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4 Aix-Marseille Université, Institut de Neurosciences des Systèmes, INSERM UMR 1106, Marseille, France,

5 Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaı́so, Valparaı́so, Chile

‡ This author has first authorship on this work. DB and PO share last authorship on this work.

* demian.battaglia@univ-amu.fr (DB); patricio.orio@uv.cl (PO)

Abstract

The capability of cortical regions to flexibly sustain an “ignited” state of activity has been dis-

cussed in relation to conscious perception or hierarchical information processing. Here, we

investigate how the intrinsic propensity of different regions to get ignited is determined by

the specific topological organisation of the structural connectome. More specifically, we sim-

ulated the resting-state dynamics of mean-field whole-brain models and assessed how

dynamic multistability and ignition differ between a reference model embedding a realistic

human connectome, and alternative models based on a variety of randomised connectome

ensembles. We found that the strength of global excitation needed to first trigger ignition in a

subset of regions is substantially smaller for the model embedding the empirical human con-

nectome. Furthermore, when increasing the strength of excitation, the propagation of igni-

tion outside of this initial core–which is able to self-sustain its high activity–is way more

gradual than for any of the randomised connectomes, allowing for graded control of the

number of ignited regions. We explain both these assets in terms of the exceptional

weighted core-shell organisation of the empirical connectome, speculating that this topology

of human structural connectivity may be attuned to support enhanced ignition dynamics.

Author summary

The activity of the cortex in mammals constantly fluctuates in relation to cognitive tasks,

but also during rest. The ability of brain regions to display ignition, a fast transition from

low to high activity is central for the emergence of conscious perception and decision

making. Here, using a biophysically inspired model of cortical activity, we show how the

structural organization of human cortex supports and constrains the rise of this ignited

dynamics in spontaneous cortical activity. We found that the weighted core-shell organi-

zation of the human connectome allows for a uniquely graded ignition. This graded igni-

tion implies a smooth control of the ignition in cortical areas tuned by the global
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excitability. The smooth control cannot be replicated by surrogate connectomes, even

though they conserve key local or global network properties. Indeed, ignition in the

human cortex is first triggered on the strongest and most densely interconnected cortical

areas–the “ignition core”–, emerging at the lowest global excitability value compared to

surrogate connectomes. Finally, we suggest developmental and evolutionary constraints

of the mesoscale organization that support this enhanced ignition dynamics in cortical

activity.

Introduction

Human (H. sapiens) cognition relies on the coordinated recruitment of distributed brain-wide

networks, which are flexibly reconfigured depending on external context and internal brain

state [1]. Even at rest, functional connectivity between brain regions is restless, transiently vis-

iting a multiplicity of metastable configurations [2,3], which are reminiscent of cognitive net-

works evoked during specific tasks [4]. Such dynamic functional connectivity has been

considered to stem from the complex collective dynamics of brain networks [5], which is nec-

essarily shaped by the underlying structural connectome [6–9]. In particular, based on theoret-

ical neuroscience insight [10,11], one expects that a richly structured “chronnectome”–i.e., the

repertoire of functional connectivity states observed at different times [12]–arises when the

noise-driven dynamics of brain networks can sample an equally rich “dynome” [13], i.e. a rep-

ertoire of multi-stable dynamical states [14,15] or characteristic transient fluctuation modes

[16,17].

Particularly important is the possibility for brain regions to develop bistability between a

baseline state at low firing rate activity and a second “ignited” state in which the firing rate is

substantially higher, often associated with a functional role in working memory or input inte-

gration [18,19]. In the language of statistical mechanics, multistability is due to a discontinuous

phase transition associated to hysteresis. Once a region first enters into an ignited state, as an

effect of input bias or spontaneous fluctuations (e.g. a stimulus or a top-down signal), this

early ignition can then propagate to neighbouring regions, eventually recruiting them as well

into an ignited network core. Related processes may allow the access of a perceptual stimulus

to the conscious workspace [20,21] or mediate cross-scale integration of information process-

ing by hierarchical brain networks [8,9,22]. Remarkably, several studies about mean-field

computational models of the resting state–which were not intended to explore cortical ignition

directly–have also consistently reported that the best fit between simulated and empirical func-

tional connectivity is found in a critical range of global coupling where switching between

ignited and not-ignited network states is possible [15,23].

Growing experimental [20] and modelling [24] evidence stresses how cortical ignition is

non-linear in nature, with regions able to get ignited only if the inputs they receive–external,

but also, notably, recurrent–rise above a minimum threshold. Whether this threshold is

crossed or not depends on a variety of factors, such as the number of neighbouring regions

and the strength of incoming connections, but also the activity state of the neighbouring

regions themselves [22], influenced on its turn by the network collective state. For this reason,

it is difficult to disentangle the relative contributions of the structural connectome or network

dynamics in determining the propensity of different regions to sustain a high-firing rate state,

at earlier or later stages of the ignition cascade. The human connectome is associated with spe-

cific distributions of the local organisation, such as node degrees (i.e. the number of neighbour-

ing regions) or node in- or out-strengths (i.e. the sum of the weights of incoming or outgoing
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connections), as well as of global organisation such as small-worldness [25,26]. It is not clear a

priori how these different specific levels of organisation of the connectome influence the igni-

tion behaviour of mean-field models built on them.

Here, we systematically explore the factors favouring ignition–at both the connectome and

dynome levels–, by using a mean-field whole-brain modelling approach. Focusing on the

intrinsic tendency to ignition (i.e. in the absence of external stimuli), we study how the reper-

toire of possible spontaneous states of activity of the model evolves as a function of the strength

of effective inter-regional coupling gain. Confirming the previously mentioned results [15,23],

we identify a range of effective inter-regional coupling gain G in which the network dynamics

is multi-stable, delimited the ignition point G-, below which no region gets ignited; and the flar-
ing point G+, above which nearly all regions will be ignited regardless of initial conditions. We

find that the existence of multistability is not exclusive to the used connectome since both the

ignition and the flaring points arise even in models embedding a variety of different random

connectivity matrices. Nevertheless, we also find that the ignition dynamics observed when

using an empirical DSI-derived (Diffusion Spectrum Imaging) connectome [27] has some spe-

cial features that are remarkably deviating from randomised models.

First, ignition is highly facilitated, as revealed by the fact that the ignition point G- arises at

substantially smaller values (i.e. a weaker inter-regional excitation is needed to first sustain an

ignited core) for the empirical connectome than for randomised connectomes with a pre-

served degree or weight distributions or small-worldness. Second, the cortical ignition dynam-

ics is particularly graded for the empirical connectome. Indeed, at the ignition point G- itself,

the subset of regions getting first ignited is smaller and more compact than for any of the ran-

domised connectomes. Furthermore, the recruitment of additional regions into the ignited

subset is particularly gradual when increasing inter-regional coupling. We thus speculate that

the empirically measured human connectome may have been attuned through evolution or

development to give rise to enhanced cortical ignition features.

Results

Mean-field model of whole-brain resting-state dynamics

In a computational modelling framework, we can re-define ignition as a transition from a state

of low activity to a high activity, where each brain region is modelled as a neural mass system

and its activity is described by a collective rate variable, Ri [28]. Following Deco et al. [23] and

Hansen et al. [15], we chose here to use a reduced Wong-Wang model neural mass. Obtained

from the simplification of a local dynamics model initially meant to capture bistable behaviour

in working memory and decision making [19], such a model can develop two types of steady-

state dynamics, one with low firing rate (“baseline state”) and one with high firing rate

(“ignited state”) as a function of its parameters (controlling local excitability) and the received

input. In the context of this study, we use the term “ignition” to refer to switching from the

low firing rate baseline state to the higher firing rate state, associated to the existence of

dynamic bistability. As shown in Fig 1A, in a suitable range of conditions (see Fig A in S1 File

for more details), the Wong-Wang model of an isolated region can already develop intrinsic

bistability between a low activity baseline and a high activity ignited state, making such a

model particularly suitable for our computational investigation of cortical ignition dynamics.

When moving from regional to whole-brain network dynamics, we can expect, in agree-

ment with several authors [6,15,20,29,30] that the spontaneous ignition dynamics and state

shifting in different regions will be shaped by the underlying structural connectivity (SC)

included in the model. In this study, we used as reference cortical connectome a connectivity

matrix mediated from Hagmann et al. [27], based on an average of 5 right-hand male subjects
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diffusion MRI (Magnetic Resonance Imaging) data. This connectome is parcellated following

the Desikan-Killany atlas [31], which has 66 cortical areas (33 per hemisphere) wired by 1148

cortico-cortical connections (Fig 1B, see Table A in S1 File for a list of regions). When insert-

ing a Wong-Wang neural mass at each node of the connectome, we could observe diverse acti-

vation levels in different regions as a function of their specific connectivity neighbourhood (all

regional parameters were otherwise identical). These heterogeneous activation levels could be

distinguished into low or high activation ranges, with a clear gap separating the two (Fig 1C).

Thus, the capability for bistable activation of the isolated regional model was maintained as

well when embedding the neural masses in a wider connectome. The actual fraction of regions

that were entering an ignited (or bistable) state depended eventually on the global strength of

long-range connections G as well as the initial conditions (ICs) for the network activity (High

ICs or Low ICs).

The connectome matrix mediated from [27] sets the relative strength of different connec-

tions but not the absolute strength of these connections. The connectome matrix is multiplied

Fig 1. Ignition state in a mean-field whole-brain model of the human cortical connectome. (A) Steady-state mean

firing rate (Ri) dynamics of an isolated cortical area, showing both the baseline state (yellow) and the ignited state

(purple) of activity in the mean-field model. (B) Structural connectivity (SC) matrix of the averaged five male subjects

[27]. The colour scale shows the coupling weight between cortical areas in log scale. (C) Activation level of each

cortical area at G = 1.8 and different initial conditions (ICs). Top, the ignited network state emerges from High ICs

(0.3�Si�1). Bottom, the baseline network state arises from Low ICs (0�Si�0.1). Rmax is the highest steady-state value

among cortical areas and is used to define the network activity level. (D) Top, network activity level using the human

SC as a function of coupling gain (G), starting either from Low (yellow) or High (purple) ICs. Middle, bistable range of

ignition in the model, starting at ignition point G- (0.945, light green circle) and ending at the flaring point G+ (2.545,

dark green circle). Bottom, fraction of ignited nodes, Fignited (threshold Ri>5), increasing from F-~17% (11 nodes) in G-

to F+~90% (59 nodes) in G+. The coupling range was 0.5� G� 4, with steps of ΔG = 0.01. The parameters of the

mean-field model are I0 = 0.322 and ω = 1 in A and I0 = 0.3 and ω = 0.9 in C and D.

https://doi.org/10.1371/journal.pcbi.1007686.g001
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by a constant coupling gain multiplier G which sets the strength of influence of long-range cor-

tico-cortical inputs on regional dynamics with respect to local recurrent connectivity (summa-

rized in the local neural mass parameters). We plot in Fig 1D the maximum mean firing rate,

Rmax, across all regions as a function of growing G. When G is too small (G<G-, where G- is

the ignition point), local dynamics is poorly affected by the dynamics of the neighbouring

regions in the connectome, and all regions are in low activity baseline state (hence Rmax is low)

regardless of the ICs. Conversely, when G is too high (G>G+, where G+ is the flaring point),
the local dynamics are totally determined by exceedingly strong long-range inputs, and any IC

results in a high activity ignited state (hence Rmax is high). When G is intermediate, a complex

interplay between local dynamics and long-range influences gives rise to more complex

dynamics. For G-<G<G+, we observe that Low ICs result in a global network state in which all

regions are not ignited (baseline network state), while High ICs originate a second global net-

work state in which there is a mixture of regions with low baseline activity and regions with

ignited activity (ignited network state). This collective network bistability (visualized by the

existence of two branches of Rmax in the G-<G<G+ range between the ignition and the flaring

points) results from the network dynamics, because the isolated nodes, with the parameters we

employ here, display a single activation state. The actual fraction of ignited nodes, Fignited, in

the ignited network state depends on the chosen G value in the bistable range and gradually

increases from a minimum value Fignited = F-, observed at G = G-, to a value Fignited = F+ ~ 90%,

observed at G = G+.

See Materials and Methods for more details on model implementation and on determining

the existence ranges for the baseline and ignited network states. In the next sections, we

explore which features of the connectome included in the model determines the occurrence of

the G- and G+ points, as well as the increased profile of Fignited through the bistable range.

The existence of a bistable ignition range does not depend on the human

connectome topology

To test the relevance of the Human connectome (Human) organisation in determining the

ignition behaviour, we compared the simulated dynamics of a mean-field model based on the

Human, with alternative surrogate connectomes. The surrogate connectomes conserve key

features of Human organisation while selectively randomising others.

We first considered unweighted surrogate connectomes (uSCs, Fig 2A) in which all connec-

tion weights were set to a uniform strength (equal to the mean value of the Human). In this

way, we could disentangle effects on the collective network ignition dynamics that were genu-

inely due to the connectivity structure, irrespectively of the influence of the weight of the con-

nections. A first surrogate connectome is the Humanhw whose connectivity pattern is identical

to the Human reference but has homogeneous weight (Fig 2A, left; see Fig B in S1 File). We

then considered an ensemble of unweighted Degree-Preserving Random (DPRhw) surrogate

connectomes, in which, in addition to making all the weights homogeneous (as in the

Humanhw case), connections were randomly rewired between nodes by still preserving the

degrees of each cortical area in the Human [32], as a signature of its local organisation (Fig 2A,

middle; see Fig C in S1 File and Materials and Methods for details). Finally, we generated an

ensemble of Small-World (SWhw) surrogate connectomes optimized to conserve the global

small-worldness [33,34] of the Human as a signature of its global organisation (Fig 2A, right).

The small-worldness values of SWhw are close to Human (see Fig D in S1 File and Materials

and Methods for details) but the specific degree of the nodes are disrupted. Simulations of

mean-field models embedding this uSCs allow probing whether the global small-worldness

(for the SWhw ensemble), the distribution of the local degrees (for the DPRhw ensemble) or an
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exact adjacency structure (for the Humanhw), but not the exact distribution of weights are

essential or not in determining the observed ignition behaviour.

To assess the relevance of the weighted structure and detailed degree-to-weight correla-

tions, we constructed additional weighed surrogate connectomes (wSCs, Fig 2B). These new

ensembles were obtained from corresponding unweighted ones by keeping the same connec-

tivity structure and reassigning the individual weight values of different links in the reference

Human to randomly selected links in the surrogate connectomes. We thus generated an

ensemble of weight-permuted Human (Humanrw) surrogate connectomes in which connectiv-

ity and weight distribution are identical to the reference Human, but weights randomly per-

muted across the different links (Fig 2B, left). Analogously, we generated weighted versions of

the Degree-Preserving Random (DPRrw) (Fig 2B, middle) and Small-World (SWrw) (Fig 2B,

right) surrogate connectome ensembles. All these three different ensembles maintain by con-

struction the same weight distribution of the original Human, but the eventual weight-to-

degree correlations were disrupted (See Fig E in S1 File).

Fig 2. The human cortical connectome requires a lower coupling gain to display ignition than surrogate models.

(A) One example of the unweighted surrogate connectomes (uSCs) matrices, in which connections were normalized to

make reliable comparisons with Human (each purple entry was set to 1.332x10-2). The DPRhw networks disrupt the

connectivity pattern but preserve the degree distribution. The SWhw networks display a small-worldness value close to

the Human. (B) One example of the weighted surrogate connectomes (wSCs) matrices. The colour bar shows the

connection weights in a log-scale. (C-D) Bistable range of the Human compared to either uSCs (C) or wSCs (D),

highlighting the bifurcation G- (left) and G+ (right) points. The orange dashes (blue dashes) show the range of values

for G- (G+) in surrogate connectomes.

https://doi.org/10.1371/journal.pcbi.1007686.g002
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We performed simulations of mean-field models embedding surrogate connectomes of all

the uSCs (Fig 2C) and wSCs (Fig 2D) types and determined for each of the simulated models

whether a network bistability range existed or not, and which was its extension, i.e. the values

for the ignition point G- (orange dashes) and flaring point G+ (pale blue dashes). We then

compared these critical point values to the range found for the Human (shown in red).

Remarkably we found that, independently from the chosen uSC or wSC surrogate ensemble,

network bistability is always present in a range of coupling gain. The existence of a bistable

ignition range is thus not unique to connectomes of the Human type.

The human connectome has an exceptionally low ignition point

While all tested surrogate connectomes give rise to a bistable ignition range, the actual values

of the ignition point G- and of the flaring point G+ depend on the used surrogate ensemble.

Compared to uSCs, the reference Human connectome has the lowest values for both the

bifurcation points G- and G+ (Fig 2C). In other words, the Human connectome needs a lower

excitatory strength to first trigger ignition in some region (at the ignition point G-) and then to

lose the low activity state (at the flaring point G+). For each of the considered uSC ensembles,

the values of G- and G+ varied very little across different random instances from the same

ensemble (i.e. small dispersion). The three Humanhw, DPRhw and SWhw surrogate ensembles

have all closely matching values of the ignition point G-, systematically larger than for the ref-

erence Human connectome. The SWhw surrogate ensemble has the largest average flaring

point G+. Thus, neither the degree distribution (shared with the DPRhw), the small-worldness

(shared with the SWhw) or even the actual connectivity pattern (shared with the Humanhw) can

alone account for the exceptionally low values of G- and G+ found for the Human.

To disentangle if these low values could be explained by heterogeneity in the weight of con-

nections, we considered then simulations performed with wSCs (Fig 2D). For wSCs, the vari-

ability of G- and G+ values across different random instances from the same ensemble was

larger than for uSCs (i.e. high dispersion). This large variability already suggests that specific

weight-to-connectivity arrangements can influence how low or high critical points are (see

below for further analyses). Introducing heterogeneous weights, generally shifted the median

flaring points G+ toward lower values than for uSCs. The flaring point for the Human refer-

ence connectome falls now well within the fluctuation range of flaring points for the Humanrw
and DPRrw ensembles while flaring points for the SWrw ensemble continue to be larger

(although smaller than for the SWhw ensemble). This suggests that the flaring point G+ value

observed for the Human connectome can be accounted for by its degree and weight distribu-

tions (shared with the Humanrw and DPRrw ensembles, but not with the SWrw ensemble),

rather than by its small-worldness (shared with the SWrw ensemble, but not with the Humanrw
and DPRrw ensembles).

Yet, none of the wSCs gives rise to such a low ignition point as for the Human connectome.

This property of the Human connectome is thus exceptional, in the sense in which it is unlikely

to arise by chance in the organisation of the studied surrogate ensembles.

The human connectome has an exceptionally compact and strong core

Network topology is most frequently characterised in terms of a local organisation (Fig 3A,

left), such as node degree or strengths, or in terms of a global organisation (Fig 3A, right), such

as the whole network small-worldness. However, such measures are not sufficient to capture

the highly heterogeneous interplays of the connectivity structure, given by specific patterns of

weight correlations between subset of nodes that define characteristic mesoscale structures in

the network: motifs, communities, cores, etc. [25,26,35]. We remark that the Human largely
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shares local topological organisation with the DPR ensembles and global organisation with the

SW ensembles, but none of these ensembles–in their unweighted or weighted versions–could

account for the exceptionally low value of the Human ignition point. To chase for its eventual

connectome-level determinants, we turn then to analyses of mesoscale structures and notably

to the core-periphery organisation using the core-shell decomposition [36,37] of

connectomes.

A network can contain subsets of nodes that are more strongly inter-linked between them

than on average. Focusing first on unweighted graphs, we define as k-core a subgraph–i.e. a

subset of nodes and the links interconnecting them–in which all the member nodes have at

least k neighbours within the subgraph. The larger k is, the more difficult is to identify sub-

graphs that satisfy the k-core criteria, resulting in increasingly tighter cores. Any node member

Fig 3. Ignited cortical areas perfectly match the weighted core of the Human at the ignition point. (A) A scheme of

the local, mesoscale and global level of organization of the network. At left, the local level is represented by the sum of

inputs and outputs of a cortical area. At the middle, the mesoscale level is measured with the core decomposition,

composed by shells of incremental within-connected (or strongest) nodes. In the cartoon, blue nodes belong to the

3-core, orange to the 2-core shell and green to the 1-core shell. The number within each node denotes its degree. At the

right, the global level considers the small-worldness, the integration and segregation ratio of the whole-network. (B)

The s-core decomposition of Human (red), Humanrw (blue), DPRrw (orange) and SWrw (green). The y-axis shows the

number of nodes in the shell, whereas the x-axis shows the smax of each shell. Only one example for each type of wSCs

is shown in the main plot. The inset shows the smax for all the networks used. (C) Number of ignited (Ri> 5) nodes in

the network as a function of coupling gain G and for high ICs, showing the Human and one example of each wSC. (D)

Fraction of nodes which are ignited (red, orange) or not-ignited (green, blue) at the G- bifurcation, and that belong to

smax-core (red, green) or not (orange, blue).

https://doi.org/10.1371/journal.pcbi.1007686.g003
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of a k-core will also belong to any k’-core with k’< k, resulting in an “onion-like” nesting of

progressively denser cores, up to a maximum value kmax such that no k-core exists for any k>
kmax (cf. Fig 3A, middle; see Fig F in S1 File).

These definitions of cores and shells can be naturally generalized from unweighted to

weighted networks by replacing the notion of node degree (discrete number of outgoing and

ingoing connections) with the notion of node strength (sum of the continuous weights of out-

going and ingoing connections). Hence, an s-core is a subgraph such that all its nodes are con-

nected between them with a strength larger or equal than s. There is a smax-core, such that s-
cores with s> smax do not exist anymore. In addition, one can define a smooth s-shell as a set

of nodes belonging to s’-cores with s< s’< s+Δs but not to the inner s-core (where Δs sets a

precision at which continuous s values are quantized).

In Fig 3B we show the fraction of nodes belonging to s-core with increasingly larger smax for

the Human (red), in comparison with representative instances from the different considered

wSCs (see Fig G in S2 File for the analogous k-core decomposition). The Human contains a

smax-core with the largest smax = 0.431 among all the other considered surrogate ensembles.

The inset of Fig 3B portrays smax values for individual instances of the different surrogate

ensembles showing that the Human’s smax value is larger than the smax of any individual

instances as well. Furthermore, the smax-core for the Human also includes a much smaller

number of nodes (n = 11) with respect to the smax-core of the other ensembles. Overall, thus,

the Human has an exceptionally strong and compact smax-core, that is unlikely to be found by

chance in any of the tested Humanrw, DPRrw and SWrw surrogate ensembles.

In the case of our reference Human and in the adopted parcellation, the smax-core included

left and right Pericalcarine Cortex (PCAL), Cuneus (CUN), Precuneus (PCUN), Isthmus of

the Cingulate Cortex (ISTC) and Posterior Cingulate Cortex (PC), as well as left Paracentral

Lobule (PARC) (Table B in S1 File).

Remarkably, we obtained similar results with other two empirical connectomes, having dif-

ferent parcellations and network density, that display the same relationship (S3 File). Although

the areas involved are different, they all contain a relatively compact smax-core that is first

ignited at a low value of global coupling strength. This core is also lost when the connectivity-

to-weight pattern is disrupted by any randomization procedure.

The human connectome core serves as an “ignition core”

As previously mentioned, the Human has the smallest ignition point G-. We inspected in more

detail which nodes get ignited when the ignited branch first appears at this low G-. Fig 3C

shows how many ignited nodes can be found in the ignited network state as a function of

growing coupling strength G for the Human and the different surrogate ensembles. We

focused on the fraction F- of ignited nodes, observed at G = G-. The Human has once again a

particularly small fraction F- of early-ignited nodes, smaller than for any other surrogate

ensemble (as visible by the large step jump occurring at G- in Fig 3C for the ignited fractions

for the Humanrw, DPRrw or SWrw ensembles).

The actual number of ignited nodes at G = G- is n = 11, which is equal to the size of the

compact Human smax-core. As a matter of fact, this is not a coincidence. In Fig 3D we report

the fraction of nodes that at the ignition point G- sustain an ignited state or that maintain on

the contrary a baseline state (not-ignited), separating them further in nodes that belong or not

to the smax-core. All the nodes ignited at the ignition point G- also belong to the smax-core in

the case of the Human. Conversely, all the nodes in the smax-core are ignited already at G-. In

other words, for the Human, the subset of regions that first sustain an ignited state at the criti-

cal ignition precisely match the smax-core.
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This one-to-one correspondence happens uniquely for the Human and is lost whenever

connection weights are randomized (even when the connectivity pattern is maintained, as for

Humanrw). In the case of the other surrogate connectomes, at the ignition point, there are

always nodes ignited at G- but not belonging to the smax-core (orange bars in Fig 3D) or nodes

belonging to the smax-core but not ignited (green bars in Fig 3D). This “spill-over”, present in

all wSCs, is more pronounced for the SWrw ensemble.

The unusually large strength of internal connections within the Human’s smax-core thus

allows it to internally sustain ignited activity with a relatively weak strength of inter-regional

coupling, explaining the smaller value of G- for the Human (Fig 3C). Given that the inter-

regional coupling is still weak, ignition does not propagate outside of the smax-core but remains

confined within it (Fig 3C). The fraction of early-ignited nodes also remains smaller than for

other wSCs because the Human’s smax-core is particularly small-sized. On the contrary, for

other wSCs, a higher global strength of coupling is required to trigger ignition and therefore

ignition can also immediately propagate beyond the core, resulting in larger fractions of early-

ignited nodes.

Summarizing, the exceptionally strong smax-core of the Human serves as an “ignition core”,

that highly facilitates ignition within a well precise and compact set of regions and allows then

its active maintenance.

Ignition is determined by s-coreness more than by other connectome

features

For the Human, the set of first-ignited regions at the ignition point G- is predicted by the smax-
core network feature. The regional propensity to early ignition is not however equally pre-

dicted by other network features. For instance, considering kmax-core, the unweighted ana-

logue of smax-core, near the 80% of the nodes (42 of 53) in the Human’s kmax-core are not

ignited at the G-, as shown by Fig 4A (leftmost histogram, green). Analogously, several nodes

with the degree (Fig 4B, leftmost) or strength (Fig 4C, leftmost) as high as one of the early-

ignited nodes are not yet ignited at the ignition point G-. Thus, for the Human, none of the

probed network features reaches the perfect prediction of early ignition achieved by the smax-
core.

Apparently, kmax-core predicts early ignition better for the other surrogate connectome

ensembles than for the reference Human. However, this is a consequence of a larger fraction of

nodes being ignited at G- in the DPRhw and the SWhw ensembles. Still, for both these ensem-

bles, some of the early ignited regions do not belong to the kmax-core (Fig 4A, right panels).

Overall, the analyses of Fig 4 confirm that the Human connectome is associated with excep-

tional connectivity-to-weight correlation patterns, responsible for its exceptional ignition

behaviour.

The human connectome supports an exceptionally graded cortical ignition

dynamics

We then studied the order of ignition of additional regions when increasing the coupling

strength above the initial ignition point G-, taking track of the actual value of the coupling in

which they first become able to sustain ignition.

Fig 5A and 5B shows, for Human and Humanrw, the ranges of G over which different

regions support an ignited state, ranking them from bottom to top in order of earliest ignition.

In addition, we colour-coded the smax of the nodes (see Figs H-L in S2 File for analogous plots

using other strength features and other wSCs). It is visually evident, from the inspection of Fig

5A, that the order of recruitment into the ignited state is closely correlated to the rank of smax
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values of the different regions. The colours in Fig 5B (Humanrw) are more disordered, indicat-

ing that this relationship is disrupted by random permutation of connection weights. This cor-

relation is quantified in Fig 5C, where the explained variance of the Spearman correlation (ρ2)

between ignition and smax ranks to be as large as 0.88 (the lower the smax, the later a region can

support an ignited state). However, the ⍴2 between the rank of ignition and rank of total and

in-strength drops to 0.67 and even down to 0.38 for the rank of out-strength.

In Fig 5D we show that none of the surrogate connectomes achieves such a large correlation

between ranks of smax and ranks of ignition as the Human connectome. This is due to the fact

that the Human connectome has the broadest distribution of smax values across the regions,

resulting in a relatively smooth increase in the number of ignited regions with growing G. On

the contrary, in surrogate connectomes–and particularly in the SWrw one–the gap between the

largest and the smallest smax is narrower, leading to an abrupt increase of the number of ignited

regions with growing G. Furthermore, in surrogate connectomes, we observe “spill-over” even

beyond the early ignited subset of regions, i.e. frequent recruitments of regions with smaller s-

Fig 4. Ignited cortical areas are loosely related to other organization features at the ignition point. (A) Fraction of

nodes which are ignited (red, orange) or not-ignited (green, blue) at G-, and that belong to kmax-core (red, green) or not

(orange, blue). Note that the kmax-core nodes match with all the ignited in the Human, but also with a large number of

nodes with baseline activity (not-ignited). (B) Degree distribution of ignited (orange) and not-ignited (blue) nodes at

the ignition point G-, for Human and the wSCs. (C) Strength distribution of ignited (orange) and not-ignited (blue)
nodes at the ignition point G-, for Human and the wSCs.

https://doi.org/10.1371/journal.pcbi.1007686.g004
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coreness and failed recruitment of regions with higher smax, confirmed by the decrease of the

explained variance of the Spearman correlations in Fig 5D. Also, the explained variance of the

ignition is higher in Human than in wSCs (Fig M in S2 File).

Fig 5. The weighted core-shell organization of Human is more related to the growing of ignited nodes than other

surrogate connectomes or organization levels. (A) Cortical areas sorted in the y-axis according to the coupling gain G

value at which they first ignite. The colour code shows the smax for each of the ignited cortical areas of Human. (B) The

same for the Humanrw, to stress the difference in ignition recruitment through the core-shell organisation. (C)

Spearman rank correlation variance (ρ2) between first ignition value G and the smax (0.867, percentile (2.5, 97.5) =

(0.858, 0.874)), out-strength (0.386, percentile (2.5, 97.5) = (0.369, 0.402)), in-strength (0.670, percentile (2.5, 97.5) =

(0.655, 0.684)), and strength (0.688, percentile (2.5, 97.5) = (0.672, 0.703)) of a node. The � indicates a significative

difference between smax and in-, out-, and strength. (D) ρ2 between ignition value G and the smax for Human, Humanrw
(0.474, percentile (2.5, 97.5) = (0.459, 0.490)), DPRrw (0.495, percentile (2.5, 97.5) = (0.477, 0.512)), and SWrw (0.100,

percentile (2.5, 97.5) = (0.088, 0.112)). Human shows a higher explained variation by the core-shell organization than

the wSCs. The � indicates a significant difference between the ρ2 of Human and wSCs. The significance of ρ2 was

evaluated using 10.000 replicas from bootstrap resampling (violin plots).

https://doi.org/10.1371/journal.pcbi.1007686.g005
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Discussion

Our computational modelling investigations have shown that bistability of cortical activation

can robustly and naturally occur in the resting-state as an effect of the interplay between

regional dynamics and long-range interactions mediated by the cortical connectome. Not all

the regions display the same propensity to get ignited. Eventually, via analyses of the graph

topology of the connectome–and, notably, of its weighed core-shell structure–, we were able to

predict with large accuracy the order into which different regions can get spontaneously

ignited with increasing inter-regional coupling. We found that regions belonging to a maxi-

mally strong s-core are among the first to sustain spontaneous ignition during simulated rest-

ing state. Comparing the Human with a variety of random surrogate connectome ensembles,

we found that empirically observed connectomes are “non-random”, in the sense that they dis-

play an exceptionally strong and compact smax-core and give rise to a particularly smooth and

gradual increase in the number of ignitable regions as a function of the strength of inter-

regional coupling.

The SC organisation is thus a strong determinant of the observed collective dynamics, in

line with previous evidence [6,8,9,38]. More than local topology metrics, such as degrees or

strengths, or global topology metrics, such as overall small-worldness, we found a mesoscale
topological organisation, smax of the core, to be the best predictor of the bistable activity pat-

terns expressed by the model. Most of the regions with largest smax-core in our models, such as

Cuneus, Cingulate, or Precuneus cortices are also members of what Hagmann et al. [27] dub

the “structural core” of Human cerebral cortex, as well as strongly functionally implied in

Default Mode Network fluctuations [39]. Such a set of densely interconnected regions had

already been hypothesized to play an important role in shaping large-scale resting-state

dynamics [27,38,40], a hypothesis which we here further confirm.

From a more abstract statistical mechanics perspective, coreness and core-shell decomposi-

tions had been used to describe the propagation of infection on complex networks with inho-

mogeneous density [37]. Here, an analogy could be drawn between “ignition” and “infection”,

with ignition being first possible in the densest s-cores, where nodes in a strongly connected

neighbourhood can trigger each other into an ignited state by mutual excitation (analogously

to infection) and mutually stabilize their ignited state by preventing the return to baseline state

(analogously to suppressed recovery). Interestingly, the rank correlation between the order of

ignition and the in- or out-strengths in the connectome for different regions were stronger for

in-strengths than for out-strengths. This fact indicates that a core region that can be “infected”

by its neighbours (i.e. triggered by them into an excited state) will be more likely to remain

ignited than a region who can “infect” its neighbours via strong output connections. In line

with this observation, some areas in the Human network never get ignited within the range of

G that we explored. These areas correspond to the temporal pole (TP), entorhinal cortex

(ENT) and the left parahippocampal cortex (lPARH), which are also the regions of lowest in-

strength and at the most peripheral shells of the network.

The graded ignition is also reminiscent of the stretching of the criticality of cortical-net-

work dynamics via Griffith phases [8]. In this scenario, critical-like dynamics emerges for a

range of the control parameter rather than for a single point, due to the structural connectivity

of a hierarchical modular network. In a Griffith phase, criticality emerges from the rare-

regions, a subset of nodes with activity values significantly different from their system averages

[8,9]. In our work, the bi-stable range starts at G- with the smax-core regions, a small fraction of

the network, evoking the rare-regions concept. Moreover, in the case of the uSCs and wSCs,

the number of regions ignited at G- is larger than low activity regions. In the case of the SWhw

ensembles, almost all the network nodes ignite, as predicted by the stretching of criticality
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work of Moretti & Muñoz [8] (Fig N in S2 File). However, it remains difficult to speak rigor-

ously of Griffiths phases for network systems having a small number of nodes like the ones we

used in this study.

The precise regions that belong to the largest s-core of the connectome do vary depending

on the specific chosen empirical reconstruction, and their enumeration is also necessarily

affected by the used parcellation. In S3 File, we show indeed that, comparing two alternative

empirical reconstructions of the human cortical connectome, the overlap between the included

regions is only partial (Table B in S1 File). Remarkably, however, for all these alternative

human connectomes the set of regions that are early ignited largely match the largest s-core.

This is not true, on the contrary, for the considered surrogate connectomes: all of them display

a higher degree of “ignition spill-over” (early ignited regions outside the largest s-core) or

“incomplete ignition” (some of the regions in the largest s-core not igniting). It may be that the

use of ad hoc search procedures (e.g. genetic algorithms [41]) will allow engineering non-stan-

dard surrogate connectomes which would display Human-like or even better than Human
ignition capabilities. However, we failed to identify any obvious graph-theoretical feature that

confers to Human s-cores their exceptional ignition boosting properties, beyond the ones of

generic s-cores.

Finally, ignition dynamics is affected not uniquely by an individual graph-theoretical orga-

nisation of the connectome but by correlations between multiple properties as well. This fact is

epitomized by the differences in ignition dynamics between the Human and Humanrw connec-

tomes. Indeed, the Humanrw connectome shares with the Human identical unweighted topol-

ogy and distribution of weights but the correlations between the two have been disrupted.

Analogously, surrogate connectomes with randomized weights display a larger variability over

the ensemble of the actual values of the ignition and flaring points G- and G+ than unweighted

ensembles. The fact that all instances within these surrogate ensembles with randomized

weights share the same weight distribution and a common statistical distribution of degrees or

other topological properties confirms that the critical ignition behaviour of the model is influ-

enced much more by weight-to-topology correlations than by weights or topology

independently.

Here we are describing in the connectome an organization that cannot be explained only in

terms of pairwise node-to-node relationships. Interactions between more than a pair of nodes

(high-order interdependencies) are described using information theory tools [42,43], giving

rise to phenomena like redundancy and synergy that appear in the brain activity. These cannot

be understood nor measured if only pairwise relationships are quantified. A similar situation

can be occurring at the connectome level, and the s-core decomposition is a first step toward

the description of this kind of structural high-order interactions. A question for future

research is whether the functional high-order interactions–as the one revealed by non-trivial

“meta-connectivity”, constraining fluctuations of pairwise resting state functional links [44]–

are related to the core-shell organization.

Even if we cannot yet fully explain the observed ignition behaviour of the model in terms of

the network organisation of the connectome it embeds, these organisations remain neverthe-

less a strong determinant of the observed dynamics. This finding is in apparent contrast with

theoretical works based on more abstract network topologies [10,11,17] in which the variety of

possible dynamical behaviours transcends structural complexity. A first possible reason is that

dynamical diversity is strongly amplified by connectome symmetries and the resulting possi-

bility of a multiplicity of ways of breaking these symmetries [10]. Now, the Human connec-

tome, with all its characteristic heterogeneities and idiosyncrasies, is far from being symmetric.

Second, we focus in this work on the network multistability between the two main ignited and

baseline activity branches of the mean-field whole brain model. However, other sub-dominant
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states exist between the early ignition G- and the late flaring G+ points, in which the spatial pat-

terns of regional low or high activation levels are less influenced by the structural backbone

[15]. Finally, we adopted here a very simple regional dynamics, with bistability between just

two fixed points, but we expect that using neural masses able to express richer regimes–oscil-

latory, bursting, chaotic, etc. [17,45,46]–could eventually reduce the sway of connectivity on

collective emergent dynamics.

Future extensions of our model will have not only to embed richer dynamics but also to

investigate more dynamic notions of ignition. The specific way in which we treat ignition

within the present study is rather static. We focus on the possibility that specific regions

develop bistability between a baseline and an ignited state and we track at which value of the

inert-regional coupling G this bistability becomes first sustainable. However, we do not study

the effects on the ongoing dynamics of an actual switching from baseline to ignited state occur-

ring. Experimentally, local ignition is associated with a “glow”, e.g. to a reverberation of

enhanced activation followed by propagation toward neighbouring regions [20,21]. Recently,

mean-field whole-brain models able to reproduce certain conditions such as propagation of

ignition, thanks to a balanced amplification mechanism, have been introduced [24]. Analo-

gously, other modelling studies have measured the “intrinsic ignition” capabilities of different

regions by quantifying their capacity to propagate to neighbouring regions the effects on acti-

vation of a locally received perturbation [22]. In our model, we expect that, near the ignition

point, perturbing a node within the largest s-core to switch from baseline to a locally ignited

state would quickly result in all the other nodes within the largest s-core to get ignited as well,

given the strong mutual excitation loops present within this core. However, we chose here for

simplicity to characterize the collective equilibrium state after network ignition has taken

place, postponing to future studies the investigation of the out-of-equilibria transient dynamics

leading to these ignited equilibria. In this sense, our static definition of an ignition core as the

subset of regions whose local dynamics is pushed by network dynamics to be close to its critical

instability point–making them able to easily switch between low and high firing rate states–is

quite related to the notion of “dynamic core” introduced by Deco et al. [47]. Dynamic core

regions, indeed, identified after the convergence of a fitting procedure (and not by the study of

their participation into ignition dynamic transients), are defined as sitting closely at the bifur-

cation between asynchronous and oscillating local states.

Even without studying the actual propagation dynamics of ignition, our modelling

approach discovered that the effects of ignition (i.e. the resulting ignited network states) sup-

ported by the Human connectome are the most graded and fine-tunable among all the tested

surrogate connectomes. In the ignition framework of Deco and Kringelbach [22] four classes

of ignition are defined, that range from weak non-hierarchy to graded uniform hierarchy (Fig

6A–6D). In the first case, all the nodes have the same susceptibility to be ignited, while in the

latter case there exists a linear uniform gradation in the ignition of the nodes. Between these

poles, two other classes are staircase hierarchy and graded non-uniform hierarchy. Our results

fit better with the staircase hierarchy class; there is a subset of nodes susceptible to be ignited

and this number is smoothly controlled by the coupling gain (Fig 6E, orange arrow). In the

randomized networks, there is a narrower range for the recruitment of cortical areas as G is

increased (Fig 6F). Moreover, our investigation of randomized surrogate connectomes reveals

that the likelihood that connectome structures supporting such a smooth hierarchy of possible

ignited network states arise by chance is rather small. Thus, there must be some reason for

which the Human happens to be as it is, a needle in the haystack of possible connectomes.

A first scenario is that the selection of a connectome with such non-random features is

driven by developmental constraints, imposing specific construction principles to be respected

but keeping network connectivity otherwise maximally random. Rubinov [48] evokes the
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notion of “spandrel”, the triangular spaces that are unavoidably created between arches, pillars

and beams when constructing a cathedral. These spandrels are statistically as frequent than the

other structural architectural elements–the arches, pillars and beams that bear the weight of

the building–but are not in the plan, i.e. they are byproducts of other constraints and construc-

tion targets. Such a scenario of the emergence of a Human-like ignition-core as a byproduct of

some other graph-theoretical construction rule, e.g. imposed degree or small-worldness, was

implicitly probed by our procedure of testing the Human connectome against null-hypotheses,

represented by increasingly more constrained families of surrogate connectomes. Our failure

to reproduce Human-like ignition-cores in any of the attempted surrogates leaves however

open the question of which could be the hidden developmental constraints inducing the emer-

gence of the exceptional Human s-core.

A second scenario is that such an exceptional smax-core as the Human’s does not emerge as

a “spandrel” but is actually favoured over others along with evolution for the fitness, if not

optimality in some sense, that it confers. Interestingly, empirical connectomes extracted from

another non-human organism [40,49,50], also include prominent structural cores in their

organisation that match the set of firstly ignited nodes (S3 File). Future investigations may

Fig 6. The intrinsic ignition framework. Deco and Kringelbach [22] define four classes of network ignition, that

range from (A) weak nonhierarchy to (D) graded uniform hierarchy. Between these poles, two other classes are (B)

staircase hierarchy and (C) graded non-uniform hierarchy. (E) In the Human connectome, the number of nodes

susceptible to be ignited is smoothly controlled by the coupling gain, as shown in the orange arrow. In the (F) DPRrw
the number of ignited nodes is less controllable.

https://doi.org/10.1371/journal.pcbi.1007686.g006
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check whether an ignition behaviour as the one we observed for Human connectomes is pro-

gressively set in place while adopting connectomes that follow a phylogenetic sequence, even if

comparative connectomic analyses are still incomplete [40,51]. And, yet, the specific optimiza-

tion goals with respect to which the empirical connectomes should be constructed are

unknown. Several independent studies suggest that wiring cost minimization may be relevant

but not sufficient to explain the observed connectome wiring, that at the same time seems to

optimize information-processing related quantities [52,53].

Here we advance the hypothesis that the eventual reasons making the empirically observed

connectome fit, and thus selected under evolutionary pressure, could (speculatively) be: first, the

exceptionally low ignition point G- that it confers, allowing to initiate and maintain an ignited

state with relatively low inter-areal couplings (and thus more limited use of synaptic transmission

resources and connecting fibres amount); and, second, the exceptionally graded increase of the

number of regions admitting bistable ignition when further increasing the inter-regional coupling

G. Indeed, thanks to this graded rise, changes in the cortical networks’ “working point” induced,

e.g. by neuromodulation [54,55], arousal or other intrinsic or extrinsic mechanisms, here

phenomenologically modelled by changes of the effective G, would give rise to the largest possible

variety of possible ignition patterns and therefore, possibly, to subtle controllability of the extent

of inter-regional integration. Our hypothesis implicitly postulates a positive functional role for the

existence of subsets of ignited regions and the possibility of their fine-tuned control (Fig 6). As

previously mentioned, the emergence of ignited activity into extended regional subsets, beyond

early sensory areas has been repeatedly associated to aware perception [20], requiring recruitment

of a global workspace [56]. In this sense, connectomes facilitating early ignition would favour at

the same time, the emergence of a substrate dynamical repertoire required for integrated percep-

tion and, more in general, integrated information processing. Analogously, the possibility of sup-

porting a graded hierarchy of possible ignited network states, recruiting narrower or wider nested

circles of regions, could provide the mechanistic basis for “graded consciousness” states [57], in

which workspace ignition can take place in a variety of possible ways, encompassing an increasing

number of possible dimensions [58], rather than just being “all-or-none”.

Methods

Structural connectomes

Human cortical connectome. We used the human cortical connectome derived from dif-
fusion MRI provided by [27], which corresponds to an average of five right-handed male sub-

jects. This SC has 66 cortical areas, defined by a standard parcellation scheme provided by

FreeSurfer [31] and 1148 connections determined by the DSI analysis (Fig 1B). The connec-

tion weights are normalised by the number of tracts and relative volume among two cortical

areas (details in [27]).

Surrogate connectomes. To make valid comparisons with the human connectome, we

used surrogate connectomes that disentangle either unweighted or weighted network proper-

ties [59].

Unweighted Surrogate Connectomes (uSCs). To study how topological network features

impact the dynamics of human connectome (Human), we homogenised the connection

weights making them equal to the mean of Human. In other words, each connection was set to

1.332x10-2. We made a homogeneous weight version of Human that preserves its connectivity

pattern, Humanhw. Also, we built 100 equivalent Degree-Preserving Random (DPRrw) connec-

tomes with the Maslov and Sneppen algorithm [32]. The DPRrw maintain the number of nodes

and edges, as well as the degree distribution of the Human [48,60–62]. Finally, the Watts and

Strogatz Small-World model was used to generate 100 connectomes (Humanhw) which
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maintain globally distributed processing and regional specialization of the Human [33,34,62–

64]. First, we built 1000 SWhw networks and then selected 100 that had the most similar value

of the small-world coefficient, σ, of the Human.

Weighted Surrogate Connectomes (wSCs). In the weighted Surrogate Connectomes (wSCs), we

used the uSCs and randomly assigned to their connections the weights of the Human. In this

way, we preserved the connection weight distribution of the Human [61]. With this procedure,

we made 60 Humanrw, 60 DPRrw, and 60 Humanrw networks (‘rw’ stands for random weights).

Network metrics

We split the topological organisation of the networks in local, mesoscale and global to assess

their correspondence with activity states of the nodes. To identify nodes that are locally rele-

vant in the network, we used the degree k(i), and strength s(i) measures. Degree quantifies the

number of links that directly connect to node i, whereas the strength is the sum of the weighted

inputs and outputs to a node i in the network [48,65].

In a similar manner, we used the core-periphery organisation as a mesoscale feature of the

networks [66]. To identify the core of densely interconnected nodes in the network, we used

the k-core decomposition, in which the shell of nodes with degree <k are recursively removed

to obtain its core nodes [37,64,67]. Therefore, the maximal k-core (kmax-core) defines the larg-

est k value, at which a highly interconnected sub-network exists. Similarly, the s-core decompo-
sition defines the core of interconnected nodes with strength s or higher among them. Thus,

maximal s-core (smax-core) is the more strongly inner-connected core of the network [15,27].

Finally, we used the small-world index, σ, as a global organisation that reveals the balance

between high clustering of the nodes and the short-path length of connections between nodes.

The small-world index is the ratio between the normalised clustering coefficient, γ, (fraction of

node neighbours that also connect with each other) and the normalised characteristic path

length, λ (shortest average path-length between nodes) of the network [48,63,65,68]. A net-

work has the small-world property when σ> 1 [34,62,63]. An equivalent random network is

used to normalise λ and γ.

s ¼
g=grandom
l=lrandom

We found that σ of the Human is 1.63 (+/- 4.3x10-3), its λ/λrandom is 1.07 (+/- 5.4x10-4), and

its γ/γrandom is 1.74 (+/- 4.6x10-3). Thus, the Human has the small-world property.

Dynamical mean-field model

We used the Wong-Wang mean-field model to simulate the local dynamics of each cortical

area, which is a sum of self-recurrent activity, the network inputs, and the basal activity

[15,19,69]. We implemented the deterministic version of the model to observe the attractor

structure of the collective dynamics.

dSi
dt
¼ �

Si
tS
þ 1 � Sið ÞgRi

Ri ¼
awi � b

1 � exp ð� dðawi � bÞÞ

wi ¼ wJNSi þ JNG
X

j

CijSj þ I0
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Si represents the open fraction of NMDA channels, Ri is the mean firing rate, and χi repre-

sents the total synaptic input, all of them for the ith cortical area. We systematically explored

the parameter of the coupling gain, G. Cij is the SC matrix with the connections from node j to

node i. Values for the other parameters are τs = 100 ms, γ = 0.641, a = 270 (V•nC)-1, b = 108

Hz, d = 0.154 s, ω = 0.9, JN = 0.2609 nA and I0 = 0.3 nA. Each simulation was run for 120 s
with time steps of Δt = 1 ms, using a Euler integration scheme. Simulations were run with

scripts written in Python.

Computer simulations and fixed-point analysis

To describe the collective states of the networks, we used the fixed-point analysis of the station-

ary dynamics [15,23]. The parameter G was varied in the range of 0.5�G�5, with steps ΔG =
0.01. For each G value, the simulations were run using random ICs drawn from a uniform dis-

tribution in one of two ranges: High ICs (0.3�Si�1) or Low ICs (0�Si�0.1). In this work, we

modified the range of ICs described by [15,23] to ensure that the bistability range is the broad-

est possible. Then, we took the highest value of the Ri activity among all nodes, denoted Rmax,
to indirectly capture the network activity state. The bifurcations G- and G+ are defined as the

minimum and maximum G value for which the Rmax depends on the ICs. Below G-, simula-

tions always finish in the same (low) Rmax, regardless of the ICs; similarly occurs for gain cou-

pling above G+ with a high Rmax. Although ICs were randomly chosen, the bifurcations G- and

G+ for a given network always had the same value, and this was checked by running 60 simula-

tions for each combination of G, ICs and network.

Thresholding of node activity

We used a threshold of activity to classify the nodes in high activity or low activity. After exam-

ination of the typical values of Ri in the simulations, we established a threshold of Ri> 5 to

assign a node to the high firing rate (ignited) subset; otherwise, they are part of low firing rate
(not-ignited).

Network tools

Structural models and network analyses used in this paper were carried out using the Python

modules bctpy and brainconn, both python implementations of the publicly available Brain

Connectivity Toolbox [48].
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