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Abstract:  

 

Background: In Alcohol Use Disorder (AUD), drinking cessation is frequently associated 

with an alcohol withdrawal syndrome (AWS). Early in abstinence (within the first two 

months after drinking cessation), when patients do not exhibit physical signs of AWS 

anymore (such as nausea, tremor or anxiety), studies report various brain, sleep and cognitive 

alterations, highly heterogeneous from one patient to another. While the acute neurotoxicity 

of AWS is well known, the contribution of AWS severity to structural brain alterations, sleep 

disturbances and neuropsychological deficits observed early in abstinence has never been 

investigated.  

 

Objective: This study aimed at elucidating the association between AWS severity and brain 

volume, sleep and cognitive functioning in recently detoxified AUD patients. 

 

Methods: We included 54 AUD patients early in abstinence (from 4 to 21 days of sobriety) 

and 50 healthy controls (HC) matched for age, sex and education. When acute physical signs 

of AWS were no more present, patients performed a detailed neuropsychological assessment, 

a T1-weighted MRI, and a polysomnography for a subgroup of patients. According to the 

severity of the clinical symptoms collected during the acute withdrawal period, patients were 

subsequently classified as Mild-AWS patients (Cushman score  4, no benzodiazepine 

prescription, N=17) or Moderate-AWS patients (Cushman score > 4, benzodiazepine 

prescription, N=37). Patients with severe withdrawal complications (delirium tremens or 

seizures) were not included. 

 

Results: Mild-AWS patients presented similar gray matter (GM) volume and sleep quality as 

HC, but lower processing speed and episodic memory performance. Compared to HC, 

moderate-AWS patients presented Non-Rapid Eye Movement (NREM) sleep alterations, 

widespread GM shrinkage and lower performance for all the cognitive domains assessed 

(processing speed, short-term memory, executive functions and episodic memory). Moderate-

AWS patients presented a lower percentage of slow wave sleep, GM atrophy in fronto-insular 

and thalamus/hypothalamus regions, and lower short-term memory and executive 

performance than mild-AWS patients. Mediation analyses revealed both direct and fronto-

insular and thalamus/hypothalamus atrophy-mediated relationships between poor sleep 

quality and cognitive performance.  
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Conclusion: AWS severity, which reflects neurotoxic hyperglutamatergic activity, should be 

considered as a critical factor for the development of NREM sleep alterations, fronto-insular 

atrophy and executive impairments in recently detoxified AUD patients. The glutamatergic 

activity is involved in sleep-wake circuits and may thus contribute to molecular mechanisms 

underlying alcohol-related brain damage, resulting in cognitive deficits. AWS severity and 

sleep quality deserve special attention for a better understanding and treatment of brain and 

cognitive alterations observed early in abstinence, and ultimately for more efficient relapse 

prevention strategies. 

 

Keywords: Alcohol Use Disorder; Alcohol Withdrawal Syndrome; Sleep; Brain Structure; 

Cognition; Executive Functions. 
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Abbreviated summary 

Even in absence of severe alcohol withdrawal syndrome (AWS), moderate-AWS was 

associated with lower percentage of slow-wave sleep, which related to cognitive deficits both 

directly and indirectly via gray matter shrinkage. AWS severity seems to contribute to the 

pathophysiology of brain, sleep and cognitive damage in Alcohol Use Disorder patients. 
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Abbreviations: 

AHI: Apnea-Hypopnea Index 

AUD: Alcohol Use Disorder 

AUDIT: Alcohol Use Disorder Identification Test 

AWS: Alcohol Withdrawal Syndrome 

BDI: Beck Depression Inventory 

ESS: Epworth Sleepiness Scale 

FWE: Family wise error 

GM: Gray Matter  

HC: Healthy Controls 

MNI: Montreal Neurological Institute 

NREM: Non Rapid Eye Movement 

PSG: polysomnography 

PSQI: Pittsburg Sleep Quality Index 

REM: Rapid Eye Movement 

SE: sleep efficiency 

SPM: Statistical Parametric Mapping, 

TST: Total sleep time 
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1. Background 

In Alcohol Use Disorder (AUD) patients, cessation of alcohol consumption is 

frequently associated with several clinical symptoms (tremor, nausea, anxiety, insomnia, etc.) 

that constitutes the alcohol withdrawal syndrome (AWS; American Psychiatric Association, 

2013). The severity of AWS is variable in AUD patients, ranging from a mild clinical form to 

severe neurological complications such as seizures and delirium tremens, potentially leading 

to death (Jesse et al., 2017). From a neurobiological perspective, AWS results from a brain 

hyperexcitability due to increased glutamate transmission combined with decreased GABA 

transmission (De Witte et al., 2003). This excessive brain glutamate release is neurotoxic and 

has important consequences on brain functioning, mainly underlying the acute 

symptomatology of AWS (Tsai and Coyle, 1998; Lukoyanov et al., 1999; Kühn et al., 2014; 

Frischknecht et al., 2017).  

This cerebral hyperexcitability is also known to be related to sleep abnormalities, 

which can persist several months after alcohol cessation and increase the risk of relapse 

(Begleiter and Porjesz, 1979; Chakravorty et al., 2016). Early in abstinence (from 2 to 8 

weeks after detoxification, when acute physical symptoms of alcohol withdrawal are no more 

present), sleep abnormalities can be observed and consist of increased sleep latency and 

fragmentation, decreased sleep duration and sleep efficiency (defined as the ratio between 

time spent asleep and time in bed) as well as a decreased percentage of stage 3 (N3) of Non 

Rapid Eye Movement (NREM) sleep, also named slow-wave sleep (Heilig et al., 2010; 

Angarita et al., 2016). The potential alteration of Rapid Eye Movement (REM) sleep is still 

debated (Gillin et al., 1990; Chakravorty et al., 2016).  

Structural brain alterations and cognitive deficits have been well-described (Zahr et 

al., 2017) in recently sober AUD patients. Neuroimaging studies reported gray matter (GM) 

alterations mainly affecting two brain networks: the fronto-cerebellar (Kelly and Strick, 2003) 

and Papez circuits (Aggleton, 2012), which are involved in motor and executive abilities, and 

episodic memory respectively. As a result, a large number of recently detoxified AUD 

patients present neuropsychological deficits including executive, working memory and 

episodic memory impairments (Stavro et al., 2013; Le Berre et al., 2017). The extent of these 

cognitive alterations is extremely variable. Some patients have preserved abilities, others 

exhibit mild-to-moderate deficits and others present severe impairments. This heterogeneity 

observed in the severity of AUD-related brain and cognitive deficits could be explained by 

several factors, such as demographical variables (Bates et al., 2002; Nolen-Hoeksema, 2004; 
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Oscar-Berman et al., 2004), alcohol-related history (Zahr and Sullivan, 2008; Ritz et al., 

2016), malnutrition and thiamine deficiency (Zahr and Sullivan, 2008; Pitel et al., 2011), liver 

disease (Junghanns et al., 2004; Ritz et al., 2016), and repeated alcohol withdrawals 

(Kouimtsidis et al., 2019). 

Several studies reported that AUD patients who experienced multiple detoxifications 

(two or more) have more severe executive and decision making deficits (Duka et al., 2003, 

2011; Loeber et al., 2009), emotional impairments (Townshend and Duka, 2003; O’Daly et 

al., 2012), increased craving and anxiety-levels (Loeber et al., 2010), brain functional 

connectivity abnormalities (O’Daly et al., 2012) and altered cognitive recovery (Loeber et al., 

2010) compared to patients with none or only one previous withdrawal. Beyond the frequency 

of alcohol-withdrawal experiences, AWS severity may contribute to the heterogeneity of 

altered brain structure and function observed in AUD patients. To date, studies mainly 

focused on the identification of clinical predictors to prevent the development of severe AWS 

(Goodson et al., 2014; Kim et al., 2015; Silczuk and Habrat, 2020). These investigations 

highlighted the role of the alcohol consumption level and the number of previous 

detoxifications (Duka et al., 2004) in the development of seizures and/or delirium tremens. To 

our knowledge, little is known regarding the effect of mild to moderate AWS on cognitive 

performance, GM volume and sleep quality in recently detoxified AUD patients.   

The aim of the present study was thus to explore whether, even in absence of delirium 

tremens and/or seizures, AWS severity contributes to the heterogeneity of cognitive deficits, 

brain alterations and sleep changes observed in recently detoxified AUD patients.  

 

2. Materials & Methods 

2.1.Participants 

 

One hundred and four participants were included in this study: fifty-four AUD 

inpatients and fifty healthy controls (HC). None of them had a history of neurological, 

endocrinal, infectious diseases, depression (assessed using both the Beck Depression 

Inventory (BDI (Beck et al., 1961) and a psychiatric assessment) nor other forms of substance 

use disorder (except tobacco). All participants were informed about the study approved by the 

local ethics committee of Caen University Hospital (CPP Nord Ouest III, no. IDRCB: 2011-

A00495-36) prior to their inclusion and provided their written informed consent. The study 

was conducted in France from 2016 to 2019. 
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AUD patients were recruited by clinicians while they were receiving withdrawal treatment 

as inpatients at Caen University Hospital. AUD patients met “alcohol dependence” criteria 

according to the DSM-IV-TR (American Psychiatric Association (APA), 2000) or “severe 

AUD” criteria according to the DSM-5 (Harper, 2014) for at least 5 years. HC were recruited 

to match the demographics (age, sex and education) of the AUD patients. They were 

interviewed with the Alcohol Use Disorder Identification Test (AUDIT; (Gache et al., 2005) 

to ensure that they did not meet the criteria for alcohol abuse (AUDIT < 7 for men and <6 for 

women). None of the controls had a BDI (Gache et al., 2005) score > 29 and a Mini-Mental 

State Examination (Folstein et al., 1975) score < 26. Demographical data are presented in 

Table 1. 

2.2.Experimental design 

Assessment of alcohol withdrawal syndrome (AWS) 

All AUD inpatients included in this study underwent a symptom-triggered approach to 

the treatment of alcohol withdrawal, which requires to provide medication only when patients 

present alcohol-withdrawal symptoms (Saitz et al., 1994; Daeppen et al., 2002). The 

Cushman score was used to monitor the severity of AWS (Cushman et al., 1985), as 

recommended by the French Addiction Medicine Society and recognized by the European 

Federation of Addiction Societies (Société Française D’Alcoologie, 2017). This score takes 

the following clinical variables into account: hearth rate, systolic blood pressure, respiratory 

rate, tremor, sweating, agitation, and sensorial disorders. Each variable is scored from 0 to 3 

according to the severity of the symptom. The Cushman score refers to the sum of these 

subscores.  

Alcohol withdrawal symptoms were systematically assessed every four hours by the 

nursing staff supervised by a physician specialized in addiction medicine. When the Cushman 

score was, for the first time, superior or equal to 4, it was assessed a second time 30 minutes 

later to avoid false positive (caused by anxiety for example). When the Cushman score was 

higher than 4 twice in a row and/or when a history of severe alcohol withdrawal 

complications (seizure, delirium tremens) was known, a long-acting benzodiazepine with 

active metabolites (e.g. diazepam) was orally administered in order to alleviate AWS and 

prevent the development of a more severe AWS (Daeppen et al., 2002). In patients with 

hepatocellular or respiratory insufficiency, oxazepam was preferred to avoid over sedation or 

respiratory depression. A decrease in the benzodiazepine dosage was decided when the 
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Cushman score was lower or equal to 2 for at least 24 hours, at a rate of 15 to 30% of the total 

dose every 24 to 48 hours.  

 

AUD patients were classified into two groups according to the severity of AWS:  

- mild-AWS: a maximum Cushman score  4 and no benzodiazepine treatment required 

during the acute alcohol withdrawal period according to the symptom-triggered 

approach. 

- moderate-AWS: a maximum Cushman score > 4 and/or the presence of a history of 

severe alcohol withdrawal complications resulting in a benzodiazepine administration 

during the acute alcohol withdrawal period.  

None of the patients had undergone severe AWS defined by neurological 

complications such as delirium tremens or seizures during the acute withdrawal period 

examined in the course of the present study. 

For all AUD patients, the maximum Cushman score and the number of previous 

detoxifications were collected. For patients whom benzodiazepines were prescribed, we also 

recorded the number of days and the total amount of benzodiazepines received during alcohol 

withdrawal. Alcohol-related variables and withdrawal history are summarized in Table 1. 

 

Neuropsychological assessment 

All participants underwent a detailed neuropsychological examination focusing on 

processing speed, short-term memory, executive functioning, and episodic memory. 

Processing speed was measured with a composite score including the part A (time in seconds) 

of the Trail Making Test (Reitan and Wolfson, 1985) and the denomination condition (time in 

seconds) of the Stroop Test (Stroop, 1935). Short-term memory was assessed using verbal 

spans of the WAIS-III (Wechsler, 1997). For executive functions, a composite score was 

computed including performance on 3 tests assessing manipulation of information (verbal 

backward spans of the WAIS-III; Wechsler, 1997), inhibition (Stroop Test; Stroop, 1935) 

with the time in seconds needed to complete the interference condition minus time needed for 

the denomination condition, and mental flexibility (Modified Card Sorting Test, Cianchetti et 

al., 2005) with the number of perseverative errors. Two patients had missing data for one 
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measure; their composite score assessing executive functions was therefore computed using 

remaining scores. Episodic memory was examined through the sum of the 3 free recalls of the 

French version of the Free and Cued Selective Reminding Test (Van der Linden et al., 2004). 

Neuropsychological data were transformed into z-scores using the mean and standard 

deviation obtained from the HC. The sign of all variables for which high scores were in the 

impaired direction (such as completion time or number of errors) was reversed so that all the 

z-scores had the same direction: higher z-scores reflecting better performance.  

 

Magnetic Resonance Imaging Data Acquisition and preprocessing 

Brain imaging examinations were conducted in 31 HC and 43 AUD patients (13 mild-

AWS and 30 moderate-AWS) within the same week as the neuropsychological assessment. 

HC and the two subgroups of AUD patients were matched for age, sex and education level. 

All neuroimaging examinations were performed at Cyceron center (Caen, France).  

A high-resolution T1-weighted anatomical image was acquired for each subject on a 

Philips Achieva 3T scanner (Philips Health-care/Philips Medical Systems International B.V., 

Eindhoven, the Netherlands) using a 3-dimensional fast-field echo sequence (sagittal; 

repetition time, 20 ms; echo time, 4.6 ms; flip angle 10°; 180 slices; slice thickness: 1 mm; 

field of view 256 x 256 mm2; matrix, 256 x 256). The volumetric magnetic resonance 

imaging (MRI) data were analyzed using the Statistical Parametric Mapping software 

(SPM12; Welcome Department of Cognitive Neurology, Institute of Neurology, London, 

UK). Preprocessing steps included segmentation of the MRI data into gray matter (GM) and 

spatial normalization to the Montreal Neurological Institute (MNI) template (voxel size = 1.5 

mm3, matrix = 121 x 145 x 121). The normalized GM images were modulated by the 

Jacobian determinants to correct for nonlinear warping so that the resulting brain volumes 

were corrected for brain size. The resulting images were smoothed by a Gaussian kernel of 8 

mm full width at half maximum (FWHM). A GM mask was obtained taking the unmodulated 

GM images of HC normalized to the MNI space, averaging them, and thresholding the 

resultant mean image at 0.5. The resulting GM mask was applied to GM data analyses. 

 

Sleep   

A subgroup of 21 AUD (8 mild-AWS and 13 moderate-AWS) and 15 HC, matched for 

age, sex and education, underwent one night of polysomnography (PSG) using a portable 

recording device (Siesta®, Compumedics, Australia), allowing AUD patients to sleep at the 
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addiction department and HC at their home. The PSG was conducted within the same week as 

the neuropsychological and MRI examinations. The PSG acquisition consisted of twenty EEG  

electrodes (Fp1, Fp2, F3, F4, F7, F8, T3, T4, C3, C4, P3, P4, O1, O2, FZ, CZ, PZ, vertex 

ground and a bi-mastoid reference) placed over the scalp according to the international 10-20 

system, with impedances kept below 5 kΩ. We also recorded the electrooculogram (EOG), 

chin EMG, ECG, respiratory movements using abdominal and thoracic belts, respiratory 

airflow using nasal and oral thermistor, and oxygen saturation with a finger pulse oximeter. 

The EEG signal was digitalized at a sampling rate of 256 Hz. High-pass and low-pass filters 

were applied, respectively at 0.3 Hz and 35 Hz. PSG recordings were scored in 30-s epochs 

according to the American Association of Sleep Medicine (AASM, 2017) standard criteria. 

The following parameters were obtained: total sleep time (TST; in minutes), sleep efficiency 

(SE (%), corresponding to time spent asleep/ time in bed), sleep onset latency (in minutes, 

referring to the time from lights-off to the first three epochs of any stage of sleep), wake after 

sleep onset (in minutes), time spent in each sleep stage (N1, N2, N3, and REM sleep, 

expressed as percentages of TST), arousal index (number of arousals/ TST), stage shifts index 

(number of sleep stage transitions to N1/TST) and the Apnea-Hypopnea Index (AHI, 

corresponding to the number of respiratory events per hour of sleep). We also calculated a 

composite score to assess sleep fragmentation including the micro-arousal index, the arousal 

index and the number of stage transitions to N1.  

All participants underwent a self-assessment of their sleep quality using the Pittsburg 

Sleep Quality Index (PSQI; Buysse et al., 1989) in its initial version (previous month) for HC 

and with an adapted version (previous week, to better reflect the different stages of alcohol 

treatment) for AUD patients. The Epworth Sleepiness Scale (ESS; Johns et al., 1991) was 

proposed to assess signs of daytime sleepiness in all participants.  

 

2.3.Statistical analysis 

To test the differences between HC and the two subgroups of AUD patients (mild-

AWS and moderate-AWS), non-parametric Kruskall-Wallis’s tests were conducted on 

demographical variables (age and education) and a Chi² test was performed to compare the 

sex ratio in each group. Mann-Whitney’s tests were performed between mild-AWS and 

moderate-AWS for alcohol- and withdrawal-related variables. Non-parametric Kruskall-

Wallis’s tests were conducted on neuropsychological data and sleep measures followed by 

post-hoc comparisons (Mann-Whitney’s tests) when appropriate. The statistical threshold was 

set to p <0.05. 
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Neuroimaging data were analyzed using SPM12 (Statistical Parametric Mapping, 

www.fil.ion.ucl.ac.uk/spm). More precisely, we conducted voxel-based ANCOVAs to 

compare GM volume between HC, mild-AWS and moderate-AWS patients, controlling for 

the intracranial volume. We corrected for multiple comparisons (family wise error (FWE), 

p<0.05) with a minimal cluster size (k) of 60 voxels (200 mm3). Then, comparisons between 

the two-subgroups of AUD patients were reported at p<0.001 with a minimal cluster size (k) 

of 60 voxels (200 mm3). Only results surviving a cluster-level correction are reported.  

Finally, the relationships between GM volume, sleep variables and cognitive 

performance were examined in the entire group of AUD patients with Spearman’s 

correlations. Only the variables for which we found a significant difference between mild-

AWS and moderate-AWS were entered in the analyses. When we observed significant 

relationships between a sleep variable on the one hand and both a GM volume and a cognitive 

variable on the other hand, we performed causal mediation analyses to assess the 

directionality of the relationships. Mediations analyses allow to test whether the causal effect 

of an independent variable (X) on a dependent variable (Y) is explained by a mediating 

variable (M). In other words, X exerts its effects on Y because X affects M, which in turn, 

affects Y (Goldstone et al., 2018). Applied to our study, two models were tested to determine 

i) whether GM volume mediates the relationships between sleep and cognitive performance or 

ii) whether sleep mediates the relationships between GM volume and cognition. These 

analyses were performed using the “mediation” R package (Tingley et al., 2014). We reported 

the average direct effects (ADE) and average causal mediation effect (ACME) estimated 

using nonparametric bootstrapping (5000 simulations, p<.05) for each model. 

2.4.Data availability 

All data and materials used within this study will be made available, upon reasonable 

request, to research groups wishing to reproduce/confirm our results.  

3. Results 

3.1.Comparisons between HC, mild-AWS and moderate-AWS patients 

 

Demographical variables and anxiety-depression levels: Kruskall-Wallis tests with Group as 

a between-subject factor (HC, mild, moderate-AWS) did not reveal any significant effect of 

group for age (H(2,104) = 2.48, p = 0.29) and education (H(2,104) = 4.24, p = 0.12). A Chi
2
-test 
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showed that sex ratio was similar between groups (χ² = 2.85, p = 0.24). Kruskall-Wallis tests 

showed a significant effect of group for depression (H(2,103) = 42, p<0.0001), anxiety-state 

(H(2,102) = 8.55, p=0.01) and anxiety-trait (H(2,102) = 32.83, p<0.0001). Mild-AWS and 

moderate-AWS were both more depressed than HC (all p-values < 0.0001) but did not differ 

from each other (p = 0.85). Only moderate-AWS differed from HC on the anxiety-state 

questionnaire (p = 0.004). Mild-AWS and moderate-AWS exhibited higher levels of anxiety-

trait compared to HC (all p-values < 0.0001), but did not differ from each other (p = 0.14). 

Results are presented in Table 1.  

 

Alcohol-related variables: A Kruskall-Wallis test showed a significant effect of group for the 

AUDIT score (H(2,103) = 76.97, p < 0.0001). Post-hoc comparisons revealed, as expected, that 

mild-AWS and moderate-AWS patients presented higher AUDIT scores than HC (all p-

values = 0.0001) but did not differ from each other (p = 0.41). Mann-Whitney U tests did not 

show any significant difference between mild-AWS and moderate-AWS for the duration of 

alcohol misuse (U = 279,5, p = 0.73) and dependence (U = 265, p = 0.44), but moderate-AWS 

reported a higher daily alcohol consumption than mild-AWS patients (U = 191,5, p = 0.05; 

Table 1). 

 

Alcohol withdrawal variables: Mild-AWS and moderate-AWS patients had an equivalent 

number of previous detoxifications (U = 265,5, p = 0.44). As expected, compared to mild-

AWS patients, moderate-AWS patients had experienced a higher maximum Cushman score 

(U = 35, 5, p < 0.0001), had received more diazepam (U = 0, p < 0.0001) and during a longer 

period (U = 0, p < 0.0001 ; Table 1). 

Pattern of cognitive alterations Kruskall-Wallis tests revealed a significant effect of group for 

processing speed (H(2, 104) = 29.7, p < 0.0001), short-term memory (H(2, 103) = 12.68, p = 

0.002), executive functions (H(2, 104) = 23.38, p < 0.0001) and episodic memory (H(2, 104) = 

22.32, p < 0.0001). Post-hoc comparisons indicated that mild-AWS patients presented lower 

performance than HC for episodic memory (U = 148, p < 0.0001) and processing speed (U = 

177, p = 0.0004), but not for short-term memory (U = 422, p = 0.97) and executive 

performance (U = 384.5 , p = 0.56). Compared to HC, moderate-AWS patients presented 

lower performance for all cognitive measures (all p-values < 0.001). Compared to mild-AWS 

patients, moderate-AWS patients had lower executive (U = 154, p = 0.003) and short-term 

memory performance (U = 178. 5, p = 0.01), but did not differ for processing speed and 
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episodic memory (all p values > 0.05; Table 2 and Fig. 1). 

Pattern of GM alterations: Mild-AWS patients did not differ from HC regarding GM volume 

(p(FWE) < 0.05; Fig. 2A). Compared to HC, moderate-AWS patients had significantly lower 

GM volume in frontal and prefrontal areas, insula, lateral and medial temporal cortices 

(including the hippocampus and parahippocampal gyrus), cingulate and occipital cortices, 

cerebellum, and in subcortical regions including the thalamus, putamen, and caudate nuclei 

(p(FWE) < 0.05; Fig. 2B). Compared to mild-AWS patients, moderate-AWS patients had 

significantly lower GM volume in the right inferior frontal cortex (Broadman area 44), the 

bilateral insula, a cluster encompassing the anterior cingulate cortex and the medial superior 

frontal cortex, occipito-parietal regions and limbic structures including the anterior part of the 

thalamus and the hypothalamus. All regions listed above are significant at p < 0.001 

(uncorrected) threshold and survived the cluster-level correction p < 0.05; Fig. 2C). The 

reverse comparison (mild-AWS patients < moderate-AWS patients) did not reveal any 

significant result.  

Pattern of sleep alterations: Non-parametric Kruskall-Wallis tests revealed a significant effect 

of group for both percentage of sleep stages N1 (H (2, N=36) = 11.81 p = 0.003) and N3 (H (2, 

N=36) = 15.87 p = 0.0004). Post-hoc comparisons (Mann-Whitney U tests) showed that 

compared to HC, mild-AWS patients had similar percentage of N1 (p = 0.24) and N3 sleep (p 

= 0.52). Compared to HC, moderate-AWS patients showed higher percentage of N1 (p = 

0.0006) and lower percentage of N3 sleep (p = 0.0002). Compared to mild-AWS patients, 

moderate-AWS patients showed lower percentage of N3 sleep (p = 0.004; Table 2 and Fig. 

3).  

A significant effect of group was observed for the apnea-hypopnea index (AHI) (H (2, N=36) = 

7.99 p = 0.02). Post-hoc comparisons showed that mild-AWS patients and moderate-AWS 

patients exhibited a higher AHI compared to controls (p = 0.03 and p = 0.01 respectively) but 

did not differ from each other (p > 0.05). No group differences were observed for sleep 

latency, duration, efficiency and wake after sleep onset (all p-values > 0.05). Results 

remained unchanged when controlling for the AHI (data not shown).  

A significant effect of group was observed for the PSQI score (H(2, N=30) = 11.19, p = 0.004).  

Post-hoc comparisons showed that compared to HC, moderate-AWS patients had a higher 

score (p = 0.001). Mild-AWS patients did not differ from HC and moderate-AWS patients (all 
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p-values > 0.05). No group difference was observed on the ESS score (p-value > 0.05; Table 

2). 

3.2.Relationships between GM volume, sleep and cognitive performance in the entire 

group of AUD patients. 

 

Signal values within the significant clusters obtained from the comparison mild-AWS > 

moderate-AWS were extracted. Then, we conducted Spearman’s correlations between GM 

volumes, sleep variables and cognitive performance in the entire group of patients. Only 

variables for which we found a significant difference between mild-AWS and moderate-AWS 

patients were entered in these analyses (i.e. short-term memory performance, executive 

abilities and N3 sleep). Short-term memory performance positively correlated with GM 

volume in the insula (rho = 0.51, p = 0.01), occipito-parietal cortex (rho = 0.62, p = 0.003), 

inferior frontal gyrus (rho = 0.45, p = 0.04) and thalamus/hypothalamus (rho = 0.45, p = 

0.04), but not in the anterior cingulate cortex (p > 0.05). Executive performance positively 

correlated with all significant clusters of GM volume (insula: rho = 0.7, p = 0.0004; occipito-

parietal cortex: rho = 0.66, p = 0.001; anterior cingulate cortex: rho = 0.57, p = 0.007; inferior 

frontal gyrus: rho = 0.53, p = 0.01; thalamus/hypothalamus: rho = 0.64, p = 0.002). GM 

volume in all significant clusters positively correlated with the percentage of N3 sleep (insula: 

rho = 0.52, p = 0.01; occipito-parietal cortex: rho = 0.55, p = 0.009; anterior cingulate cortex: 

rho = 0.43, p = 0.05; inferior frontal gyrus: rho = 0.56, p = 0.008; thalamus/hypothalamus: rho 

= 0.51, p = 0.02). Moreover, the percentage of N3 sleep positively correlated with short-term 

memory (rho = 0.48, p = 0.03) and executive performance (rho = 0.44, p = 0.04).  

 

To better understand the directionality of the relationships between GM volume, N3 sleep and 

cognitive performance, we conducted mediation analyses and tested two models for each 

cluster. In the first one (Model 1), N3 sleep was the independent variable (X) and GM volume 

in the 5 significant clusters reported in the previous analysis was the mediator (M). In the 

second model (Model 2), GM volume was the independent variable (X) and N3 sleep was the 

mediator (M). In both models, cognitive variables (short-term memory or executive scores) 

were entered as the dependent variable (Y). First, considering short-term memory 

performance as the dependent variable, mediation analyses referring to both Model 1 and 2 

were not significant (p > 0.05; Supplementary Table 1). Second, considering executive 

functions performance as the dependent variable, mediation analyses revealed that the volume 
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of the bilateral insula (p=0.006), right inferior frontal cortex (p=0.02), occipito-parietal cortex 

(p=0.01) and the cluster including the anterior thalamus and the hypothalamus (p=0.02) 

significantly mediated the relationships between the percentage of N3 sleep and executive 

performance. None of the analyses referring to Model 2 was significant. Results of these 

mediation analyses are detailed in Table 3 and Fig. 4. 

 

4. Discussion 

 

The present study aimed at determining whether AWS severity contributes to the 

heterogeneity of sleep changes, brain alterations and cognitive deficits observed in AUD 

patients early in abstinence. We showed that AWS severity contributes to the 

pathophysiology of NREM sleep abnormalities, decrease GM volumes in fronto-insular and 

thalamus/hypothalamus regions as well as short-term memory and executive deficits in AUD 

patients early in abstinence. We also found that lower percentage of N3 sleep related to 

cognitive deficits (short-term memory and executive functions) both directly and indirectly 

via GM shrinkage in AUD patients. 

 

We showed that 68% of AUD patients exhibited a moderate AWS, which is a higher 

prevalence than the one reported in a previous study (Mirijello et al., 2015). In the present 

study, all patients were recruited in a special unit for alcohol detoxification. They were thus 

potentially at risk for AWS complications. Contrary to a previous study (Duka et al., 2004) in 

which only patients with severe alcohol withdrawal complications were included, we did not 

observe any association between multiple detoxifications and the severity of the current 

AWS. We also found that AUD patients with moderate AWS reported higher alcohol 

consumption during the month preceding withdrawal than those with mild AWS. This result 

suggests that during withdrawal, the brain hyperexcitability resulting from increased 

glutamate transmission combined to decreased GABA transmission may be related to the 

quantity of recent alcohol drinking (De Witte et al., 2003; Jesse et al., 2017).  

 

Our study first confirms the pattern of sleep alterations observed in recently detoxified 

AUD patients, consisting of increased light sleep (N1), a lower percentage of N3 sleep (Gillin 

et al., 1990; Junghanns et al., 2009; de Zambotti et al., 2014, Irwin et al., 2016a; Singh et al., 

2018) and the presence of a sleep complaint (Laniepce et al., 2019). It also specifies that only 
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patients with moderate AWS presented these objective sleep alterations, as well as self 

reported sleep difficulties. The difference observed between moderate- and mild-AWS 

patients for N3 sleep is in accordance with a previous study showing that the number of 

alcohol withdrawal symptoms was negatively related to the percentage of N3 sleep (Gillin et 

al., 1990). Sleep changes may be directly related to AWS severity since N3 sleep has been 

associated with lower glutamate levels (Dash et al., 2009). Even when the clinical symptoms 

of AWS have faded, a hyper-glutamate activity may persist and alter brain regions involved in 

the generation and maintenance of sleep rhythms, resulting in lower percentage of N3 sleep 

(Dang-Vu, 2012). Sleep abnormalities observed in our group of moderate-AWS patients may 

thus be interpreted as a persistent subacute alcohol withdrawal symptom (Brower, 2001; 

Feige et al., 2007). 

AWS severity was also related to structural brain alterations in the right inferior 

frontal cortex, the bilateral insula, the anterior cingulate cortex and the 

thalamus/hypothalamus, which are brain regions known to be affected in AUD patients (Pitel 

et al., 2012; Yang et al., 2016). Regarding the effect of AWS severity on the anterior 

cingulate cortex, studies using magnetic resonance spectroscopy reported increased glutamate 

levels in this brain region during alcohol withdrawal in both humans and rats (Lee et al., 

2007; Hermann et al., 2012). Several studies suggested that the extent of structural brain 

abnormalities in AUD patients may be partially explained by alcohol withdrawal-related 

toxicity (De Witte et al., 2003; Duka et al., 2011; O’Daly et al., 2012; Trick et al., 2014; 

Frischknecht et al., 2017). During alcohol withdrawal, the glutamate-mediated excitotoxicity 

induces neuronal death, which may explain structural brain alterations observed early in 

abstinence in AUD patients (Tsai and Coyle, 1998). The frontal lobes being particularly rich 

in glutamatergic pathways (Kril et al., 1997), they are likely to be especially vulnerable to the 

severity of AWS. However, we do not exclude that these brain alterations may have been 

present before alcohol cessation because of the effects of chronic and heavy alcohol 

consumption or a family history of AUD or comorbidities such as liver disease or thiamine 

deficiency (Harper, 2009; Chen et al., 2012; Filippi et al., 2019). In this case, altered brain 

structure would constitute a vulnerability factor for exhibiting more severe AWS. Further 

studies including longitudinal measures of glutamate levels combined with structural MRI at 

different stages of the disease (active drinking, withdrawal period and abstinence) are now 

required. 

Regarding cognitive abilities, our findings indicate that AWS severity may have 

deleterious effects on short-term memory and executive performance. While short-term 
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memory deficits have previously been reported in AUD patients (Pitel et al., 2007), we 

suggest here that AWS may contribute to this alteration. Executive dysfunctions are frequent 

in AUD patients early in abstinence (Stavro et al., 2013) and could notably be influenced by 

alcohol history (Sullivan et al., 2000; Zinn et al., 2004; Maurage et al., 2014), associated liver 

disease (Ritz et al., 2016) and multiple detoxifications (Duka et al., 2004; Loeber et al., 

2009). The present study suggests that beyond the repetition of alcohol withdrawals, the 

severity of AWS itself may represent another factor influencing the heterogeneity of 

executive impairments in AUD patients. By contrast, AWS severity does not appear to 

modulate processing speed and episodic memory deficits. Indeed, episodic memory was 

affected to the same extent in the two subgroups of patients. Previous studies suggested that 

episodic memory abilities may rather be influenced by thiamine metabolism (Pitel et al., 

2011; Ritz et al., 2016).  

 

 Mediation analyses enabled us to deepen our understanding of the relationships 

between sleep, brain and cognition considering the severity of AWS. For the first time, we 

showed that poor restorative sleep (reflected by a lower percentage of N3 sleep) is related to 

cognitive deficits both directly and indirectly through GM shrinkage. In line with a previous 

study in sleep-deprived individuals (Chengyang et al., 2017), we demonstrated that poor 

restorative sleep is associated with short-term memory deficits in AUD patients. This 

relationship was not mediated by GM alterations, suggesting the potential contribution of 

other mechanisms such as altered functional activity of hippocampal-cortical circuits 

(Chengyang et al., 2017). Interestingly, we found that poor restorative sleep contributes to 

fronto-insular shrinkage that in turn results in executive deficits. Our results suggest a 

potential role of sleep in the pathophysiological mechanisms of alcohol-related GM 

alterations in AUD patients. Poor sleep quality may result from alcohol-related brain damage 

such as increased glutamate levels (Cortese et al., 2010), neuroinflammation (Irwin et al., 

2016b) and oxidative stress (Villafuerte et al., 2015). These mechanisms may contribute to 

fronto-insular and thalamic/hypothalamic abnormalities in AUD patients recently detoxified. 

Fronto-insular regions, such as the right inferior frontal gyrus, have been related to executive 

deficits, notably during inhibition tasks (Levy and Wagner, 2011; Aron et al., 2014; Wiers et 

al., 2015). The insula promotes the integration and representation of interoceptive information 

into conscious feelings and viscerosensory signals leading to decision making (Craig, 2009). 

The insula being also a neuronal substrate of craving, insular shrinkage may underpin the 

relationship between sleep alterations and relapse (Brower, 2003). Thus, these analyses seem 
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to explain, at least partially, the potential associations existing between sleep, brain and 

cognition in AUD patients, by showing that N3 sleep contributes to GM shrinkage in fronto-

insular and thalamus/hypothalamus regions resulting in executive deficits. We do not exclude 

that, on the contrary, alterations in other brain regions may induce sleep abnormalities that, in 

turn, underlie cognitive functioning.  

 

The present study has several strengths, including a meticulous collection of 

information about AWS severity associated with a detailed cognitive assessment, an MRI 

scan and an objective sleep assessment in AUD patients examined early in abstinence. 

However, several limitations should be mentioned. First, the results of the present study were 

obtained in AUD patients without comorbidities nor other forms of substance use disorder 

(except tobacco). They cannot therefore be generalized to all AUD patients in Addiction 

departments given the frequency of comorbidities and multiple drug use. Second, all 

participants performed only one night of PSG-recording, which did not allow to control for 

“the first-night effect”. Third, although none of the AUD patients included in the present 

study fulfilled diagnostic criteria for current anxiety disorder and/or depression, higher self-

report anxiety and depressive levels were reported by AUD patients compared to HC. Psycho-

affective factors may influence sleep quality and cognitive performance in AUD patients as 

these factors are known to have a negative impact on neuropsychological abilities (Gualtieri 

and Morgan, 2008) and sleep quality (Baglioni et al., 2016). Nevertheless, the two groups of 

AUD patients did not differ from each other on these variables and results remained 

unchanged when psycho-affective factors (BDI, STAI-A, STAI-B scores) were added as 

covariates (data not shown). Finally, the current clinical measure of AWS severity makes it 

difficult to disentangle the direct effect of pathophysiological mechanisms underlying AWS 

(hyperglutamatergy) from the potential effect of AWS-related benzodiazepine treatment. 

AWS severity was treated with benzodiazepines, corresponding to the gold-standard for AWS 

treatment (Amato et al., 2010). Benzodiazepines are known to alter objective sleep quality 

and cognitive functions after an acute administration (Huron et al., 2001; Deakin et al., 2004; 

Roux and Kryger, 2010) and/or after a chronic consumption (Barker, 2004; Doghramji and 

Jangro, 2016; Fond et al., 2018). In the present study, AUD patients with benzodiazepine 

dependence prior the hospitalization were not included and patients who needed 

benzodiazepines during withdrawal were prescribed for only a few days (4-17 days). In 

addition, patients were included at least 48 hours after the last benzodiazepine prescription 

(according to the half-life of the benzodiazepine used), after a progressive decrease of the 
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benzodiazepine dosage starting when the Cushman score was lower or equal to 2 for at least 

24 hours, at a rate of 15 to 30% of the total dose every 24 to 48 hours. Since prolonged 

diazepam intake may increase its terminal elimination time, we conducted supplementary 

analyses that did not show any correlation between the number of days since the last 

benzodiazepine prescription and our main results (Supplementary Table 2). This absence of 

relationship suggests that the differences observed between mild- and moderate-AWS patients 

do not result from the residual effects of benzodiazepines. However, further studies are 

required to specify the effects of short-term prescription of benzodiazepines on sleep quality, 

GM volumes and cognition in AUD patients.  

 

Taken together, our results bring new insights on the pathophysiological mechanisms 

of sleep, structural brain alterations and cognitive deficits observed in recently detoxified 

AUD patients, showing the contribution of AWS severity. Moreover, we added novel 

evidence that poor sleep quality may contribute to cognitive deficits directly or indirectly 

through increased GM shrinkage in AUD patients early in abstinence. Further studies aiming 

at exploring brain, sleep or cognition in AUD patients should consider AWS severity to limit 

the heterogeneity of the AUD sample. For clinicians, these results suggest that a careful 

monitoring of AWS is not only useful to prevent the development of severe AWS 

complications, but also to predict sleep alterations, brain damage and cognitive deficits 

associated with a poor treatment outcome.  
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Figures legends: 

Figure 1: Neuropsychological performance according to the severity of the alcohol 

withdrawal syndrome. 

Z-scores were computed based of the mean and standard deviation of the HC (mean=0; 

standard deviation=1). 

*: significant difference compared to HC. 

†: significant difference compared to mild-AWS patients. 

 

Figure 2: Structural brain abnormalities in AUD patients with mild and moderate alcohol 

withdrawal syndrome (AWS) compared to controls. 

A: Absence of gray matter (GM) atrophy in mild-AWS patients compared to healthy controls 

(HC). B: Pattern of GM atrophy in moderate-AWS patients compared to HC. Results are 

presented at p < 0.05 corrected for family-wise-error (FWE). C: Brain areas showing lower 

GM volume in AUD-moderate patients compared to AUD-mild patients. Results are 

presented at p<0.001 (uncorrected) but only results surviving a cluster-level correction are 

reported. Minimum cluster size: > 60 voxels. 

 

Figure 3: Time spent in each sleep stage expressed as a percentage of total sleep time 

according to the severity of the alcohol withdrawal syndrome 

*: significant difference compared to HC. 

†: significant difference compared to mild-AWS patients. 

 

Figure 4: Results of mediation analyses showing that brain volume mediates the relationships 

between sleep and executive functions in recently detoxified AUD patients. 

Direct effects in filled arrows and indirect effects were represented in dotted arrows (when the 

effect of brain volume is partially out). 

*p<0.05; **p<0.01; ***p<0.001. n.s, non-significant.  
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Table 1: Demographic, clinical and alcohol-related data in healthy controls and AUD patients. 

 0 

Abbreviations: HC, Healthy Controls; AUD, Alcohol Use Disorder patients; mild-AWS (Cushman ≤ 4), moderate-AWS (Cushman > 4 or the presence of a 1 

history of severe alcohol withdrawal history); BDI, Beck Depression scale 2 

Data were analyzed using non-parametric tests for demographic, alcohol- and withdrawal related variables and cognitive functions. Groups effects were tested 3 

with Kruskall-Wallis tests and post-hoc comparisons were performed using Mann-Whitney U tests. We used a Chi² test to compare the sex ratio in each group.  4 
a
: correlations between daily alcohol consumption on the one hand, and sleep quality, brain volume, and cognitive abilities on the other hand were not 5 

significant neither in the entire group of AUD patients, nor in the two subgroups (data not shown). 6 

*: Missing value for one patient 7 

    
Healthy controls 

(HC) 

Alcohol Use Disorder patients 

(AUD) 
Between-group comparisons 

    
HC 

 (N=50) 

mild-AWS  

(n=17) 

moderate-AWS  

(n=37) 

Demographics          

  Age (years) 44.02 ± 7.79 45.53 ± 11.36 46.86 ± 8.12 NS 

  Education (years) 12.30 ± 2.07 11.5 ± 2.18 11.69 ± 2.13 NS 

  Sex ratio (M/F) 34/16 13/4 31/6 NS 

Anxiety and depression factors         

  BDI score* 3.52 ± 3.99 12.29 ± 8.15 13.28 ± 8.96 HC < mild-AWS†††; HC < moderate-AWS††† ;  mild-AWS = moderate-AWS 

  STAI A (state anxiety)** 26.52 ± 5.72 31.82 ± 11.97 32.05 ± 10.59 HC = mild-AWS; HC < moderate-AWS†† ; mild-AWS = moderate-AWS 

  STAI B (trait anxiety)** 32.22 ± 6.84 49.18 ± 12.21 43.59 ± 11.28 HC < mild-AWS†††; HC < moderate-AWS†††;  mild-AWS = moderate-AWS 

Alcohol history         

  Abstinence before inclusion (days)* -  8.76 ± 3.73 11.22 ± 3.48 mild-AWS < moderate-AWS† 

  AUDIT* 2.60 ± 1.81 28.06 ± 5 28.89 ± 6.24 HC < mild-AWS††† ; HC < moderate-AWS††† ; mild-AWS = moderate-AWS 

  Daily alcohol consumption (units) - 15.63 ± 7.67  20.34 ± 8.39 mild-AWS < moderate-AWS†, a 

  Alcohol misuse (years) - 21.37 ± 10.16 20.62 ± 10.17 NS 

  Alcohol dependancy (years) - 13 ± 10.03 11.94 ± 11.47 NS 

Alcohol withdrawal history          

  
Number of days  between last benzodiazepines administration and 

inclusion  - - 
2.78 ± 1.24 

- 

  Number of previous detoxifications - 1.94 ± 0.82 2.53  ± 1.70 NS 

  Hightest Cushman score - 2.88 ± 0.92 5.86 ± 1.81 mild-AWS < moderate-AWS††† 

  Total amount of benzodiazepine (equivalent diazepam) received (mg) - 0 ± 0 294.83 ± 221.82 mild-AWS < moderate-AWS††† 

  Number of days of benzodiazepine prescription - 0 ± 0 9.05 ± 3.26 mild-AWS < moderate-AWS††† 
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**: Missing value for two patients 8 

NS: non-significant ; 
†
 : p < 0.05; 

††
 : p < 0.01 ; 

†††
 : p < 0.001  9 
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Table 2: Cognitive 10 

performance and 11 

sleep variables in in 12 

healthy controls and 13 

AUD patients. 14 

 15 

 16 

 17 

 18 

 19 

    Healthy controls (HC) Alcohol Use Disorder patients (AUD) 

Between-group comparisons 

    
HC 

 (N=50) 

mild-AWS  

(n=17) 

moderate-AWS  

(n=37) 

Cognitive functions (z-score)         

  Processing speed  0 ± 1 -0.62 ±1.13 -0.97 ± 1.49 HC > mild-AWS†††; HC > moderate-AWS†††; mild-AWS = moderate-AWS 

  Short term memory  0 ± 1 -0.007 ± 0.93 -0.82 ± 1.09 HC = mild-AWS; HC >  moderate-AWS†††; mild-AWS > moderate-AWS†† 

  Executive functions  0 ± 0.64 -0.13 ± 0.62 -1.15 ± 1.40 HC = mild-AWS; HC > moderate-AWS†††; mild-AWS > moderate-AWS† 

  Episodic memory* 0 ± 1 -1.12 ± 0.80 -0.95 ±1.25 HC > mild-AWS†††; HC > moderate-AWS†††; mild-AWS = moderate-AWS  

Sleep architecturea         

  Sleep latency (min) 29.07 ± 17.71 14.06 ± 14.18 24.81 ± 15.11 NS 

  Total sleep time (min) 384.57 ± 53.75 376.87 ± 61.48 381.73 ± 69.30 NS 

  Sleep efficiency. % 80.95 ± 6.87 88.54 ± 8.72 80.78 ± 7.54 NS 

  Wake after sleep onset (min) 61.03 ± 31.53 37.19 ± 34.14 64.23 ± 40.65 NS 
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 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

  N1% 11.15 ± 5.22 14.31 ± 5.72 20.91 ± 8.19 HC = mild-AWS ; HC > moderate-AWS††† ; mild-AWS = moderate-AWS 

  N2% 46.49 ± 8.53 41.7 ± 5.78 45.63 ± 9.39 NS 

  N3% 20.56 ± 8.15 20.08 ± 5.55 10.71 ± 4.60 HC = mild-AWS; HC > moderate-AWS†††; mild-AWS > moderate-AWS†† 

  REM% 21.79 ± 5.50 23.85 ± 6.41 22.75 ± 4.19 NS 

  Apnea-hypopnea Index (AHI) 13.59 ± 8.16 24.82 ± 13.57 26.77 ± 16.71 HC <  mild-AWS† ; HC <  moderate-AWS† ; mild-AWS =  moderate-AWS 

  Composite sleep fragmentation 0  ± 0.85 -0.33 ± 0.96 -0.85  ± 1.18 NS 

Subjective sleep assessmenta     

 PSQI total score** 2.13 ± 1.35 7 ± 4.9 5.9 ± 2.64 HC = mild-AWS ; HC < moderate-AWS†† ; mild-AWS = moderate-AWS 

 ESS total score 4.78 ± 2 6.37 ± 2.33 3.92 ± 2.56 NS 
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 37 

 38 

 39 

 40 

 41 

 42 

 43 

Abbreviations: see legend of Table 1. PSQI: Pittsburg Sleep Quality Index; ESS: Epworth Severity Scale.  44 

Data were analyzed using non-parametric tests: groups effects were tested with Kruskall-Wallis tests and post-hoc comparisons were performed 45 

using Mann-Whitney U test. 46 

a
: For sleep analyses, subgroups consisted of 15 HC, 8 mild-AWS and 13 moderate-AWS patients.  47 

*Missing data for one patient; **Missing data for six AUD patients; NS: non-significant; 
†
 : p < 0.05; 

††
 : p < 0.01 ; 

††† 
; p < 0.001  48 
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Table 3: Mediation analyses between %N3 sleep, GM volumes and executive functioning in AUD patients. 49 

 50 

    ADE       ACME     

Brain areas Model Estimate CI95% P-value   Estimate CI95% P-value 

Bilateral insula 
Model 1 0.02 -0.03-0.09 0.47 

 

0.04 0.01-0.09 0.006* 

Model 2 7.05 3.01-9.91 0.003   0.69 -1.18-3.61 0.46 

Right inferior frontal gyrus 
Model 1 0.02 -0.05-0.10 0.51 

 

0.04 0.004-010 0.02* 

Model 2 5.98 0.92-10.95 0.02   0.99 -3.06-4.34 0.56 

Cingulate anterior gyrus 
Model 1 0.04 -0.02-0.11 0.22 

 

0.02 -0.007-0.07 0.11 

Model 2 3.57 -0.83-7.37 0.08   1.15 -1.01-4.13 0.24 

Anterior thalamus/hypothalamus 
Model 1 0.02 -0.04-0.10 0.47 

 

0.03 0.004-0.10 0.02* 

Model 2 5.71 1.56-10.23 0.008   0.90 -2.16-3.23 0.47 

Occipito-parietal cortex 
Model 1 0.02 -0.04-0.09 0.56   0.05 0.008-0.10 0.02* 

Model 2 7.77 1.82-12.74 0.02   0.96 -2.95-4.98 0.54 

 51 

Abbreviations: ADE: average direct effect; ACME: average causal mediation effect; CI: confidence interval.  52 

For the 5 GM clusters, two models were tested. In the first one (Model 1), the percentage of N3 sleep was the independent variable and the GM 53 

volume was the mediator. In the second model (Model 2), GM volume was the independent variable and the percentage of N3 sleep was the 54 

mediator. In all models, executive functions were entered as the dependent variable. Values in bold accompanied by a “*” indicate the 55 

significance of the model. 56 

  57 
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Supplementary Table 1: Mediation analyses between %N3 sleep, GM volumes and short-term memory in AUD patients. 58 

    ADE       ACME     

Brain areas Model Estimate CI95% P-value   Estimate CI95% P-value 

Bilateral insula 
Model 1 0.06 -0.01-0.13 0.11 

 

0.02 -0.01-0.07 0.23 

Model 2 3.09 -2.88-8.76 0.28   1.93 -1.15-5.15 0.2 

Right inferior frontal gyrus 
Model 1 0.05 -0.02-0.13 0.15 

 

0.02 -0.01-0.07 0. 24 

Model 2 3.01 -1.81-7.97 0.21   1.93 -0.48-5.45 0.13 

Cingulate anterior gyrus 
Model 1 0.06 -0.03-0.14 0.20 

 

0.02 -0.02-0.08 0.30 

Model 2 3.09 -2.86-8.72 0.08   1.93 -1.13-5.09 0.2 

Anterior thalamus/hypothalamus 
Model 1 0.06 -0.01-0.12 0.10 

 

0.02 -0.01-0.07 0.25 

Model 2 3.10 -1.79-7.91 0.21   1.92 -0.45-5.43 0.13 

Occipito-parietal cortex 
Model 1 0.06 -0.02-0.13 0.13   0.02 -0.01-0.07 0.25 

Model 2 3.17 -1.99-8.15 0.19   1.92 -0.17-5.5 0.1 

 59 

Abbreviations: ADE: average direct effect; ACME: average causal mediation effect; CI: confidence interval.  60 

For the 5 GM clusters, two models were tested. In the first one (Model 1), the percentage of N3 sleep was the independent variable and the GM 61 

volume was the mediator. In the second model (Model 2), GM volume was the independent variable and the percentage of N3 sleep was the 62 

mediator. In all models, short-term memory performance was entered as the dependent variable. All models were not significant. 63 

 64 

  65 
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Supplementary Table 2 : Relationships between the number of days since the last benzodiazepine prescription and %N3 sleep, GM 66 

volumes and cognition.  67 

 68 

 Number of days since the last benzodiazepine prescription 

Sleep quality %N3 sleep rho = -0.15 ; p = 0.61 

Cognitive functioning 
Short-term memory rho = -0.26 ; p = 0.39 

Executive functions rho = -0.29 ; p = 0.33 

GM volumes 

Right inferior frontal  rho = -0.13 ; p = 0.67 

Bilateral Insula  rho = -0.23 ; p = 0.44 

Anterior cingulate  rho = -0.38 ; p = 0.20 

Occipito-parietal  rho = -0.17 ; p = 0.56 

Thalamus/hypothalamus rho = -0.42 ; p = 0.15 

 69 

Spearman’s correlations were conducted between the main results of the present study and the number of days since the last benzodiazepine 70 

prescription and %N3 sleep, GM volumes and cognition. The number of days since the last benzodiazepine prescription was different between 71 

the PSG-recording and the neuropsychological assessment because examinations were not performed during the same day. No correlation was 72 

significant. 73 

 74 

 75 

 76 

  77 
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