (detected by
rapid diagnostic test) were reported daily with the village
name and collected at the health post level. Malaria
cases were aggregated per week in this study.
Vegetation data for the same period were derived from

MODIS (Moderate-Resolution Imaging Spectroradi-
ometer) rasters [26]. Four MODIS-derived vegetation
types were present in the area: open shrublands, grass-
lands, croplands, and mixed vegetation. The latter con-
sisted of a mosaic of croplands, forests, shrublands, and
grasslands, in which no single component represented
more than 60% of the landscape. For each village centre,
a buffer zone of 0.55 km (550 m) radius was defined.
This was the smallest radius at which we could operate
the sensor data. The percentage of surface areas
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occupied by different types of vegetation within a 0.55
km radius buffer zone was calculated annually (Add-
itional file 1), and the vegetation type covering the lar-
gest surface area was retained as the dominant type.
Total weekly rainfall was calculated for each village

using daily rainfall amounts (mm) that were derived
from the Tropical Rainfall Measuring Mission (TRMM)
and extracted from the NASA Goddard Earth Sciences
website with a 0.25 degree resolution [27].

Statistical methods
First, we conducted a change-point analysis of the time
series of weekly malaria incidence over the entire study
area in order to detect High Transmission Periods
(HTPs) and Low Transmission Periods (LTPs). As per
this method, we identified the dates (referred to as
change-points) associated with significant changes in the
mean and variance of the malaria incidence rate. We
chose to use the PELT (Pruned Exact Linear Time)
algorithm and the MBIC (Modified Bayes Information
Criterion) penalty criterion for convergence and
optimization reasons [28–30].
Second, for each identified period, we searched for

high-risk clusters (hotspots) using the SaTScan method
developed by Kulldorff [31]. Following this approach,
neighbouring villages were aggregated into groups with
similar incidence using an elliptical window with variable
size, centre, and rotation. Kulldorff’s statistics based on
the likelihood ratio (Poisson model with a purely spatial
analysis) were tested using a Monte Carlo algorithm
(999 replicates). A hotspot was then selected when the
incidence inside the window was significantly higher
(p < 0.05) than the incidence outside. For a given trans-
mission period, a village was defined as a hotspot if it
belonged to a significant cluster detected by SaTScan.
Third, we used a generalized additive mixed model

(GAMM) [32] to assess the spatio-temporal variation of
hotspot status for each village according to successive
transmission periods. This allowed us to assess the non-
linear relation between variables and the hotspot risk,
and to take into account the spatial effect.
Thus, a spline smoothing function of time by vegetation

type, f1(Time, by =Vegetation) (eq.1), was used to estimate
the temporal variation of hotspot risk according to vegeta-
tion type. Because the impact of rainfall on malaria can be
modified by vegetation, a spline smoothing function of
rainfall by vegetation type, f2(Rain, by =Vegetation) (eq.1),
was used to estimate the variation of the rainfall effect on
hotspot risk according to vegetation type.
We also included in the model a village-level binary

variable, SMC, to estimate the effect of SMC interven-
tions [16] on hotspot status.
A bivariate spline function of the geographical coordi-

nates of villages [32], f3(Longitude, Latitude) (eq.1), was

used to estimate the spatial variation of hotspot status,
and thereby to obtain spatial interpolations for the entire
study area.
The link between each village and its corresponding

health post was expressed as a random effect of the
“HealthPost” variable.
A first-order autoregressive correlation was integrated

into the variance-covariance matrix to account for tem-
poral autocorrelation. The final model was selected by
minimizing the Akaike criterion.

logit Pð Þ ¼ ln
P

1−P

� �
¼ β0 þ β�SMC

þ f 1 Time; by ¼ Vegetationð Þ
þ f 2 Rain; by ¼ Vegetationð Þ
þ f 3 Longitude; Latitudeð Þ
þ u�HealthPost þ ε

ð1Þ

where P is the probability (or risk) of a village being a
hotspot, β0 was the intercept, β the associated fixed par-
ameter estimating the SMC effect, f1, f2, and f3 the spline
functions, u the random parameter associated with the
HealthPost, and ε the residuals whose covariance matrix
had a first-order autoregressive structure.
The results of the spline smoothing functions were

plotted on the scale of logit(P), see eq. 1, where P is the
probability (or risk) of a village being a hotspot. A factor
X (i.e., the function of Time, Rainfall, or Location) has a
changing effect according to the values taken (k): this is
a non-linear effect. If the smoothed value, f(k), is posi-
tive, the risk of a village being a hotspot is increased at
this value; if negative, the risk is decreased.
Statistical analyses were done with R 3.4.2 (The R

Foundation for Statistical Computing, Vienna, Austria)
(packages {changepoint} {mgcv}). Hotspot detection was
performed with SaTScan 9.4 (Information Management
Services Inc., Silver Spring, Maryland, USA). Hotspots
maps were produced using QGIS 2.14.2 (Open Source
Geospatial Foundation, Boston, USA) with statistical
analysis results, Senegal shapefile [33] and landcover ras-
ters [34] extracted from MODIS NASA.

Results
Temporal evolution of the malaria incidence
During 2008–2012, the malaria incidence rate for the
entire area showed an annual resurgence dependent on
rainfall (Fig. 1). The incidence rate peaks of epidemic pe-
riods ranged from 26.4 cases/100,000 person-weeks in
2009 (October) to 115.34 cases/100,000 person-weeks in
2012 (October). Low to very low incidences of malaria
were recorded even during the driest and hottest
seasons.
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Identification of malaria transmission periods
The change-point analysis helped to detect 5 LTPs and
5 HTPs (Fig. 1).
The HTPs (except for the last one) overlapped 2 con-

secutive years. Annual epidemics began in July or Au-
gust and ended in January or February of the following
year. The median HTP duration was 28 weeks. The 2012
HTP had the highest cumulative malaria incidence rate
(38.1 cases/100,000 person-weeks). The 2009–2010 HTP
had the lowest cumulative malaria incidence rate (7.53
cases/100,000 person-weeks) (Table 1).
LTPs began in January or February and ended between

June and August. The median LTP duration was 27.5
weeks. The 2011 LTP had the highest cumulative malaria
incidence rate (2.73 cases/100,000 person-weeks), and the
2010 LTP had the lowest cumulative malaria incidence
rate (0.83 cases/100,000 person-weeks) (Table 1).

Hotspot characterization during HTPs
The cluster analysis helped to detect 356 villages (out of
575) that were malaria hotspots at least once during
HTPs (Table 2).
During HTPs, the median malaria incidence in hotspot

and non-hotspot villages was 33.94 and 7.53 cases/100,
000 person-weeks, respectively (Table 1).

The 2012 HTP had the largest number of hotspot
villages (147). These villages were mostly located in
the northeast of the study area (Fig. 2) and were
dominated by grasslands (representing 59.9% of vil-
lages). By contrast, the 428 non-hotspot villages were
dominated by mixed vegetation (representing 51.2% of
villages). This HTP showed the highest cumulative
malaria incidence rate in both hotspot and non-
hotspot villages (119.24 and 25.74 cases/100,000
person-weeks, respectively) (Table 1). It also showed
the highest weekly average rainfall in both hotspot
and non-hotspot villages (31.71 and 30.49 mm/week,
respectively).
The 2009–2010 HTP was the least affected HTPs by

malaria, with only 62 hotspot villages (37.1% of which
received SMC intervention) compared to 513 non-
hotspot villages (39.18% of which received SMC inter-
vention). Hotspot villages were mainly located in the
southeast of the study area (Fig. 2). The cumulative mal-
aria incidence rate in hotspot and non-hotspot villages
was 27.0 and 5.17 cases/100,000 person-weeks, respect-
ively. The weekly average rainfall was low (but not the
lowest) at 20.61 and 18.21 mm/week, respectively. Both
hotspot and non-hotspot villages were dominated by
mixed vegetation (representing 93.55 and 83.04% of vil-
lages, respectively).

Fig. 1 Evolution of weekly malaria incidence and rainfall through transmission periods. Malaria incidence (continuous red curve); High
Transmission Periods (HTP, in grey) and Low Transmission Periods (LTP, in white) with their duration (weeks, in black) and cumulative incidence
rates (red numbers); total weekly rainfall (in blue)
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Table 1 Characteristics of transmission periods and hotspots

Period: (cumulative inca),
dates, duration

Hotspot
status

Number of
villages

Cumulative
incidence rate a

SMCb

(%)
Weekly average
rainfall
(mm/week)
(SDc)

Dominant
vegetation typed

(% village)

2008 LTP (0.93)
01/01/2008 -
30/06/2008 -
26 weeks

Hotspot 19 9.82 0 (0.00%) 1.9 (0.99) Mixed (63.16)

Non-Hotspot 556 0.44 0 (0.00%) 1.6 (0.77) Mixed (59.35)

2008–2009 HTP (14.88)
01/07/2008 –
12/01/2009 –
28 weeks

Hotspot 128 33.53 28 (21.87%) 26.41 (1.78) Mixed (88.28)

Non-Hotspot 447 5.46 47 (10.51%) 22.59 (2.46) Mixed (51.23)

2009 LTP (0.88)
13/01/2009 –
03/08/2009 –
29 weeks

Hotspot 27 10.66 0 (0.00%) 10.54 (2.02) Mixed (96.3)

Non-Hotspot 548 0.5 0 (0.00%) 8.26 (1.57) Mixed (83.58)

2009–2010 HTP (7.53)
04/08/2009 –
15/02/2010 –
28 weeks

Hotspot 62 27.04 23 (37.1%) 20.61 (1.79) Mixed (93.55)

Non-Hotspot 513 5.17 201 (39.18%) 18.21 (2.24) Mixed (83.04)

2010 LTP (0.83)
16/02/2010 –
12/07/2010 –
21 weeks

Hotspot 22 12.61 0 (0.00%) 2.43 (1.46) Mixed (68.18)

Non-Hotspot 553 0.41 0 (0.00%) 3.39 (1.58) Mixed (62.03)

2010–2011 HTP (29.9)
13/07/2010 –
24/01/2011 –
28 weeks

Hotspot 142 80.26 77 (54.22%) 23.4 (1.49) Mixed (57.04)

Non-Hotspot 433 19.61 294 (67.9%) 22.95 (2.98) Mixed (63.97)

2011 LTP (2.73)
25/01/2011 –
22/08/2011 –
30 weeks

Hotspot 43 12.69 0 (0.00%) 8.39 (1.25) Mixed (72.09)

Non-Hotspot 532 1.57 0 (0.00%) 9.52 (0.83) Grasslands (40.79)

2011–2012 HTP (14.62)
23/08/2011 –
09/01/2012 –
20 weeks

Hotspot 105 34.35 0 (0.00%) 18.52 (0.51) Grasslands (35.24)

Non-Hotspot 470 9.59 0 (0.00%) 18.93 (1.53) Mixed (41.70)

2012 LTP (1.66)
10/01/2012 –
09/07/2012 –
26 weeks

Hotspot 10 19.16 0 (0.00%) 4.93 (0.69) Mixed (60)

Non-Hotspot 565 1.24 0 (0.00%) 3.61 (0.8) Mixed (42.83)

2012 HTP (38.1)
10/07/2012 –
31/12/2012 –
24 weeks

Hotspot 147 119.24 0 (0.00%) 31.71 (2.36) Grasslands (59.86)

Non-Hotspot 428 25.74 0 (0.00%) 30.49 (1.93) Mixed (51.17)

High Transmission Periods (HTP) and Low Transmission Periods (LTP) with cumulative incidence rate, start and end dates, and duration (in weeks); hotspot status
of villages (hotspot or non-hotspot); number of hotspot and non-hotspot villages; cumulative incidence rate in hotspot and non-hotspot villages; number and
percentage of hotspot and non-hotspot villages that received seasonal malaria chemoprevention (SMC); weekly average rainfall and standard deviation in hotspot
and non-hotspot villages; dominant vegetation type (open shrublands, grasslands, croplands, mixed vegetation) in hotspot and non-hotspot villages for
each period
a Cumulative incidence rate (cases/100,000 person-weeks)
b Number and percentage of villages that received SMC (seasonal malaria chemoprevention)
c Standard deviation
d Dominant vegetation type for each period

Table 2 The different hotspot types and the associated number of villages

Hotspot type Hotspot during
all 5 LTPs

Hotspot mainly
during HTPs

Hotspot mainly
during LTPs

Hotspot equally during
LTPs and HTPs

Never a
hotspot

Hotspot only
during HTPs

Hotspot only
during LTPs

Number of villages (%) 3 (0.52%) 47 (8.17%) 5 (0.87%) 13 (2.26%) 205 (35.65%) 288 (50.1%) 14 (2.43%)

Number and percentage of villages that were a hotspot during all 5 LTPs, mainly during HTPs, mainly during LTPs, equally during LTPs and HTPs, never, only
during HTPs, and only during LTPs
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Hotspot characterization during LTPs
The cluster analysis helped to detect 82 villages (out of
575) that were malaria hotspots at least once during
LTPs (Table 2).
During LTPs, the median malaria incidence in hotspot

and non-hotspot villages was 12.65 and 0.87 cases/100,000
person-weeks, respectively (Table 1).
The 2011 LTP had the longest duration (30 weeks) and

showed the highest number of hotspot villages (43). These
villages were located mainly in the south of the study area
(Fig. 2). This LTP showed a high cumulative malaria inci-
dence rate in hotspot villages and the highest cumulative
malaria incidence rate in non-hotspot villages (12.69 and
1.57 cases/100,000 person-weeks, respectively). The
weekly average rainfall was fairly high at around 9mm/
week in both hotspot and non-hotspot villages. Hotspot
villages were dominated by mixed vegetation (representing
72.09% of villages), whereas non-hotspot villages were
dominated by grasslands (representing 40.79% of villages).

The 2010 LTP had the shortest duration (21 weeks)
and 22 hotspot villages located in the northwest and
west-central parts of the study area (Fig. 2). The cumula-
tive malaria incidence rate in hotspot villages was 12.61
cases/100,000 person-weeks, compared to a very low cu-
mulative malaria incidence rate of 0.41 cases/100,000
person-weeks in the 553 non-hotspot villages. The
weekly average rainfall was low at around 3mm/week in
both hotspot and non-hotspot villages.
The descriptions of the other transmission periods are

available in additional file 2.

Factors associated with the spatio-temporal variation of
malaria hotspots
According to the multivariate analysis (GAMM, 38% de-
viance explained), villages receiving SMC intervention
were protected from the risk of being a hotspot (OR =
0.48, 95%CI: (0.33, 0.68)). The random effect of health
posts was significant (τ = 0.53, 95%CI: (0.31, 0.88)).

Fig. 2 Spatio-temporal distribution of hotspot villages and vegetation type during transmission periods from 2008 to 2012. Hotspot villages (red
dots) and non-hotspot villages (black dots); vegetation type (land cover: open shrublands in beige, grasslands in orange, croplands in yellow, and
mixed vegetation in green) according to transmission periods (LTP, HTP) from 2008 to 2012 in Bambey and Fatick health districts, Senegal.
Acknowledgements:the Senegal shapefile were downloaded in gadm website and Landcover rasters extracted from MODIS NASA website.
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For villages dominated by open shrublands, the risk of
being a hotspot did not vary over time (Fig. 3, panel A).
A non-linear association was found between rainfall and
the risk of being a hotspot (p = 0.0002; Fig. 4, panel A).
When rainfall was not very abundant, these villages were
relatively protected from the risk of being a hotspot.
However, this risk became significant from 15mm/week
rainfall (Smoothed value = 1.26, 95%CI: (0.09, 2.43)) and
continued to increase before stabilizing at a maximum
rainfall of around 22 mm/week (Smoothed value = 2.47,
95%CI: (1.24, 3.7)).
For villages dominated by grasslands, the risk of being a

hotspot varied significantly over time (p < 0.0001; Fig. 3,
panel B). This risk became significant and increased from

late December 2009 (Smoothed value = 0.76, 95%CI: (0.12,
1.40)), peaked in early November 2010 (Smoothed value =
2.13, 95%CI: (1.45, 2.82)), and then decreased until late Sep-
tember 2011 (Smoothed value = 0.46, 95%CI: (0.03, 0.9)).
These villages were protected from the risk of being a hot-
spot from early January 2012 (Smoothed value =− 0.65,
95%CI: (− 1.2, − 0.1)) to late December 2012 (Smoothed
value =− 2.04, 95%CI: (− 3.22, − 0.84)). Moreover, a non-
linear association was found between rainfall and the risk of
being a hotspot (p < 0.0001; Fig. 4, panel B). When rainfall
was not very abundant, these villages were relatively pro-
tected from the risk of being a hotspot. However, this risk
became significant from 19mm/week rainfall (Smoothed
value = 0.52, 95%CI: (0.01, 1.04)) and increased with rainfall.

Fig. 3 Temporal evolution of the risk of being hotspot with 95%CI according to vegetation type. Temporal evolution of the risk of being a hotspot
(continuous black curve) with 95% confidence interval (discontinuous black curves) according to each vegetation type: open shrublands (panel a),
grasslands (panel b), croplands (panel c), and mixed vegetation (panel d). HTPs and LTPs are indicated in grey and white, respectively. The vertical red
lines indicate the dates of interest, at which villages were at risk of being hotspot. The horizontal red lines indicate the zero reference line
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For villages dominated by croplands, the risk of being
a hotspot varied little over time (p = 0.0013; Fig. 3, panel
C). This risk became significant from late April 2010
(Smoothed value = 0.58, 95%CI: (0.07, 1.08)), peaked in
mid-November 2010 (Smoothed value = 1.08, 95%CI:
(0.48, 1.68)), and then decreased until mid-May 2011
(Smoothed value = 0.7, 95%CI: (0.01, 1.42)). These vil-
lages were relatively protected from the risk of being a
hotspot from late January 2012 to late December 2012
(Smoothed value = − 0.63, 95%CI: (− 1.2, 0.05) to
Smoothed value = − 1.17, 95%CI: (− 2.12, − 0.25)). More-
over, a non-linear association was found between rainfall
and the risk of being a hotspot (p < 0.0001; Fig. 4, panel
C). When rainfall was not very abundant, these villages

were relatively protected from the risk of being a hot-
spot. However, this risk became significant from 18mm/
week rainfall (Smoothed value = 0.72, 95%CI: (0.09,
1.36)) and continued to increase roughly with rainfall.
For villages dominated by mixed vegetation, the risk of

being a hotspot varied over time (p < 0.0001; Fig. 3, panel
D). This risk increased from mid-June 2008 (Smoothed
value =0.42, 95%CI: (0.14, 0.7)), peaked in early April
2011 (Smoothed value =2.16, 95%CI: (1.61, 2.71)), and
then decreased until mid-October 2011 (Smoothed value
=0.48, 95%CI: (0.09, 0.87)). These villages were protected
from the risk of being a hotspot from late November
2011 (Smoothed value = − 0.4, 95%CI: (− 0.76, − 0.03)) to
late December 2012 (Smoothed value = − 2.65, 95%CI:

Fig. 4 Evolution of the risk of being hotspot with 95%CI according to rainfall and vegetation type. Evolution of the risk of being a hotspot
(continuous black curve) with 95% confidence interval (discontinuous black curves) according to weekly rainfall and vegetation type: open
shrublands (panel a), grasslands (panel b), croplands (panel c), and mixed vegetation (panel d). Vertical red lines show the amount of rainfall
starting from which rainfall became a risk factor
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(− 3.22, − 1.97)). Moreover, a non-linear association was
found between rainfall and the risk of being a hotspot
(p < 0.0001; Fig. 4, panel D). Once again, when rainfall
was not very abundant, the villages were relatively pro-
tected from the risk of being a hotspot. This risk became
significant from 21mm/week rainfall (Smoothed value =
0.29, 95%CI: (0.02, 0.56)) and continued to increase
linearly with rainfall.
According to the spatial interpolation obtained with

the multivariate GAMM for the entire study (Fig. 5), 2
zones (red colour) located in the southwest and south-
east of the study area had the highest risk of being a hot-
spot (Smoothed value min = 0.64, 95%CI: (0.02, 1.27);
Smoothed value max = 4.1, 95%CI: (3.29, 4.92)). More-
over, villages located in 2 geographically restricted
areas—one in the extreme northwest and the other in
the east-central part of the study area (blue colour)—
were relatively protected from this risk (Smoothed value
min = − 8.99, 95%CI: (− 12.96, − 5.02); Smoothed value
max = − 0.8, 95%CI: (− 1.57, − 0.03)).

Discussion
In our study, the risk of a village being a malaria hotspot
varied over time and space, depending on meteoro-
logical, environmental, and preventive factors. Two mal-
aria transmission periods types were identified, with

HTPs extending from July–August to January–February
of the next year, well after the end of the rainy season.
Similar transmission dynamics have been reported in
Mali (Bamako and Bandiagara) [15, 35] and Burkina
Faso (Ouagadougou) [36].
Malaria persisted in the study area during LTPs (with

a low to very low incidence), as only 5 weeks showed no
recorded cases (3 non-consecutive weeks in 2009, 1 week
in 2010, and 2012). This confirms that malaria was en-
demic in the study area.
Our findings indicate that the temporal dynamics of

malaria incidence should be taken into consideration in
studies of malaria in the Sahel. Moreover, they highlight
the importance of collecting data beyond the end of the
rainy season, as opposed to aggregating them by calen-
dar year. The latter approach fails to accurately repre-
sent HTPs, and may therefore hinder the effectiveness of
control strategies. In our study, the last HTP was slightly
incomplete due to the fact that data were collected from
January 1st, 2008 to December 31st, 2012.
While hotspots have enjoyed renewed interest since

the 2000s [37], there is no consensus on their definition
or on the method that should be adopted for their detec-
tion [8, 21, 38, 39]. Our study used the statistical defin-
ition given by the Kulldorff cluster detection method
[31]. Because the performances of this method are

Fig. 5 Spatial distribution of the different hotspot types and the associated spatial risk of being hotspot. The black curves are the contours of
bivariate smoothed values; the colour bar is the ascending level of risk indicated by the spline smoothing function values (smoothed values) from
blue to red; red dots represent the villages that were a hotspot during all 5 LTPs (Hot5LTP), orange dots those that were a hotspot mainly during
HTPs (MajoHotHTP), yellow dots those that were a hotspot mainly during LTPs (MajoHotLTP), blue dots those that were a hotspot equally during
HTPs and LTPs (EquaHTPLTP), green dots those that were never a hotspot (NeverHot), brown dots those that were a hotspot only during HTPs
(OnlyHotHTP), and black dots those that were a hotspot only during LTPs (OnlyHotLTP)
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known to be sensitive to edge effects and non-circular
clusters [40, 41], an elliptical window was used to
minimize this impact and the Oliveira measure was used
to assess the cluster edge [42]. However, 14 villages lo-
cated in the southwest of the study area were never
identified as hotspot villages in our cluster analysis, even
though spatial interpolation obtained with the multivari-
ate GAMM found that the risk of being a hotspot was
high in this zone (Fig. 5). Knowing that SaTScan per-
formance improves with incidence level, size of at-risk
population, and relative risk [43, 44], we divided the
malaria incidence rate time series into HTPs and LTPs
with the change point analysis method, before assessing
spatial clusters to facilitate the detection of hotspot vil-
lages during low transmission periods. In addition, in a
highly seasonal transmission setting, the dynamics of
malaria incidence can vary greatly between the seasonal
peak (during which incidence is expected to increase)
and the low-transmission season (during which inci-
dence can persist at low intensity). As expected, the
spatial location of cases was more spread out in the high
incidence season than in the low incidence season due
to favourable conditions for transmission. While the
analysis of high transmission periods allows for identify-
ing zones with the highest burden of cases, a separate
analysis of low transmission periods may help to detect
foci of persistent transmission that can play a significant
role in the annual resurgence of epidemics. These elements
could help the Senegal malaria program to refine its tar-
geted control strategies. Moreover, our study area covers
part of the health districts defined as low transmission (inci-
dence < 5 cases/ 1000 person-years) by the Senegal malaria
program. This program has already focused on hotspots:
focal test and treat, focal screen and test, focal drug admin-
istration, epidemic response indoor residual spraying,
primaquine single low-dose [45]. It should be noted that
our approach is similar to that used in other studies con-
ducted in Mali and Burkina Faso [35, 36, 46].
Hotspot variation is not obvious. In our study, the lo-

cation of hotspots was unstable across transmission pe-
riods (LTPs and HTPs). Seasonal and annual instability
of malaria hotspots (household and village scales) was
also reported in Kenya and in Sudan (Khartoum) [3, 7,
8, 21, 47]. By contrast, malaria hotspots were found to
be relatively stable in Burkina Faso (Ouagadougou and
Nanoro) and Mali [15, 36, 46], while P. falciparum car-
rier hotspots were shown to be stable in Kenya [8]. The
data on parasite carriage were not available in our study.
As a result, we were unable to explore the relationship
between hotspot, the force of infection, and clinical inci-
dence, as was done in other studies [8].
Our study found non-linear associations between me-

teorological, environmental, and preventive factors. It
also found that the risk of being a hotspot varied over

time and space and according to health post (significant
random effect).
We therefore sought to explore how the variation of

factors (e.g., meteorological and environmental factors)
impacted the variation in the risk of a village being a
hotspot over time and space. Our results showed that
rainfall was positively associated with the risk of being a
hotspot, and this non-linear association depended on
vegetation type. While the relationship between rainfall
and malaria occurrence has been widely discussed in the
literature [15, 35, 36, 48, 49], our study indicates that the
impact of rainfall on malaria depends on both the
amount of rainfall and the type of vegetation, and that
this interaction in turn modifies hotspot distribution.
Thus, for villages dominated by open shrublands, the
risk of being a hotspot increases from the first rains and
then reaches a plateau from 22mm/week, likely because
heavy rains destroy breeding sites [50, 51]. By contrast, for
villages dominated by grasslands, croplands, or mixed
vegetation, the risk of being a hotspot increases only when
rainfall is above 10 or 15mm/week. The low smoothed
values corresponding to the beginning of the curves (Fig.
4, panel C) may be explained by soil quality or ploughing
practices that increase water infiltration [52] and reduce
breeding sites. In view of the spatio-temporal instability of
hotspots, we attempted to identify the similar characteris-
tics of hotspots based mainly on variations in environmen-
tal and meteorological factors, as these contribute to the
spatial heterogeneity of malaria. These factors should be
monitored [53] taking into consideration the environmen-
tal and meteorological characteristics common to all
hotspots, as this would lead targeted public health inter-
ventions at the local level.
Moreover, in our study, the risk of being a hotspot

varied according to the geographical location of villages
(Fig. 5), which confirms results from studies in India
[54], Kenya [21], and Ghana [55]. Thus, almost all of the
villages that were never a hotspot during the 10 trans-
mission periods were located in the 2 zones with the
lowest risk, i.e., in the northwest and east-central part of
the study area (Fig. 5). While the risk of being a hotspot
was highly variable in the south, 3 villages located in the
highest risk zone were hotspot during all LTPs. These
hotspots that persist during LTPs may be the source of
the seasonal increase in malaria transmission [3, 5, 56].
Furthermore, we were unable to assess the source of
transmission or the reservoir of infections because we
lacked data on mobility and asymptomatic parasite car-
riers [57], but they are an important and increasingly re-
ported source of malaria in low transmission areas [39,
58]. These factor may contribute to the instability of
hotspots over space and time.
Lastly, our study found that villages receiving SMC

intervention were protected from the risk of being a
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hotspot, corroborating studies that highlighted the ef-
fectiveness of SMC interventions in Senegal [16, 59].
Yet, despite the implementation of malaria control strat-
egies combining SMC, mass drug administration, long-
lasting insecticide-treated nets, and indoor residual
spraying [6, 59–62], malaria incidence remains high in
the country [2]. Malaria control strategies are generally
implemented at the beginning or in the middle of the
rainy season [16, 59–62], which effectively corresponds
to HTPs. However, as our findings suggest, the increase
in malaria incidence in hotspot villages and persisting
hotspots observed during LTPs can also affect malaria
transmission during HTPs. In view of this, we recom-
mend that spatially targeted strategies identifying
transmission bottlenecks be further addressed during
LTPs, as this may help shrink the parasite reservoir
and may thereby prevent malaria transmission during
subsequent HTPs.

Strengths

� We worked on quality data from a randomized trial
using a very fine and precise and spatio-temporal
scale.

� Using a set of spatial and temporal analysis methods,
our study proposed a methodology that explained
the variation of malaria hotspots over time and
space. This allowed us to estimate the risk of a
village being a hotspot anytime and anywhere in the
study area.

� This study allowed also to assess the impact of the
interaction between rainfall and vegetation on the
risk of a village being a hotspot. Therefore, we
obtained an estimate of the risk of a village being a
hotspot dependent on amount of rainfall and
vegetation type. This estimate could be made for any
other factor.

Limitations

� Data on rainfall and vegetation types were not
observed but were obtained through remote sensing.
Some villages received therefore the same amount of
rainfall as their neighbours due to pixel resolution.

� Socio-economic and behaviour data, which could
have helped to further explain the variation of
hotspots, were not available.

� The source of transmission or infectious reservoir
could not be assessed because data on mobility and
asymptomatic parasite carriers were unavailable.
This lack of data also prevented the assessment of
the relationship between hotspot, force of infection,
and clinical incidence, which has been explored in
other studies.

Conclusions
This study highlights the important variability (even at a
very local scale) of malaria transmission in central
Senegal over space and time, as well as the impact of
meteorological, environmental, and protective factors on
malaria risk. These factors should be monitored taking
into consideration the environmental and meteorological
characteristics common to all hotspots, as this would
lead targeted public health interventions at the local
level. Moreover, spatial hotspots and foci of malaria per-
sisting during LTPs need to be further addressed.

Supplementary information
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1186/s12879-020-05145-w.

Additional file 1. Vegetation type for each village determination: A 0.55
km radius buffer zone is defined around a village (light blue point) in
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67.2%), grasslands (orange, 26.2%), croplands (yellow, 3.1%), and mixed
vegetation (green, 3.5%). Thus, the dominant vegetation type for this
village in 2012 is open shrublands.
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