
HAL Id: inserm-02952457
https://inserm.hal.science/inserm-02952457

Submitted on 29 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rational programming of history-dependent logic in
cellular populations

Ana Zúñiga, Sarah Guiziou, Pauline Mayonove, Zachary Ben Meriem, Miguel
Camacho, Violaine Moreau, Luca Ciandrini, Pascal Hersen, Jerome Bonnet

To cite this version:
Ana Zúñiga, Sarah Guiziou, Pauline Mayonove, Zachary Ben Meriem, Miguel Camacho, et al.. Ratio-
nal programming of history-dependent logic in cellular populations. Nature Communications, 2020,
11 (1), pp.4758. �10.1038/s41467-020-18455-z�. �inserm-02952457�

https://inserm.hal.science/inserm-02952457
https://hal.archives-ouvertes.fr

ARTICLE

Rational programming of history-dependent logic
in cellular populations
Ana Zúñiga1,6, Sarah Guiziou1,5,6, Pauline Mayonove1, Zachary Ben Meriem2, Miguel Camacho 1,

Violaine Moreau1, Luca Ciandrini 1,3, Pascal Hersen2,4 & Jerome Bonnet 1✉

Genetic programs operating in a history-dependent fashion are ubiquitous in nature and

govern sophisticated processes such as development and differentiation. The ability to sys-

tematically and predictably encode such programs would advance the engineering of syn-

thetic organisms and ecosystems with rich signal processing abilities. Here we implement

robust, scalable history-dependent programs by distributing the computational labor across a

cellular population. Our design is based on standardized recombinase-driven DNA scaffolds

expressing different genes according to the order of occurrence of inputs. These multicellular

computing systems are highly modular, do not require cell-cell communication channels, and

any program can be built by differential composition of strains containing well-characterized

logic scaffolds. We developed automated workflows that researchers can use to streamline

program design and optimization. We anticipate that the history-dependent programs pre-

sented here will support many applications using cellular populations for material engi-

neering, biomanufacturing and healthcare.

https://doi.org/10.1038/s41467-020-18455-z OPEN

1 Centre de Biochimie Structurale (CBS), INSERM U154, CNRS UMR5048, University of Montpellier, Montpellier, France. 2 Laboratoire Matière et Systèmes
Complexes, UMR 7057 CNRS & Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France. 3 Laboratoire Charles Coulomb (L2C),
University of Montpellier & CNRS, Montpellier, France. 4 Laboratoire Physico Chimie Curie, UMR168, Institut Curie, Paris, France. 5Present address: Department of
Biology, University of Washington, Seattle, WA 98195, USA. 6These authors contributed equally: Ana Zúñiga, Sarah Guiziou. ✉email: jerome.bonnet@inserm.fr

NATURE COMMUNICATIONS | (2020) 11:4758 | https://doi.org/10.1038/s41467-020-18455-z | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-18455-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-18455-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-18455-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-18455-z&domain=pdf
http://orcid.org/0000-0003-0867-5208
http://orcid.org/0000-0003-0867-5208
http://orcid.org/0000-0003-0867-5208
http://orcid.org/0000-0003-0867-5208
http://orcid.org/0000-0003-0867-5208
http://orcid.org/0000-0001-5859-2764
http://orcid.org/0000-0001-5859-2764
http://orcid.org/0000-0001-5859-2764
http://orcid.org/0000-0001-5859-2764
http://orcid.org/0000-0001-5859-2764
http://orcid.org/0000-0002-8420-9359
http://orcid.org/0000-0002-8420-9359
http://orcid.org/0000-0002-8420-9359
http://orcid.org/0000-0002-8420-9359
http://orcid.org/0000-0002-8420-9359
mailto:jerome.bonnet@inserm.fr
www.nature.com/naturecommunications
www.nature.com/naturecommunications

Living organisms execute sophisticated tasks and generate
highly complex structures at all scales1–3. A key feature
enabling these rich behaviors is the ability of biological

systems to modulate their response depending on the order in
which signals are received. Such history-dependent responses are
ubiquitous in biology from animal behavior down to the heart of
fundamental processes like cell division (checkpoints), differ-
entiation (cell-fate commitment), and development4–6. History-
dependent behavior might also be important for microbial sur-
vival strategies by providing a fitness advantage in the evolu-
tionary competition7,8.

From a research and engineering perspective, the ability to
reliably program living cells to produce history-dependent
responses has appealing practical implications. These programs
could be used as temporal and spatial trackers for decoding
biological processes such as development. Furthermore, living
organisms could be engineered to exhibit sophisticated behaviors
not found in nature. History-dependent programs could be
applied in biomanufacturing to mediate sequential, substrate
triggered activation of components of a metabolic pathway.
Bacterial therapeutics could be activated only after having
encountered certain body locations in a particular order and
reached a high density inside their target tissue, possibly in
combination with external therapeutic triggers9–12. History-
dependent morphogenetic programs are also pivotal to engineer
synthetic tissues13 and living functional materials that require
order-specific, sequential assembly14–17.

Scientists have started to program history-dependent gene
expression in living cells, mostly using feedback mechanisms and
site-specific recombination to record and store transient events,
and transmit this information across cellular generations18–25.
Compared to feedback-based systems, recombinase memory does
not require constant protein production to hold state, reducing
metabolic burden and increasing evolutionary stability of the
engineered systems26,27.

Site-specific recombinases permanently invert or excise DNA
sequences flanked by a pair of target sites19,21. The state of the
system can be encoded both by gene expression and within the
architecture of the target DNA, which is modified via recombi-
nation. Recombinase switches are analog-to-digital converters
and have been engineered to encode complex Boolean logic using
reduced, single-layer architectures28,29. Stochastic, mutually
exclusive recombination reactions have been used to randomly
generate mosaics of reporter gene expression and enable cell
lineage tracking in various organisms30,31. Researchers also built
recombinase devices to control gene expression according to the
number of inputs received by the cells and the order in which
they appear.

Friedland et al. designed a recombinase cascade consisting of a
daisy-chain of DNA memory modules, each composed of a
recombinase gene flanked by its corresponding target sites. In
response to the input, the recombinase inverts and turns OFF its
own gene, while priming the following module for the next input
by correctly reorienting an inducible promoter. Using this device,
the authors programmed cells to express a reporter after a unique
sequence of three inputs. However, this architecture lacks flex-
ibility, and can only implement a fraction of all possible gene-
expression programs.

Ham et al. proposed a different strategy in which recombinase
target sites are interleaved, creating dependencies between
recombination reactions. In this scheme, a recombinase can
invert or excise another enzyme’s target site. Thus, the target
DNA transitions through different states according to the order
in which recombination reactions occurred27,30. By inserting
genes and regulatory elements at strategic positions of the DNA
scaffold, gene expression is triggered in specific states. Roquet

et al. refined this concept and built a DNA register capable of
recording the occurrence and the order of up to three inputs. To
do so, they used multiple pairs of orthogonal target sites for each
enzyme, so that each state has a different DNA architecture and is
distinguishable by sequencing. Roquet et al. then generated a
database of registers containing different combinations and per-
mutations of gene-expression elements, and simulated their
behavior. Then, a few registers implementing specific two and
three-input history-dependent programs were built and validated
experimentally.

However, compared to other genetic design workflow32,33, this
method remains a trial and error process, and the ultimate
functionality of the circuit is hardly predictable. Each program is
executed using a different architecture, and context effects arising
from unexpected parts interactions can alter recombination effi-
ciency and gene expression. We previously reported such context
effects for recombinase devices, as some attB and attP sites have
cryptic promoter or terminator activities28,33,34. In addition,
concatenating highly repetitive orthogonal sites35 may impact the
scalability of this strategy due to nonspecific recombination31,36

and genetic instability37.
Here, we present an alternative strategy for recombinase-

operated history-dependent programs. We aimed to deliver a
systematic framework supporting the implementation of all
possible programs, and satisfying the following design specifica-
tions. First, for a given number of inputs, a standard DNA
scaffold should allow gene expression in any desired recombi-
nation states corresponding to the presence of inputs in a specific
order. DNA scaffold standardization supports in-depth optimi-
zation and removal of context effects, providing recombinase
devices with reliable behavior29,33. Second, orthogonal recombi-
nation sites should be avoided. Third, researchers should have
access to readily usable software tools for automated design and
optimization of history-dependent programs.

In order to meet these requirements, we turned to multi-
cellular computation, in which the computational labor is dis-
tributed between different strains of a multicellular system.
While each single-cell program is implemented using a different
architecture32,35, distributed programs are executed by com-
bining different strains executing simple functions. The com-
partmentalization of circuit elements allows for thorough
optimization and reuse of biological parts. Using this scheme, a
small library of standard strains supports the implementation of
a large amount of programs. Smaller circuit size in each strain
also reduces metabolic burden. Finally, because of its mod-
ularity, multicellular computing is a powerful approach to sys-
tematize circuit design, and obtain a predictable behavior from
engineered biological systems38. We and others have used
multicellular computation to reliably implement a high number
of Boolean logic functions using a small collection of well-
characterized genetic devices33,38,39.

Here, we engineered multicellular systems capable of executing
history-dependent programs. We designed modular, standard
DNA scaffolds in which genes can be inserted at specific locations
that become transcriptionally active in different recombination
states. Scaffolds allow the implementation in one strain of all
possible gene-expression programs for a specific sequence of
inputs. Programs requiring responses for different sequences of
inputs are implemented by composing multiple strains. Each
strain independently executes a portion of the whole program,
without requiring cell–cell communication channels, thereby
reducing the need for optimizing communication channels
between cells. We automated circuit design and provide the
community an easy to use, web-based design tool that generates
DNA architectures and sequences for any history-dependent
program.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18455-z

2 NATURE COMMUNICATIONS | (2020) 11:4758 | https://doi.org/10.1038/s41467-020-18455-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications

In addition, to streamline scaffold optimization, we created a
method termed Optimization via Synthesis of Intermediate
Recombination States (OSIRiS) in which the different inter-
mediate recombination states of the scaffold are generated in
silico, synthesized, and tested. Using OSIRiS, we rapidly assessed
scaffold function in all states and removed context effects altering
gene expression.

Using this integrated workflow, we demonstrate the reliable
execution of two- and three-input history-dependent programs
by engineered multicellular systems. Strains can be composed in a
combinatorial manner according to the desired program. Because
of its high modularity, reliability, and automated design work-
flow, our approach offers an attractive alternative to system-
atically implement history-dependent cellular programs in living
systems. We anticipate that the framework presented here will
support many applications with intricate signal processing
requirements in the fields of material engineering, biomanu-
facturing, and healthcare.

Results
A modular scaffold design to implement history-dependent
programs. History-dependent gene-expression programs can be
represented as a lineage tree40 in which each branch, or lineage,
corresponds to a specific order of occurrence of the inputs. The
number of lineages is equal to N!, where N is the number of
inputs (Fig. 1a). For instance, for 2-input programs, two lineages
exist, and for 3-input programs, six lineages exist. We imple-
mented history-dependent programs by using site-specific
recombinases that perform DNA inversion and excision events
(Fig. 1b); we focused on serine integrases that operate in several
species and for which many orthogonal enzymes have been
characterized and used to build genetic circuits28,29,33,35,41.

We designed a modular scaffold capable of executing all
possible 2-input history-dependent gene-expression programs
that can occur within a single lineage (Fig. 1c). The modular
scaffold contains insertion sites or “slots” in which genes of
interest (GOI) can be inserted and expressed in each state of the
lineage tree (Fig. 1c). Each input is assigned to an integrase that
controls recombination of specific portions of the scaffold. Using
this scheme, any possible combination of gene-expression states
within a particular lineage can be achieved by simply inserting the
desired gene at the corresponding positions, and switching the
identity of recombination sites according to the desired lineage
(Fig. 1d).

Depending on the identity of the different GOIs, the scaffold
can express one or multiple genes across the different output
states (Fig. 1e). Programs requiring gene expression in different
lineages are decomposed into subprograms that are executed by
different strains, each strain corresponding to one lineage. The
full program is executed by a multicellular system obtained by
mixing strains in equal proportions (Fig. 1e). Importantly, as our
system does not use cell–cell communication, if one of the
subprograms is ON, the global output of the system is considered
to be ON. For a given number of inputs, the maximum number of
strains needed is equal to the number of lineages (N! for N inputs)
(Fig. S1a). However, most functions are implementable with
fewer than the maximum number of strains, as the number of
strains depends on the number of lineages in which gene
expression is required (Fig. S1b).

Based on the same principle, we designed 3-, 4-, and 5-input
scaffolds (Fig. S2). Each scaffold is derived from the previous one;
new target sites and a gene slot are added to enable the detection
of an additional input and the expression of an additional gene.
These scaffolds support the implementation of all history-
dependent programs up to 5 inputs.

Automated design of history-dependent programs. Automated
design frameworks29,32,42 that lower the entry barrier into novel
technologies have proven to be critical in empowering a larger
community with technological advances, providing unexpected
innovations that could not have been envisioned by the original
inventors. In this context, the automation of genetic circuit design
is an important step toward the deployment of cellular computing
systems into myriad research or engineering applications.

To automate the design of history-dependent programs, we
encoded an algorithm taking a lineage tree as input (equivalent
to a sequential truth table) and providing the biological
implementation as output (Fig. S3), see “Methods” (https://
github.com/synthetic-biology-group-cbs-montpellier/calin). The
biological implementation consists of a graphical representation
of the genetic circuit and the device DNA sequence of each strain
(Fig. 1f). To enable broad access to our design framework,
we provide a website called composable asynchronous logic
using integrase networks (CALIN) (http://synbio.cbs.cnrs.fr/
calin/sequential_input.php) that supports automated design of
history-dependent programs. In the CALIN web interface, the
user fills in the number of inputs to process and the desired
lineage tree. The interface provides as an output the DNA
architectures of the computational devices, the connection map
between inputs and integrases along with the corresponding
DNA sequences optimized for E. coli, which can be directly
synthesized to obtain a functional system. The design of all
history-dependent programs to up to five inputs and the
maximum number of outputs corresponding to the number of
states are accessible through this interface. The CALIN
interface allows the scientific and engineering community to
build upon our work to address many different problems.

Implementing single-lineage programs. We then aimed to
experimentally implement our designs, starting with single-lineage, 2-
input programs (Fig. 1c, d). Such programs could be used, for
instance, to track if a cell has entered a specific differentiation
pathway. In order to streamline the engineering process, we took
advantage of the similarity of recombinase systems with state
machines and designed an optimization workflow called OSIRiS
(Fig. 2a). Because each state corresponds to a physically different
DNA molecule in which sequence can be fully predicted, OSIRiS
enables the different recombination intermediate sequences to be
generated in silico, synthesized, and characterized (Fig. 2a). OSIRiS
therefore decouples scaffold optimization from integrase-mediated
switching, simplifies and shortens the characterization process, and
allows for rapid iteration cycles. The OSIRiS script, written in python,
automatically generates the intermediate sequences of any integrase-
based scaffold, and is available on GitHub (https://github.com/
synthetic-biology-group-cbs-montpellier/OSIRiS) and Codeocean43.

We first used OSIRiS to generate all recombination inter-
mediates for a 2-input, 3-output, single-lineage program (Fig. 2a).
All recombination intermediates behaved as expected (Fig. 2a and
Fig. S4). We then characterized the history-dependent response of
nine single-lineage 2-input programs (Fig. 2c). We chose
representative programs, based on their lineage, their number
of ON states, and the number of different output genes. Single-
lineage programs with single-output permits to identify particular
states the cell entered, while those with multioutputs can enable
precise, unambiguous discrimination between different states
after a particular input order. We detected ON states using one or
multiple fluorescent proteins. For one lineage (lineage 2: b then
a), we tested all possible history-dependent programs producing a
single type of output (green fluorescent protein (GFP)). For
lineage 1 (a then b), we tested programs using a different
fluorescent reporter for each state. We used a dual-controller

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18455-z ARTICLE

NATURE COMMUNICATIONS | (2020) 11:4758 | https://doi.org/10.1038/s41467-020-18455-z | www.nature.com/naturecommunications 3

https://github.com/synthetic-biology-group-cbs-montpellier/calin
https://github.com/synthetic-biology-group-cbs-montpellier/calin
http://synbio.cbs.cnrs.fr/calin/sequential_input.php
http://synbio.cbs.cnrs.fr/calin/sequential_input.php
https://github.com/synthetic-biology-group-cbs-montpellier/OSIRiS
https://github.com/synthetic-biology-group-cbs-montpellier/OSIRiS
www.nature.com/naturecommunications
www.nature.com/naturecommunications

plasmid28 in which Bxb1 integrase is under the control of the
pTet promoter responding to anhydrotetracycline (aTc, input a)
and Tp901-1 integrase is under the control of the pBAD
promoter responding to arabinose (Ara, input b) (Fig. 2b). For
programs expressing GFP in multiple output states, we used
different GFP variants: sfGFP, GFP226, and GFP221. Each of
these variants has different fluorescence intensities and reduced
sequence homology44 to avoid genetic instabilities issues32

(see Supplementary File). We operated the system in fundamental

mode, i.e., inputs cannot occur simultaneously, but only
sequentially45. All nine single-lineage programs behaved as
predicted (Fig. 2c). The scaffold was capable of driving expression
of various fluorescent reporters in different DNA states and in
both lineages. All devices had at least a tenfold change in
fluorescence intensity between the OFF and ON states, with a
maximum fold change of over 250 for sfGFP (Fig. S5,
Supplementary Table 1). We observed, as expected, variations
in fold changes depending on which GFP variant was used. We

Program

CALIN web-interface: Automated design

b c

Integrase

Input

Inversion

attB attP

attL attR

attB attP

attL

Excision

0

1 2a

b

b

a

2 0 1

2

0

1

2

0

1

2

2

GOI 0 GOI 1GOI 2

2-input scaffold

d

a

Lineage 1

Lineage 2

0

3 4

1 2

b

a

a

b

Time

History-dependent
program

f

e

0

3 4

1 2

S
in

gl
e-

ou
tp

ut

0

3 4

1 2

M
ul

ti-
ou

tp
ut

s

0

3 4

1 2

Single-lineage

Single-cell program

0

3 4

1 2

Multi-lineage

Multi-cell program

2

0

1

Lineage 1

Lineage 2

f1

f2

Mix of
strains

Multicellular
program

Implementation
Pb

int2
Pa

int1

2 0

Pb

int2
Pa

int1

1

Division in subprograms

Web-interface
INPUT

Web-interface OUTPUT

Experimental implementation

Program to up
to 5 inputs

With target DNAseq

Fig. 1 Design of a modular scaffold for 2-input history-dependent multicellular programs. a Lineage tree representing a history-dependent program.
Letters represent the presence of the two inputs (a and b) and numbers on nodes represent states of the system associated with the order of occurrence of
the inputs. For two inputs programs, five states are possible. b Integrase-mediated excision or inversion. When integrase sites are in the opposite
orientation (left panel), the DNA sequence flanked by the sites is inverted. If integrase sites are in the same orientation (right panel), the DNA sequence
flanked by the sites is excised. c 2-input history-dependent scaffold. Integrase sites are positioned to trigger expression of an output gene (arrows) or not
(empty gray squares) in the corresponding lineage. Programs are implemented by inserting genes corresponding to the ON states in adequate scaffold
positions. d DNA transitions, recombination intermediates, and gene-expression states for the 2-input scaffold. The corresponding lineage tree is
represented in the upper left. e Single-cell programs operate in a single lineage and can control expression of single or multiple outputs. Multicell programs
operate in multiple lineages and can control the expression of a single or multiple outputs. f Automated design of history-dependent programs. The CALIN
algorithm takes as input a history-dependent program written as a lineage tree. CALIN decomposes multilineage programs into subprograms, each
corresponding to a different lineage (a then b; b then a). For each subprogram, the algorithm identifies the ON states and the order of inputs within the
lineage. Based on this information, the biological design is computed, and the software provides input/integrases connections, the architecture of history-
dependent scaffolds and their corresponding DNA sequences. Each subprogram is executed in a different strain as a DNA device (f1, f2). The full program is
implemented by composing the different strains into multicellular systems.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18455-z

4 NATURE COMMUNICATIONS | (2020) 11:4758 | https://doi.org/10.1038/s41467-020-18455-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications

measured the percentage of switched cells, and found a minimum
of 90% switching efficiency for states supposed to express a
fluorescent protein. We also observed spontaneous switching in
some states (mostly in S0) affecting a maximum of ~12% of the
population (Fig. S5).

One particular program expresses a different fluorescent
reporter gene in each input state of one lineage (Fig. 2c Fig. S4a,
program 2SP9). We obtained the expected phenotype for each of

the four possible DNA states, BFP in state 0, RFP in state 1, GFP
in state 2, and no expression in state 3 or 4 (Fig. 2c, Fig. S5). We
analyzed the switching kinetics of the 2SP9 program by time-
lapse microscopy, and observed a clear transition of states from
blue to red to green fluorescence. We noted that 3 h were
sufficient to observe 100% switching in the lineage states from S0
to S1 in strains growing continuously in a mother machine
microfluidics device46 (Fig. S6 and Supplementary Movie 1).

a

2SP1

b

b

a

a

F.
I.

(a
.u

.)

101

102

103

104

105

G

sfGFP GFP221GFP226

Day 0 Day 1 Day 2

101

102

103

104

105

F.
I.

(a
.u

.)

G

sfGFP

b

b

a

a

Day 0 Day 1 Day 2

2SP6

F.
I.

(a
.u

.)

101

102

103

104

105

G

2SP2 GFP226 sfGFP

b

b

a

a

Day 0 Day 1 Day 2

GFP221GFP226

F.
I.

(a
.u

.)

101

102

103

104

105

G

2SP3

b

b

a

a

Day 0 Day 1 Day 2

GFP226

F.
I.

(a
.u

.)

101

102

103

104

105

G

2SP4

b

b

a

a

Day 0 Day 1 Day 2

b

b

a

a

F.
I.

(a
.u

.)

101

102

103

104

105

R

2SP5 mKate2

Day 0 Day 1 Day 2

F.
I.

(a
.u

.)

101

102

103

104

105

G R

2SP7 mKate2sfGFP

Day 0 Day 1 Day 2

b

b

a

a

F.
I.

(a
.u

.)

101

102

103

104

105

G B

2SP8 BFPsfGFP

Day 0 Day 1 Day 2

b

b

a

a

F.
I.

(a
.u

.)

101

102

103

104

105

G BR

2SP9 sfGFP BFP mKate2

Day 0 Day 1 Day 2

b

b

a

a

c

b
OSIRiS
Optimization via Synthesis of Intermediate Recombination States

Characterization

Correspond to
the expected
phenotype?

Yes

DNA
synthesis
of states

Result
analysis

Program
implementationRedesign

Expected
phenotype

In silico design

Multi-output scaffold design

sfGFP BFP mKate2

State 0

State 1

State 2

State 3

Recombination intermediates
DNA states

0
1 2

3

No

Cell

3

sfGFP

sfGFP

sfGFP

sfGFP

BFP

BFP

BFP

mKate2

mKate2

mKate2

Pbad

Dual controller plasmid

tp901-1
Ptet

bxb1

ColE1

Target plasmid

GOI 0GOI 2 GOI 1

pSC101

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18455-z ARTICLE

NATURE COMMUNICATIONS | (2020) 11:4758 | https://doi.org/10.1038/s41467-020-18455-z | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications

History-dependent logic in multicellular systems. We then
implemented 2-input history-dependent programs producing
outputs in the two different lineages, therefore requiring the
assembly of a multicellular system (Fig. 3a). As a demonstration,
we built two multicellular programs, 2MP1 and 2MP2. To
implement these programs we used four different strains, mixing
two strains per program. We cocultivated the two strains for
3 days, performing overnight inductions with different sequences
of inputs.

We measured the bulk fluorescence intensity of the cellular
population in each state using flow cytometry and plate reader,
and confirmed that programs behaved as predicted, with clearly
measurable, successive expression of different genes depending
on the order of inputs (Fig. 3b–e). Flow-cytometry and
microscopy analysis showed, as expected, mixed gene-
expression states (ON and OFF) between the two strains
(Fig. S7). Flow-cytometry analysis of both multicellular systems
showed an equivalent percentage (~50%) of cells in each
subpopulation during 3 days of sequential induction, confirm-
ing the stability of the system and the lack of competition
effects between the two strains (Fig. 3b, c, Fig. S7). Fluorescence
intensity was still readable by plate reader, despite its decrease
due to strain dilution within the multicellular system (Fig. 3d, e,
Fig. S7).

We then sought to scale up the system, and designed a 3-input
scaffold capable of expressing a different gene in every state of a
3-input lineage (Fig. 4a–c). We used OSIRiS workflow to optimize
and characterize the 3-input scaffold and its five recombination
intermediate states (Fig. 4d). We optimized the initial 3-input
scaffold design to correct unexpected GFP fluorescence in states 0
and 4 (Fig. 4d). By removing two DNA spacer sequences
(probably containing cryptic promoters activities) we obtained
the expected behavior. The OSIRiS workflow proved extremely
useful to accelerate the optimization process and obtain a
functional version of the scaffold producing the expected output
in all states (Fig. 5a, Fig. S8).

We then designed five single-lineage, 3-input programs and
assessed their functionality in response to all possible combina-
tions and sequences of inputs. We added a third integrase,
Integrase 5 (Int5)41 to the controller plasmid, under the control of
the pBEN promoter responding to benzoate (input c) (Fig. 5b).
We confirmed the functionality and quantified the recombination
efficiency of each integrase in the triple controller plasmid by
using OSIRiS intermediate DNA states as recombination targets
(Fig. S9). Then, we cotransformed the triple controller with the
corresponding target plasmid for each program, and performed
sequential overnight inductions with aTc (Bxb1), arabinose
(Tp901-1), and benzoate (Int5) for 4 days (see “Methods”).
Measurements of fluorescence intensity by flow cytometry in each
of the 16 input states were consistent with the expected program
(Fig. 5c, Figs. S10 and S11). In addition, the fluorescence observed

for each input state were similar to those observed during OSIRiS
characterization (Fig. 5a, c, Fig. S12).

We then composed various 3-input programs operating at the
multicellular level. We assembled four programs (3MP1-4) with
different fluorescent reporter genes expressed in different states in
separate lineages (Fig. 6, Fig. S13). Bulk fluorescence intensities of
all multicellular systems executing 3-input programs were
measured by plate reader, and were in good agreement with the
corresponding lineage trees (Fig. 6, Figs. S13 and S14). Flow-
cytometry analysis was consistent with the expected multicellular
behavior, with only one portion of the population expressing an
output in a particular state (Fig. S15). Here, again, fluorescence
intensity decreased proportionally with the dilution rate of each
population in the mix, but was still measurable in bulk using a
plate reader (Fig. 6, Figs. S13 and S14).

Some history-dependent programs also have a combinatorial
logic component, and part of the program can be executed by a
Boolean logic device (see Supplementary Text). We calculated
that mixing Boolean and sequential logic devices can actually
reduce the number of devices and the number of strains used
(Fig. S16). We used previously designed Boolean integrase logic
gates33 to test this minimization strategy using a 3-input history-
dependent program requiring four different strains in fully
sequential mode (Fig. S17a). Combining Boolean and history-
dependent devices, only three strains instead of four are needed to
implement the same program (Fig. S17a). The measured
fluorescence intensities in mixed populations were consistent
with the expected lineage tree (Fig. S17b), confirming that
Boolean-based minimization is indeed a viable approach to
reduce multicellular system complexity. These results also
highlight how the modularity and composability of distributed
multicellular computation support the use of different families of
logic devices within the same multicellular system.

We then scaled our scaffold designs and generated scaffolds for
4- and 5-input history-dependent gene-expression programs
(Fig. S18). The 4-input scaffold allows for expression of a
different GOI in each state of a given lineage, while the 5-input
scaffold allows expression of a different GOI in each state except
in the state 0 (with no input) (Fig. S18b). An additional strain is
needed if gene expression is required in this state.

Taken together, these data demonstrate that multi-input/
multioutput history-dependent programs can be reliably imple-
mented in a distributed fashion across a cellular population,
without the use of cell–cell communication.

Robustness of history-dependent programs. We then evaluated
the fidelity of all implemented history-dependent programs using
a vector proximity framework29. We calculated the similarity
between the biological data for history-dependent programs and
their ideal implementation (see “Methods”) (Fig. 7). In this
representation, the lower the angle deviation is from 0°, the closer

Fig. 2 Characterization of 2-input single-lineage programs. a OSIRiS workflow. A 2-input history-dependent scaffold with consecutive expressions of BFP,
RFP, and GFP in one lineage is designed. The DNA sequences of the different input states corresponding to the intermediate recombination states are
generated (DNA states). The DNA states sequences are synthesized and characterized and the phenotypes are compared to the expected ones. If they
match, the implementation of the program is performed. Otherwise, the results are precisely analyzed to identify the origin of the failure, the multioutput
scaffold is redesigned and a new OSIRiS cycle is performed. b genetic design of the two plasmid used to characterize each program. The dual-controller
plasmid regulates the gene expression of the Bxb1 and Tp901-1 integrases. The target plasmid corresponds to the 2-input history-dependent scaffold.
c Nine single-lineage history-dependent programs (2SP1–2SP9) exhibiting lineage specific, or state-specific gene expression with single or multiple genetic
outputs were implemented and characterized. Bxb1 and Tp901-1 are induced by aTc (input a) and by arabinose (input b), respectively. The lineage tree for
each program and its corresponding genetic DNA device are represented. Cells transformed with both plasmids were sequentially induced twice for 16 h, at
which point fluorescence intensity was measured by flow cytometry. Each histogram shows the expression of fluorescent reporters expressed at different
induction states. All experiments were performed in triplicate three times on three different days. A representative example from three biological replicates
is depicted here. Fold change measurements can be found in Fig. S5.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18455-z

6 NATURE COMMUNICATIONS | (2020) 11:4758 | https://doi.org/10.1038/s41467-020-18455-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications

the program behavior is to its expected one. For instance, a
program exhibiting a behavior opposite to the expected one
would have an angle of 90°. Because a high recombination effi-
ciency is essential to obtain a good program implementation, we
evaluated the global recombination efficiency across the whole
program using the percentage of the cells switched in each state of
the program. We call this value “switching rate” and we con-
sidered programs with similarity angles smaller than 5° in

excellent agreement with the expected outcome; programs with
angles between 5 and 20° were qualified as reliable, while the ones
with angles higher than 20° were not recommendable to use.

We found that single-lineage devices had a very robust
switching behavior for both 2- and 3-input programs (Fig. 7a),
mostly with angles lower or equal to 5° (11/14) and none resulted
in an angle of more than 15°. Because all programs had a high
switching rate, we extended our analysis to program output

2MP2

mKate2

2SP5

BFPsfGFP

2SP8

Mixed strainsb

e

c

a

Multi-lineage program

Test

Implementation

d

0

F.
I.

(a
.u

)

104 104103

G R B

b

a

F.
I.

(a
.u

)

F.
I.

(a
.u

)

2MP1

mKate2sfGFP

2SP7

GFP226

2SP4

Mixed strains

Flow cytometry Plate reader

F.
I.

(a
.u

)

Fluorescence analysis

G R

F.
I.

(a
.u

)

G R

b

a
b

a
b

a

F.
I.

(a
.u

.)

101

102

103

104

105

G BR
b

b

a

a

Day 0 Day 1 Day 2

b

b

a

a

Day 0 Day 1 Day 2

F.
I.

(a
.u

.)

101

102

103

104

105

G R

101

102

103

104

105

Fig. 3 Characterization of 2-input multicellular programs. Workflow characterization of 2-input multicellular programs (a). After the input program
design, single-lineage programs are mixed and the multicellular program is implemented. The program characterization is done by fluorescence
measurements by flow cytometry and plate reader. The flow-cytometry analysis allows us to observe the percentage of population ON and OFF for one
state. Design and characterization of 2-input multicellular program 2MP1 and 2MP2, by flow cytometry (b, c) and plate reader (d, e), respectively. Both
multicellular programs were implemented using two different single-lineage strains. The lineage trees for each program and its corresponding genetic DNA
device are represented. The inputs are represented by letters, a for aTc inducing Bxb1 Integrase and b for arabinose inducing Tp901-1 integrase. To
implement each program, the strains were mixed in similar proportions, grown for 16 h and sequentially induced with each molecule. Each histogram shows
the expression of fluorescent reporters at different induction states. A representative example is depicted here. The bar graph corresponds to the mean
value of the fluorescence intensity (F.I.) in arbitrary units (a.u) for each fluorescent channel (G (GFP), R (RFP), and B (BFP)) with linear different scales. All
experiments were performed in triplicate three times on 3 different days (data distribution in dot plots in Fig. S7c–f). The error bars correspond to the
±standard deviation of the mean of the three different experiments. The dotted line indicates the negative autofluorescence from control strain. Note that
GFP226 has a lower fluorescence intensity than sfGFP, as expected.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18455-z ARTICLE

NATURE COMMUNICATIONS | (2020) 11:4758 | https://doi.org/10.1038/s41467-020-18455-z | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications

intensities, and monitored the similarity between the experimen-
tally measured fluorescence intensities and the theoretical ones.
The robustness of fluorescence was also close to the expected,
with angles lower than 17° (Fig. S19). Only the program 3SP3
presented a higher angle (30°) and lower minimal fold change of
BFP fluorescence (Fig. S19, Table S1), presumably because of a
lower BFP expression, and not because of a lack of robustness of
the switch (Fig. 7a). In addition, we evaluated the robustness of
the implemented multicellular programs by measuring the
similarity between expected and experimental fluorescence
intensity of the system. We plotted these angles versus the
average fold change in fluorescence intensity for each program.
We found that the six multicellular programs operated reliably,
with angles between 8° to 12° (Fig. 7b). As expected, multicellular
programs had fluorescence fold change lower in average than
other programs, due to dilution effect. In general, programs

behaviors are highly similar to expected ones, demonstrating the
predictability of the modular scaffold operation.

Discussion
Implementing rich behavior in living organisms requires the
development of robust frameworks for history-dependent
logic47,48. In this work, we demonstrate that complex history-
dependent programs can be executed in a simple manner by
distributing the computational labor between different members
of a multicellular system. Multicellular computation provides
highly modular and composable systems, i.e., many logic func-
tions can be implemented in a straightforward manner from a
reduced set of strains executing basic functions. Here, we
designed, characterized, and optimized 2- and 3-input scaffolds.
We built nine 2-input and five 3-input single-lineage logic

0

1
2 3

b

a

GOI 3 GOI 0 GOI 1 GOI 2

Int a Int cInt b

Int a Int b

sfGFP BFP mKate2

sfGFP sfGFP BFP mKate2

Int b

sfGFP BFPmKate2

sfGFP BFPmKate2

sfGFP

Multi-output scaffold design

sfGFP

c
Characterization

Correspond to
the expected
phenotype?

DNA
synthesis
of states

OSIRiS
Optimization via Synthesis of Intermediate Recombination States

Result
analysis

Program
implementation

Expected
phenotype

In silico design

Multi-output scaffold design

sfGFP BFP mKate2

Yes

Phenotype

x

Design
version 1

x

x

No

DNA state 0

DNA state 4

F
o

ld
 c

h
an

g
e

 f
ro

m
 N

C

101

102

100

BRG

F
o

ld
 c

h
an

g
e

 f
ro

m
 N

C

101

102

100

BRG

Design
version 2

Phenotype

F
o

ld
 c

h
an

g
e

 f
ro

m
 N

C

101

102

100

BRG

F
o

ld
 c

h
an

g
e

 f
ro

m
 N

C

101

102

100

BRG

Redesign

State 0

State 1

State 2

State 3

State 4

State 5

Recombination intermediates
DNA states

sfGFP

sfGFP

sfGFP BFP mKate2

sfGFP BFPmKate2

sfGFP BFPmKate2

sfGFP BFP mKate2

d

a

c

b

b
c

c
b

a
b

b
a

a
c

c a

L3S3P21

J61048attB attB
Int5Tp901

L3S3P21 sp6

sp7 J61048attB attB
Int5Tp901

Fig. 4 Design of a modular scaffold for 3-input history-dependent programs. 3-input history-dependent scaffold (a) and its lineage tree (b). Integrase
sites are positioned to permit expression of an output gene in various states of the lineage tree. For each state of the desired lineage, a different gene is
expressed, and a gene is also expressed when no input is present. The four columns of the lineage tree correspond to different numbers of inputs that have
occurred sequentially (from 0 to 3 inputs) and the six lineages correspond to different order of occurrences of inputs (example: a–b–c for lineage 1 and
b–a–c for lineage 3). c DNA and gene-expression states of the scaffold. The gene at the GOI position 0 is expressed only when no input is present. The
scaffold has six different DNA states. d Optimization of the 3-input scaffold using OSIRiS. For a given 3-input program, a scaffold with consecutive
expressions of BFP, RFP, and GFP in one lineage is designed. From this design, six intermediate DNA states are generated and the expected phenotype for
each DNA state of the tree is predicted. Two versions of this 3-input scaffold were analyzed. Version 1 was producing unexpected GFP fluorescence in state
0 and state 4. Version 2 is an optimized design from version 1, in which two DNA sequences corresponding to spacers sp7 and sp6, flanking L3S2P21 and
J61048 terminators, were removed. The fluorescence intensities in different channels for two versions in DNA states 0 and 4 is shown. The bar graph
corresponds to the fold change over the negative control (strain without fluorescent protein) for each channel (GFP, RFP, and BFP) from three experiments
with three replicates per experiment. The error bars correspond to the standard deviation between the fold changes obtained in three separate
experiments.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18455-z

8 NATURE COMMUNICATIONS | (2020) 11:4758 | https://doi.org/10.1038/s41467-020-18455-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications

devices. All devices had predictable behavior close to the ideal
program implementation. Without further optimization, we
composed various strains containing single-lineage devices to
implement complex history-dependent programs executed at the
multicellular level, without the need of communication channels.
The fact that our system is built by composing well-characterized,
standardized genetic elements allowed us to automate program
design in a straightforward manner. We provide an easy-to-use
web interface that gives, from a desired program, the corre-
sponding circuit designs and DNA sequences.

Here, we successfully implemented 21 history-dependent pro-
grams, and found that all programs showed a high robustness of
execution, even after three successive inputs. A key parameter
influencing the robustness of history-dependent programs is the

recombination efficiency of the integrases used. If recombination
efficiency is too low, incomplete switching leads to error propa-
gation across a sequence of inputs. In our case, we found that the
robustness of the system was mostly affected by TP901-1 enzyme
which has a 92% recombination efficiency, while Bxb1 and Int5
had efficiencies close to 97%. Obtaining high recombination
efficiencies by optimizing the integrase generator or the target
devices will thus be critical to avoid the compounding effect of
incomplete recombination when implementing 4- and 5-input
programs.

Using the single-lineage programs from this study, 36 different
programs can be executed. Here, we demonstrated that in one
program, three different states can be unambiguously dis-
tinguished using different fluorescent proteins (Figs. 2c, 3, and

G BR
101

102

103

104

105

F.
I.

(a
.u

.)

S0

S1
S2 S3

S4

S5

S0

S1

S0

S1

S2

S3

S4

S5

Recombination intermediates
DNA states

sfGFP

sfGFP

sfGFP BFP mKate2

sfGFP BFP mKate2

sfGFP BFPmKate2

sfGFP BFPmKate2

S2 S3

S4

S5

b

Cell

a

3SP1

G BR

b

a

c

a

c

b

b

a

a

c

c

a

b

101

102

103

104

105

c

b
F.

I.
(a

.u
.)

Day 3Day 1 Day 2Day 0

c
sfGFP BFP mKate2

OSIRiS:
Optimized 3-input scaffold design

Target plasmid

GOI 1GOI 3 GOI 2

pSC101

Pbad Pben

Triple controller plasmid

tp901-1 int5
Ptet

bxb1

ColE1

Fig. 5 Characterization of scaffold for 3-input history-dependent programs. a Characterization of the final 3-input scaffold and its recombination
intermediates DNA states by flow cytometry. We characterized each DNA state by measurement of GFP, RFP, and BFP fluorescence intensities. Each
histogram shows fluorescent reporters expressed in the different DNA states, from three experiments with three replicates per experiment. A
representative example is depicted here. A detailed design for the final 3-input scaffold and fold change measurements can be found in Fig. S8. b Genetic
design of the two plasmids used to implement 3-input programs. The triple controller plasmid regulates the expression of Bxb1, TP901-1, and Int5
integrases. The target plasmid corresponds to the 3-input history-dependent scaffold. c Characterization of a 3-input history-dependent scaffold. We
cotransformed the 3-input program with the triple controller plasmid. Bxb1 expression is induced by aTc (input a), Tp901 by arabinose (input b), and Int5
by benzoate (input c). The lineage tree for the program and its corresponding genetic DNA device is represented. For characterizing the system, cells were
sequentially induced three times for 16 h each, with different order of occurrences of inputs. Each histogram shows fluorescent reporters expressed in
different states. All experiments were performed in triplicate three times on three different days. A representative example is depicted here. Fold change
measurements can be found in Fig. S12.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18455-z ARTICLE

NATURE COMMUNICATIONS | (2020) 11:4758 | https://doi.org/10.1038/s41467-020-18455-z | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications

5c). More states could be distinguished by fluorescence micro-
scopy by fusing fluorescent proteins to subcellular localization
tags49, expressing various combinations of fluorescent proteins
and performing spectral deconvolution50, or expressing barcoded
mRNA and detect them through smFISH.31

Because intermediate recombination states are encoded within
DNA, we developed a rapid prototyping workflow (OSIRiS) based
on total synthesis and characterization of all recombination
intermediates. We found that the results from scaffold char-
acterization using OSIRiS closely matched device behavior when
operating in real conditions, i.e., responding to recombinase
mediated inversions or excisions. The recombination inter-
mediate DNA states provided by OSIRiS can be used to optimize
the scaffold and characterize the recombinase efficiencies of the
integrases in the genetic context and experimental condition in
which the program will be used (Fig. S9).

While we do operate our system in fundamental mode, some
inputs could arrive in a mixed manner. The time resolution of the
system (i.e., the minimum time between two inputs so that dif-
ferent outcomes can be observed) and the proportion between the
resulting populations having entered different lineages would
depend on the dynamics of the recombination reactions, which is

governed by integrase expression, stability, and catalytic rate,
among others. In this context, our system could be used to reverse
engineer the timing between inputs, as already shown before51.

One potential challenge for application requiring a detectable
readout like biosensing is that the system output is produced by a
single strain at a time. However, our systems with up to three
strains still have a well-detectable output, similarly to previously
engineered Boolean recombinase logic systems operating at the
multicellular level33. If needed, cell–cell communication could be
used to propagate the output state to all the strains of the
population42. DNA-sequencing methods could also be used to
address the state of the system27,35,52,53. Finally, for many
applications like morphogenetic engineering, strain specific phe-
notypic output would be desirable. By simply changing the output
gene of interest, various phenotypes like secretion, adhesion, or
motility could be implemented in an history-dependent fashion.

Another challenge is the number of strains required to
implement programs requiring gene expression in multiple
lineages. For example, a maximum of six strains is required to
execute all 3-input programs. Importantly, we showed here and in
previous work (Fig. S7, Figs. S13 and S14 and ref. 33) that mul-
ticellular systems operating for several days exhibited reasonable

3MP1

Multi-lineage program

Mixed programs

mKate2

3SP2

sfGFP BFP

3SP5

sfGFP mKate2

3SP4

BFP

3SP3

3-input single-cell programs

3SP2

a

b

c

b

a

3MP3

Multi-lineage program

Mixed programs

c

b

a

c

3SP5 3SP2 3SP3 3SP4

0

F.
I.

(a
.u

)

104 104103

G R B
0

F.
I.

(a
.u

)

103 103103

G R B

Fig. 6 Characterization of 3-input multicellular programs. Design and characterization of 3-input single-cell (single-lineage) programs operating in
various lineages (a). Multicellular programs were composed by mixing two (b) or three (c) single-lineage programs. The inputs are represented by letters,
a (blue) for aTc (expression of Bxb1 Integrase), b (orange) for arabinose (expression of integrase TP901-1), and c (purple) for benzoate (expression of
Int5). Strains were mixed in equal proportions and sequentially induced three times for 16 h each, with different order of occurrences of inputs. The bar
graph corresponds to the mean value of fluorescence intensity (F.I.) in arbitrary units (a.u) for each fluorescent channel (GFP, RFP, and BFP), with different
and linear scales each. All experiments were performed in triplicate three times on three different days (data distribution in dot plots in Fig. S14). The error
bars correspond to the ± standard deviation of the mean of the three different experiments performed in triplicate on three different days, and measured
using a plate reader. The dotted line indicates the autofluorescence of negative control strain.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18455-z

10 NATURE COMMUNICATIONS | (2020) 11:4758 | https://doi.org/10.1038/s41467-020-18455-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications

stability. If needed, synthetic cooperative behavior could be used
to maintain all strains in the population54,55. Strains could also be
cultivated in separate chambers within a microfluidic device for
instance, avoiding competition problems56. Alternatively, the
number of strains required to implement complex logic circuits
can be reduced by combining Boolean33 and history-dependent
devices. Future research exploring minimization strategies and
alternative scaffold designs could help reduce even more the
number of required strains.

The functionality of our system could be expanded in several
manners. For instance, integrases mediate irreversible switching,
and similarly to other recombinase devices, our system can
respond only once to a given input. The addition of recombi-
nation directionality factor26 would result in history-dependent
programs with reversible state transitions and increased com-
plexity. Cell–cell communication could also provide another layer
of complexity to coordinate synthetic collective behavior57.

Because of the high modularity of integrase logic, the system
presented here could be quickly repurposed by swapping the
signals controlling integrase expression to detect chemical (e.g.,
metabolites, biomarkers of disease, pollutants) or physical signals
(e.g., temperature, light). Here, we show using the benzoic acid
sensor BenR that a viable approach to engineer new switches is to
start by optimizing the properties of the transcriptional controller
and then screen for different integrase variants with different
translational efficiency or stability (Fig. S20). As serine integrases
work in many species, including mammals and plants, the history-
dependent programs presented here could be used in myriad
research and engineering applications. Programs responding to
environmental signals could enable therapeutic cells to act in a
highly precise spatiotemporal fashion, increasing specificity and
therapeutic efficacy while reducing side effects. Cellular sensors
could perform temporal logic analysis for diagnostics, environ-
mental, or manufacturing applications. Finally, sequential pro-
grams would support iterative, ordered assembly of synthetic
biological architectures for tissue and biomaterial engineering58,59.

Methods
Strains, media, and inducers. E. coli strain DH5alphaZ1 (laciq, PN25-tetR, SpR,
deoR, supE44, Delta(lacZYA-argFV169), Phi80 lacZDeltaM15, hsdR17(rK−, mK+),
recA1, endA1, gyrA96, thi-1, relA1) was used in experimental measurements of
history-dependent programs. DH5alphaZ1 was grown on LB media with antibiotics
corresponding to the transformed plasmid(s) to do the cloning. For experimental
measurements the cells were grown in Azure Hi-Def medium (Teknova, 3H5000)

supplemented with 0.4% of glycerol. Antibiotics used were kanamycin 25 μg/mL and
chloramphenicol 25 μg/mL. The inducers were: L-arabinose (Sigma-Aldrich, A3256)
used at a final concentration of 0.7% wt/vol; anhydrotetracycline (Sigma-Aldrich,
37919) used at a final concentration of 20 ng/mL and benzoic acid (Sigma-Aldrich,
242381) used at a final concentration of 100 μM, for 3-input programs.

Integrase controller and target plasmids construction. One-step isothermal
Gibson assembly was used60 to build all plasmids described. Vectors pSB4K5 and
J64100 (from parts.igem.org) were used to construct all genetic circuits. The
pSB4K5 vector containing kanR cassette and pSC101 origin of replication was used
to clone different input programs, based on DNA scaffold design, including BP and
LR targets, GOI, and other DNA parts. The J64100 plasmid containing camRY
cassette and ColE1 origin of replication was used to clone the integrase controller
cassette. Enzymes for the one-step isothermal assembly were purchased from New
England Biolabs (NEB, Ipswich, MA, USA). PCR were performed using Q5 PCR
master mix and One-Taq quick load master mix for colony PCR (NEB), primers
were purchased from IDT (Louvain, Belgium), and DNA fragments from Twist
Bioscience. Plasmid extraction and DNA purification were performed using kits
from Biosentec (Toulouse, France). Sequencing was realized by GATC Biotech
(Cologne, Germany).

To build the triple controller plasmid, we constructed an inducible cassette
containing the benR gene regulator, constitutively expressed by promoter J23106,
the Pben promoter (both benR and Pben from metabolic and sensing modules,
respectively61), and Int541 controlled by Pben promoter (see vector map). The cassette
was inserted upstream of dual controller integrase plasmid26. After assembly the
triple controller vector was transformed and cloned in E. coli strain DH5alphaZ1.

The design of DNA scaffold for target plasmid was done using a python script
to automatically generate a library of DNA sequences (https://github.com/
synthetic-biology-group-cbs-montpellier/Generate_DNAseq), which minimizes
the number of errors. Moreover, because the final sequences result from
permutations of a reduced set of parts, Python is particularly well suited for the
task. All sequences were designed to support cloning by Gibson assembly at an
identical location in pSB4K5 template vector. Consequently, all sequences were
composed of the 40 bp spacer 0 at 5′ end, and 40 bp spacer N at 3′ end. The DNA
sequences for every designed program were synthesized, as linear fragments, by
Twist Bioscience. Each DNA fragment was PCR amplified and assembled between
spacer 0 and N in pSB4K5 template vector. All DNA sequences of history-
dependent programs are listed in Table for Supplementary Information. Target
plasmids were transformed and cloned in E. coli strain DH5alphaZ1. All plasmids
were purified using QIAprep spin Miniprep kit (Qiagen) and sequence verified by
Sanger sequencing in Eurofins Genomics, EU.

Experimental conditions and sequential induction assays. Integrase controller
and target plasmids were cotransformed in E. coli strain DH5alphaZ1 and plated
on LB agar medium containing kanamycin and chloramphenicol antibiotics. Three
different colonies for each program to test were picked and inoculated, separately,
into 500 μL of Azure Hi-Def medium (Teknova, 3H5000) supplemented with 0.4%
of glycerol, kanamycin, and chloramphenicol in 96 DeepWell polystyrene plates
(Thermo Fisher Scientific, 278606) sealed with AeraSeal film (Sigma-Aldrich,
A9224-50EA) and incubated at 30 °C for 16 h with shaking (300 rpm) and 80% of
humidity in a Kuhner LT-X (Lab-Therm) incubator shaker. All experiments were
performed in the same condition of growth. After overnight growth the cells were

a b

100

80

60

40

20

0

Fig. 7 Robustness of history-dependent programs. Angles representing the similarity between biological and the ideal implementation of history-
dependent programs were plotted. The lower the angle deviation is from 0°, the closer the program behavior is to its expected one. a Switching robustness,
with angles computed from percentage of cell versus the worst-case switching rate of the switch (δ), were plotted. b Implemented multicellular programs
robustness with angles evaluated between biological and expected fluorescence from plate reader measurement versus the logarithm of average
fluorescence fold change (f) were plotted.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18455-z ARTICLE

NATURE COMMUNICATIONS | (2020) 11:4758 | https://doi.org/10.1038/s41467-020-18455-z | www.nature.com/naturecommunications 11

http://parts.igem.org
https://github.com/synthetic-biology-group-cbs-montpellier/Generate_DNAseq
https://github.com/synthetic-biology-group-cbs-montpellier/Generate_DNAseq
www.nature.com/naturecommunications
www.nature.com/naturecommunications

diluted 1000 times into fresh medium with antibiotics and let them grow at 37 °C
for 16 h (day 0). For multicellular programs, cell strains harboring different pro-
grams were equally mixed, before diluting (1000-fold total dilution) into fresh
medium with antibiotics. The mixed populations were grown at 37 °C for 16 h (day
0). After 16 h of incubation, the cells were serial diluted (1000-fold total dilution),
first 10 μL culture into 190 μL of fresh medium in presence of antibiotics and a
second dilution (from first dilution) 10 μL into fresh media with antibiotics and
inducers (aTc, arabinose or benzoate) or not. The cells were grown at 37 °C for 16 h
(day 1). After overnight incubation, the cells were serial diluted (1000-fold total
dilution), first 10 μL culture into 190 μL of fresh medium in presence of antibiotics
and a second dilution (from first dilution) 10 μL into fresh media with antibiotics
and inducers (aTc, arabinose or benzoate) or not. (day 2, aTc → Ara; Ara → aTc,
for 2-input programs and aTc → Ara; aTc → benzoate; Ara → aTc; Ara →
benzoate; benzoate → aTc; benzoate → Ara, for 3-input programs). For 3-input
programs, after overnight incubation the cells were serial diluted (1000-fold total
dilution), first 10μL culture into 190 μL of fresh medium in presence of antibiotics
and a second dilution (from first dilution) 10 μL into fresh media with antibiotics
and inducers (aTc, arabinose or benzoate) or not. (Day 3, aTc → Ara → benzoate;
aTc→ benzoate→ Ara; Ara→ aTc→ benzoate; Ara→ benzoate→ aTc; benzoate
→ aTc → Ara; benzoate → Ara → aTc.) To measure cell fluorescence, aliquot of
cells from each day were diluted 200 times into Attune Focusing Fluid (Thermo
Fisher Scientific, A-24904) and incubated for 1 h at room temperature before flow-
cytometry analysis. For plate reader measurement an aliquot of cells from each day
were diluted four times in phosphate buffered saline PBS before read. For
microscopy analysis, aliquots of cells from each day were mixed with glycerol at
final concentration 15% v/v and kept at 80 °C until its analysis. Every experiment
was repeated two or three times.

OSIRiS design and characterization. To automate the design of intermediate
recombination state, we developed a python script giving from any integrase-based
scaffold and a list of integrase of interest the recombination intermediate DNA
sequences. OSIRiS code is widely available on GitHub (https://github.com/
synthetic-biology-group-cbs-montpellier/OSIRiS), requires Python 2.7 and Biopy-
thon installation.

To use OSIRiS script, a csv file containing integrase sites of interest is required,
we provided a csv file containing widely used integrase sites but any specific
sequences can be added. Of note, this script is only considering irreversible DNA
excision and inversion. As output, GenBank file with integrase site annotations is
obtained for all intermediate recombination states.

In our scaffold design, we selected the fluorescent proteins sfGFP, mKate2, and
BFP, as their excitation and emission spectrums do not overlap. We used P6 as the
promoter and B0034 as the ribosome binding site62. To insulate the translation
from the genetic context, we placed a ribozyme in the 5′ end of each output gene,
catalyzing the cleavage of the mRNA at this position63. We used different
ribozymes for each output gene (RiboJ, BydvJ, and AraJ) to avoid multiple
repetitions of sequences in the construct. Based on this design, we generated
intermediate recombination input states using our OSIRiS python script. We then
synthesized and constructed these sequences. We characterized all the constructs
by flow cytometry. The fold change over the negative control was determined from
mean value over that of the negative control. The mean fold change was
represented in the figure corresponding to the mean of the fold change of the three
different experiments.

Flow-cytometry and plate reader analysis. Flow cytometry was performed on
Attune NxT flow cytometer (Thermo Fisher) equipped with an autosampler and
Attune NxT™ Version 2.7 Software and BD LSR Fortessa (Becton Dickinson), with
FACSDiVa software. Experiment on Attune NxT were performed in 96-well plates
with setting; FSC: 200 V, SSC: 380 V, green intensity BL1: 460 V (488 nm laser and
a 510/10 nm filter), and red intensity YL2: 460 V (561 nm laser and a 615/25 nm
filter). Setting for experiments on Fortessa were FSC: 400 V, SSC: 300 V, green
intensity GFP: 580 V (488 nm laser and a 530/30 nm filter), red intensity mCherry:
565 V (600 nm laser and a 610/20 nm filter), and blue intensity V1: 460 V (405 nm
laser and a 450/50 nm filter). All events were collected with a cutoff of 20,000
events. Every experiment included a positive control expressing GFP, RFP, or BFP
and a negative control harboring the plasmid but without reporter gene, to generate
the gates. The cells were gated based on forward and side scatter graphs and events
on single-cell gates were selected and analyzed, to remove debris from the analysis
(Fig. S21), by Flow-Jo (Treestar, Inc) software. Original FCS files for each program
are available on Flow repository at the links provided in the “Data availability”
section.

Plate reader measurements were done on Cytation 3 microplate reader (Biotek
Instruments, Inc) and data were collected using Biotek Gen 5 software. After
induction time, cultures were diluted four times in PBS and measured with the
following parameters: GFP: excitation 485 nm, emission 528 nm, gain 80, BFP:
excitation 402 nm, emission 457 nm, gain 70, RFP: excitation 555 nm, emission
584 nm, gain 100, absorbance: 600 nm. For each sample, GFP, BFP, and RFP
fluorescence intensities were normalized to absorbance at 600 nm. The arbitrary
units of fluorescence were used to graph bars in each figure. Plots for all data
analysis were obtained using python plotting codes available on GitHub64. Plate
reader data are available as a Supplementary Excel file.

Microscopy and microfluidic analysis. Cell samples from sequential induction
experiments were analyzed by confocal microscopy. Images were acquired using a
Zeiss Axioimager Z2 apotome, Andor’s Zyla 4.2 sCMOS camera (MRI platform,
Montpellier). Two microliters of cells were spotted on Azure/glycerol 2% agarose
pads. Images were taken from phase contrast, GFP, RFP, and BFP fluorescence
images at ×100 magnification. Images were analyzed using OMERO software.
Source images are provided as a Source Data file.

For microfluidic analysis, experiments were performed using a mother machine
microfluidic device consisting in arrays of parallel chambers (1 µm × 1 µm × 25 µm)
connected to a large channel. Chambers were fabricated using electron-beam
lithography on SU-8 photoresist (MicroChem), while the channel was fabricated
using soft-lithography. From the subsequent master wafer, microfluidic chips were
molded in polydimethylsiloxane (PDMS) and bonded to a glass slide using plasma
activation. Cells, grown overnight in LB supplemented with Cam and Kan, were
then loaded into the chambers by centrifugation on a spin coater using a dedicated
3D printed device. LB media flown in the mother machine are supplemented with
Cam and Kan, but also with 5 g l−1 F-127 pluronic to passivate the PDMS surfaces
and prevent cell adhesion. The medium diffuses to the chambers, providing
nutrients and chemicals of interest to cells. Chemical inducers (aTc at 200 ng/mL
and arabinose at 1%) were added to the media as required using solenoid valves
(The Lee Company). A peristaltic pump was used to flow the various mediums
through the device at a flow rate of 90 μL/min. Both the microfluidic device and the
medium were constantly held at 37 °C. Images were obtained using an inverted
Olympus IX83 microscope with a ×60 objective. Fluorescence levels were measured
within a small rectangular region of interest located at the top of each chamber
where a single cell is trapped.

Automated generation of genetic designs. Equations for the determination of
number of subprograms to implement in different strains for history-
dependent logic

History-dependent programs are represented as a lineage tree. Each node of the
tree corresponds to a specific state of the system in response to a different scenario:
when no input occurred, when one input occurred, and when multiple inputs
occurred in a particular sequence. For an N-input program, the number σ of states
is equal to

σ ¼
XN
k¼0

N!
k!
: ð1Þ

Then, for N-input/1-output history-dependent logic programs, the number P1 of
possible programs is equal to

P1 ¼ 2σ ¼ 2

PN
k¼0

N!
k!

;
ð2Þ

as all states can have either an ON or OFF output. Similarly, for N-input/M-output
history-dependent logic programs

PM ¼ ðM þ 1Þσ ¼ ðM þ 1Þ
PN
k¼0

N!
k! ð3Þ

programs exist. The maximum number of outputs (Fig. S22) is equal to the number
of states as theoretically a different gene can be expressed in each state, then the
maximum number of N-input history-dependent logic programs is equal to

PMax ¼ ðσ þ 1Þσ ¼ ð
XN
k¼0

N!
k!

þ 1Þ
PN
k¼0

N!
k!

: ð4Þ

The maximum number of strains needed to implement an N-input/M-output
history-dependent gene-expression program is equal to N!, which corresponds to
the number of possible lineages in an N-input lineage tree.

Automated generation of genetic designs to execute multicellular history-
dependent gene-expression programs. We encoded an algorithm capable of
creating up to 5-input history-dependent program design using Python (Fig. S3)
(https://github.com/synthetic-biology-group-cbs-montpellier/calin; http://synbio.
cbs.cnrs.fr/calin/sequential_input.php). The algorithm takes as input a lineage tree
(equivalent to a sequential truth table). The output corresponds to the biological
implementation, such as a graphical representation of the genetic circuit and its
associated DNA sequences for each strain. The lineage tree is decomposed into
subtrees consisting of a single-lineage containing one or multiple ON states. This
decomposition is done by iteratively subtracting the lineages containing ON states.
To obtain the lowest number of subprograms, we prioritize among the lineages
with ON states the ones for which the highest number of inputs occurred (from the
right to the left of the lineage tree). After decomposition, for each selected lineage,
two pieces of information are extracted. First, based on which states are ON, we
directly design the corresponding scaffold by specifically inserting genes at the
adequate GOI positions. Second, the order of occurrence of inputs corresponding
to the lineage is used to identify which sensor modules are needed among the
different connection possibilities between control signals and integrases. Then, by
combining the design of the different lineages, we obtain the global design for
biological implementation of the desired history-dependent gene-expression

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18455-z

12 NATURE COMMUNICATIONS | (2020) 11:4758 | https://doi.org/10.1038/s41467-020-18455-z | www.nature.com/naturecommunications

https://github.com/synthetic-biology-group-cbs-montpellier/OSIRiS
https://github.com/synthetic-biology-group-cbs-montpellier/OSIRiS
https://github.com/synthetic-biology-group-cbs-montpellier/calin
http://synbio.cbs.cnrs.fr/calin/sequential_input.php
http://synbio.cbs.cnrs.fr/calin/sequential_input.php
www.nature.com/naturecommunications

program. To simplify the construction process of logic circuits, DNA sequence of
computation devices is generated by our Python code (available also at Code Ocean
platform). In CALIN, sequences are adapted for E.coli. But sequence generation can
be adapted to other organisms (databases are available for Bacillus subtilis and
Saccharomyces cerevisiae) or customly designed using the source Python code
available on GitHub (https://github.com/synthetic-biology-group-cbs-montpellier/
calin).

Robustness analysis. We adapted and generalized the vector proximity method
described in Weinberg et al.29 in order to compare the outputs of the programs to
the desired theoretical behavior.

Each implemented program has a different number of inputs (up to three) and
outputs; the matrix T corresponding to the expected outcomes presents a number
of rows equal to the number of states σ, Eq. (1), and three columns maximum (the
RGB output channels). This matrix can be mapped to a 3σ-dimensional vector t by
stacking all rows of T one on top of the others. Similarly, we constructed a vector s
from the table S of the experimental outcome (percentage of switched cells or
fluorescence values for each channel and state). From the definitions of the scalar
product

s � t ¼
X3σ
i¼1

si ti ¼ sj j tj jcosθ; ð5Þ

we can compute the angle θ between s and t as

θ ¼ cos�1

P3σ
i¼1 siti
sj j tj j ; ð6Þ

where si and ti are the i-th components of the vectors s and t, and |·| represents the
Euclidean norm. If s and t are proportional, i.e., if the experimental output is an
ideal implementation of the program, the angle is 0°. The larger the angle, the
worse the accuracy of the program with respect to the desired behavior.

As explained below, the table T gathering the expected program’s outcomes is
computed differently when comparing the percentage of switch or fluorescence
from a single strain, or when testing a program composed of many strains.

When analyzing the percentage of switch for each state from flow-cytometry
data (Fig. 6a), the values in the signal table S are bound by 1 (when all cells switch),
and the table T is the actual binary truth table. Instead, when comparing
fluorescence values for single strains as in Fig. S18, the 1’s of the table T are
replaced by the fluorescence of the positive control (measured by flow cytometry)
of each corresponding reporter gene (referred to strains expressing constitutively
the fluorescence reporter gene), and the 0’s by the negative control (background
values). This allowed us to consider fluorescence variation in programs with
different GFP variants, and to avoid capping the signal values as done in Weinberg
et al.29.

In case of multicellular systems, the table T is constructed by summing the
fluorescence measured with the plate reader for each individual strain, then the
resulting values are divided by the total number of strains used to implement the
multicellular program (Fig. 7b). This procedure relies on the hypothesis that each
strain equally contributes to the total observed fluorescence. The matrix T
gathering the expected outcomes can then be compared with the experimental
output S as previously explained.

We quantified the strength of the signal output by computing the dynamic
range δ of switch, considering the absolute difference between the minimum
percentage of cells in the ON input state and the maximum percentage of cells in
the OFF input state (radial coordinate in Fig. 7a). In mathematical terms, we
computed

δ ¼ min
ijti¼1

si �max
ijti¼0

si: ð7Þ
When analyzing fluorescence values of individual strains (Fig. S18), we

calculated the minimum fold change f of each program considering the fold change
between minimum fluorescence in the ON input state and maximum fluorescence
in the OFF input state for each RGB channel

f ¼ min
ON states

si � max
OFF states

si

� �
=FNC; ð8Þ

bearing in mind that the matrix S in this case gathers fluorescence values and where
FNC is the fluorescence of the negative control for the corresponding output
channel. In the radial coordinate of Fig. 7b we plotted the Log10 f, meaning that a
radial coordinate of 1 corresponds to a fold change f= 10.

Finally, we averaged the fold change of different channels when multiple strains
are used in the implementation of multicellular programs and plot the logarithm of
its value (Fig. 7b).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
DNA sequences for all constructs are available as a Supplementary File. All raw data are
available in Supplementary Files. Original FCS files are available on Flow repository65;

2SP1; 2SP2; 2SP3; 2SP4; 2SP5; 2SP6; 2SP7; 2SP8; 2SP9; 3SP1; 3SP2; 3SP3; 3SP4; 3SP5;
2MP1; 2MP2; 3MP1; 3MP3. The webpage for CALIN is available at: http://synbio.cbs.
cnrs.fr/calin/sequential_input.php. All other raw data are available from the
corresponding author on reasonable request. Plasmids are available from Addgene: 2SP1
ID:126526; 2SP2 ID: 126527; 2SP3: 126528; 2SP4 ID 126529; 2SP5 ID: 126530; 2SP6 ID:
126531; 2SP7 ID: 126532; 2SP8 ID: 126533; 2SP9 ID: 126534; 3SP1 ID: 126535; 3SP2 ID:
126536; 3SP3 ID: 126537; 3SP4 ID: 126538; 3SP5 ID: 126539; and pITC (Integrase triple
controller) ID: 126540. Source Data are provided with this paper.

Code availability
All source codes are available on GitHub: https://github.com/synthetic-biology-groupcbs-
montpellier/calin; https://github.com/synthetic-biology-group-cbs-montpellier/OSIRiS.

Received: 20 January 2020; Accepted: 24 July 2020;

References
1. Anderson, P. W. More is different. Science 177, 393–396 (1972).
2. Doebeli, M. & Ispolatov, I. Complexity and diversity. Science 328, 494–497

(2010).
3. Durand, P. M., Sym, S. & Michod, R. E. Programmed cell death and

complexity in microbial systems. Curr. Biol. 26, R587–R593 (2016).
4. Wolpert, L. Positional information and pattern formation. Curr. Top. Dev.

Biol. 117, 597–608 (2016).
5. Byrne, K. M. et al. Bistability in the Rac1, PAK, and RhoA signaling network

drives actin cytoskeleton dynamics and cell motility switches. Cell Syst. 2,
38–48 (2016).

6. Harmon, B. et al. Timescale separation of positive and negative signaling
creates history-dependent responses to IgE receptor stimulation. Sci. Rep. 7,
15586 (2017).

7. Koshland, D. E. Jr. A response regulator model in a simple sensory system.
Science 196, 1055–1063 (1977).

8. Wolf, D. M. et al. Memory in microbes: quantifying history-dependent
behavior in a bacterium. PLoS ONE 3, e1700 (2008).

9. Din, M. O. et al. Synchronized cycles of bacterial lysis for in vivo delivery.
Nature 536, 81–85 (2016).

10. Gitzinger, M. et al. The food additive vanillic acid controls transgene
expression in mammalian cells and mice. Nucleic Acids Res. 40, e37–e37
(2011).

11. Chang, H.-J. et al. A modular receptor platform to expand the sensing
repertoire of bacteria. ACS Synth. Biol. 7, 166–175 (2018).

12. Farzadfard, F. & Lu, T. K. Emerging applications for DNA writers and
molecular recorders. Science 361, 870–875 (2018).

13. Johnson, M. B., March, A. R. & Morsut, L. Engineering multicellular systems:
using synthetic biology to control tissue self-organization. Curr. Opin. Biomed.
Eng. 4, 163–173 (2017).

14. Jiang, J. et al. Bio-nanostructures: protein bricks: 2D and 3D bio-
nanostructures with shape and function on demand (Adv. Mater. 20/2018).
Adv. Mater. 30, 1870141 (2018).

15. Schmieden, D. T., Meyer, A. S. & Aubin-Tam, M.-E. Using bacteria to make
improved, nacre-inspired materials. MRS Adv. 1, 559–564 (2016).

16. Chen, A. Y., Zhong, C. & Lu, T. K. Engineering living functional materials.
ACS Synth. Biol. 4, 8–11 (2015).

17. Smanski, M. J. et al. Synthetic biology to access and expand nature’s chemical
diversity. Nat. Rev. Microbiol. 14, 135–149 (2016).

18. Toman, Z., Dambly-Chaudiere, C., Tenenbaum, L. & Radman, M. A system
for detection of genetic and epigenetic alterations in Escherichia coli induced
by DNA-damaging agents. J. Mol. Biol. 186, 97–105 (1985).

19. Podhajska, A. J., Hasan, N. & Szybalski, W. Control of cloned gene expression
by promoter inversion in vivo: construction of the heat-pulse-activated att-
nutL-p-att-N module. Gene 40, 163–168 (1985).

20. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle
switch in Escherichia coli. Nature 403, 339–342 (2000).

21. Ham, T. S., Lee, S. K., Keasling, J. D. & Arkin, A. P. A Tightly regulated
inducible expression system utilizing the fim inversion recombination switch.
Biotechnology 10, 1–4 (2006).

22. Friedland, A. E. et al. Synthetic gene networks that count. Science 324,
1199–1202 (2009).

23. Lou, C. et al. Synthesizing a novel genetic sequential logic circuit: a push-on
push-off switch. Mol. Syst. Biol. 6, 1–11 (2010).

24. Zhang, H. et al. Programming a Pavlovian-like conditioning circuit in
Escherichia coli. Nat. Commun. 5, 3102 (2014).

25. Andrews, L. B., Nielsen, A. A. K. & Voigt, C. A. Cellular checkpoint control
using programmable sequential logic. Science 361, eaap8987 (2018).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18455-z ARTICLE

NATURE COMMUNICATIONS | (2020) 11:4758 | https://doi.org/10.1038/s41467-020-18455-z | www.nature.com/naturecommunications 13

https://github.com/synthetic-biology-group-cbs-montpellier/calin
https://github.com/synthetic-biology-group-cbs-montpellier/calin
http://flowrepository.org/id/FR-FCM-Z2BE
http://flowrepository.org/id/FR-FCM-Z2BF
http://flowrepository.org/id/FR-FCM-Z2BG
http://flowrepository.org/id/FR-FCM-Z2BH
http://flowrepository.org/id/FR-FCM-Z2BW
http://flowrepository.org/id/FR-FCM-Z2BJ
http://flowrepository.org/id/FR-FCM-Z2BK
http://flowrepository.org/id/FR-FCM-Z2BL
http://flowrepository.org/id/FR-FCM-Z2BM
http://flowrepository.org/id/FR-FCM-Z2BN
http://flowrepository.org/id/FR-FCM-Z2BX
http://flowrepository.org/id/FR-FCM-Z2BP
http://flowrepository.org/id/FR-FCM-Z2BQ
http://flowrepository.org/id/FR-FCM-Z2BR
http://flowrepository.org/id/FR-FCM-Z2BS
http://flowrepository.org/id/FR-FCM-Z2BT
http://flowrepository.org/id/FR-FCM-Z2BU
http://flowrepository.org/id/FR-FCM-Z2BV
http://synbio.cbs.cnrs.fr/calin/
http://synbio.cbs.cnrs.fr/calin/
https://github.com/synthetic-biology-group-cbs-montpellier/calin
https://github.com/synthetic-biology-group-cbs-montpellier/calin
https://github.com/synthetic-biology-group-cbs-montpellier/OSIRiS
www.nature.com/naturecommunications
www.nature.com/naturecommunications

26. Bonnet, J., Subsoontorn, P. & Endy, D. Rewritable digital data storage in live
cells via engineered control of recombination directionality. Proc. Natl Acad.
Sci. USA 109, 8884–8889 (2012).

27. Ham, T. S., Lee, S. K., Keasling, J. D. & Arkin, A. P. Design and construction
of a double inversion recombination switch for heritable sequential genetic
memory. PLoS ONE 3, e2815 (2008).

28. Bonnet, J., Yin, P., Ortiz, M. E., Subsoontorn, P. & Endy, D. Amplifying
genetic logic gates. Science 340, 599–603 (2013).

29. Weinberg, B. H. et al. Large-scale design of robust genetic circuits with
multiple inputs and outputs for mammalian cells. Nat. Biotechnol. 35,
453–462 (2017).

30. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent
proteins in the nervous system. Nature 450, 56–62 (2007).

31. Chow, K.-H. K. et al. Imaging cell lineage with a synthetic digital recording
system. https://doi.org/10.1101/2020.02.21.958678 (2020).

32. Nielsen, A. A. K. et al. Genetic circuit design automation. Science 352, aac7341
(2016).

33. Guiziou, S., Mayonove, P. & Bonnet, J. Hierarchical composition of reliable
recombinase logic devices. Nat. Commun. 10, 456 (2019).

34. Panis, G. et al. Tight regulation of the intS gene of the KplE1 prophage: a new
paradigm for integrase gene regulation. PLoS Genet. 6, e1001149 (2010).

35. Roquet, N., Soleimany, A. P., Ferris, A. C., Aaronson, S. & Lu, T. K. Synthetic
recombinase-based state machines in living cells. Science 353, aad8559 (2016).

36. Colloms, S. D. et al. Rapid metabolic pathway assembly and modification
using serine integrase site-specific recombination. Nucleic Acids Res. 42, e23
(2014).

37. Lovett, S. T. Encoded errors: mutations and rearrangements mediated by
misalignment at repetitive DNA sequences. Mol. Microbiol. 52, 1243–1253
(2004).

38. Regot, S. et al. Distributed biological computation with multicellular
engineered networks. Nature 469, 207–211 (2010).

39. Tamsir, A., Tabor, J. J. & Voigt, C. A. Robust multicellular computing using
genetically encoded NOR gates and chemical ‘wires’. Nature 469, 212–215
(2011).

40. Knuth, D. E. The Art of Computer Programming: Sorting and Searching, Vol. 3
(Pearson Education, 1997).

41. Yang, L. et al. Permanent genetic memory with >1-byte capacity. Nat. Methods
11, 1261–1266 (2014).

42. Guiziou, S., Ulliana, F., Moreau, V., Leclere, M. & Bonnet, J. An automated
design framework for multicellular recombinase logic. ACS Synth. Biol. 7,
1406–1412 (2018).

43. Zúñiga, A. et al. OSIRiS. (Codeocean, 2020). https://codeocean.com/capsule/
4338981/tree.

44. Kudla, G., Murray, A. W., Tollervey, D. & Plotkin, J. B. Coding-sequence
determinants of gene expression in Escherichia coli. Science 324, 255–258
(2009).

45. Hill, F. J & Peterson, G. R. Introduction to Switching Theory and Logical
Design. (Wiley, 1968).

46. Wang, P. et al. Robust growth of Escherichia coli. Curr. Biol. 20, 1099–1103
(2010).

47. Urrios, A. et al. A synthetic multicellular memory device. ACS Synth. Biol. 5,
862–873 (2016).

48. Lambert, G. & Kussell, E. Memory and fitness optimization of bacteria under
fluctuating environments. PLoS Genet. 10, e1004556 (2014).

49. Giepmans, B. N. G., Adams, S. R., Ellisman, M. H. & Tsien, R. Y. The
fluorescent toolbox for assessing protein location and function. Science 312,
217–224 (2006).

50. Zimmermann, T., Marrison, J., Hogg, K. & O’Toole, P. Clearing up the signal:
spectral imaging and linear unmixing in fluorescence microscopy. Methods
Mol. Biol. 1075, 129–148 (2014).

51. Hsiao, V., Hori, Y., Rothemund, P. W. & Murray, R. M. A population-based
temporal logic gate for timing and recording chemical events. Mol. Syst. Biol.
12, 869 (2016).

52. Siuti, P., Yazbek, J. & Lu, T. K. Synthetic circuits integrating logic and memory
in living cells. Nat. Biotechnol. 31, 448–452 (2013).

53. Courbet, A., Endy, D., Renard, E., Molina, F. & Bonnet, J. Detection of
pathological biomarkers in human clinical samples via amplifying genetic
switches and logic gates. Sci. Transl. Med. 7, 289ra83 (2015).

54. Kong, W., Meldgin, D. R., Collins, J. J. & Lu, T. Designing microbial consortia
with defined social interactions. Nat. Chem. Biol. https://doi.org/10.1038/
s41589-018-0091-7 (2018).

55. Ziesack, M. et al. Engineered interspecies amino acid cross-feeding increases
population evenness in a synthetic bacterial consortium. mSystems 4, e00352-
19 (2019).

56. Macia, J. et al. Implementation of complex biological logic circuits using
spatially distributed multicellular consortia. PLoS Comput. Biol. 12, e1004685
(2016).

57. Solé, R. et al. Synthetic collective intelligence. Biosystems 148, 47–61 (2016).
58. Velazquez, J. J., Su, E., Cahan, P. & Ebrahimkhani, M. R. Programming

morphogenesis through systems and synthetic biology. Trends Biotechnol. 36,
415–429 (2018).

59. Guven, S. et al. Multiscale assembly for tissue engineering and regenerative
medicine. Trends Biotechnol. 33, 269–279 (2015).

60. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several
hundred kilobases. Nat. Methods 6, 343–345 (2009).

61. Libis, V., Delépine, B. & Faulon, J.-L. Expanding biosensing abilities through
computer-aided design of metabolic pathways. ACS Synth. Biol. 5, 1076–1085
(2016).

62. Mutalik, V. K. et al. Precise and reliable gene expression via standard
transcription and translation initiation elements. Nat. Methods 10, 354–360
(2013).

63. Lou, C., Stanton, B., Chen, Y.-J., Munsky, B. & Voigt, C. A. Ribozyme-based
insulator parts buffer synthetic circuits from genetic context. Nat. Biotechnol.
30, 1137–1142 (2012).

64. Zúñiga, A. et al. Rational programming of history-dependent logic in cellular
populations. Codes for data visualization. Codes-for-Data-Visualization.
https://github.com/synthetic-biology-group-cbs-montpellier/Codes-for-Data-
Visualization (2020).

65. Zúñiga, A. et al. Rational programming of history-dependent logic in cellular
populations. FCS data set. Flow Repository. http://flowrepository.org/.

Acknowledgements
We thank the synthetic-biology group and members of the CBS for fruitful discus-
sions. We thank Montpellier Ressources Imagerie (MRI) for microscope and
cytometry support, especially Marie-Pierre Blanchard and Myriam Boyer. Support
was provided by an ERC Starting Grant “Compucell,” the INSERM Atip-Avenir
program and the Bettencourt-Schueller Foundation. S.G. was supported by a Ph.D.
fellowship from the French Ministry of Research and the French Foundation
for Medical Research (FRM) FDT20170437282. Z.B.M. and P.H. were supported
by an ERC Consolidator grant “Smartcells.” The CBS acknowledges support from
the French Infrastructure for Integrated Structural Biology (FRISBI) ANR-10-INSB-
05-01.

Author contributions
S.G., A.Z., and J.B. designed the project. S.G., A.Z., Z.B.M., M.C., and P.M. performed the
experiments. S.G., A.Z., Z.B.M., M.C., L.C., and P.H. analyzed data. S.G. wrote the
python source code for CALIN and V.M. and S.G. implemented the web server for
CALIN. S.G., A.Z., L.C., P.H., and J.B. wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-18455-z.

Correspondence and requests for materials should be addressed to J.B.

Peer review information Nature Communications thanks the anonymous reviewer(s) for
their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18455-z

14 NATURE COMMUNICATIONS | (2020) 11:4758 | https://doi.org/10.1038/s41467-020-18455-z | www.nature.com/naturecommunications

https://doi.org/10.1101/2020.02.21.958678
https://codeocean.com/capsule/4338981/tree
https://codeocean.com/capsule/4338981/tree
https://doi.org/10.1038/s41589-018-0091-7
https://doi.org/10.1038/s41589-018-0091-7
https://github.com/synthetic-biology-group-cbs-montpellier/Codes-for-Data-Visualization
https://github.com/synthetic-biology-group-cbs-montpellier/Codes-for-Data-Visualization
http://flowrepository.org/
https://doi.org/10.1038/s41467-020-18455-z
https://doi.org/10.1038/s41467-020-18455-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Rational programming of history-dependent logic in�cellular populations
	Results
	A modular scaffold design to implement history-dependent programs
	Automated design of history-dependent programs
	Implementing single-lineage programs
	History-dependent logic in multicellular systems
	Robustness of history-dependent programs

	Discussion
	Methods
	Strains, media, and inducers
	Integrase controller and target plasmids construction
	Experimental conditions and sequential induction assays
	OSIRiS design and characterization
	Flow-cytometry and plate reader analysis
	Microscopy and microfluidic analysis
	Automated generation of genetic designs
	Automated generation of genetic designs to execute multicellular history-dependent gene-expression programs
	Robustness analysis

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

