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Abstract 

 

Aim/Introduction: The design and validation of a reliable radiomic signature is challenging when 

few patients are available because the disease is rare, the imaging protocol is specific and/or the 

classes are unbalanced. In this context, we propose an approach to identify a signature and 

estimate its reliability. 

 

Materials and Methods: 84 patients with a clinical and MRI suspicion of recurrent glioblastoma 

were retrospectively included. Each patient underwent a 18F-FDOPA PET-CT scan. For each 

patient, the suspicious lesion was segmented and 49 radiomic features were calculated using 

LIFEx [1]. Our goal was to distinguish between tumor recurrence and radiation-induced necrosis 

as confirmed on pathological data, or on a 3-month clinical/imaging follow-up. A screening 

procedure was developed to identify a signature using leave-one-out (LOO) cross-validation. The 

procedure involved: 1) selection of all features with a p-value of univariate Wilcoxon test lower 

than alpha varying from 0.005 to 0.10 for (N-1) learning patients, 2) based on these features, 

selection of only one feature among correlated features using a Pearson correlation cut-off R 

varying from 0.95 to 0.50, 3) building of a radiomic signature involving the resulting features 

using a linear discriminant analysis, 4) test of the model on the Nth patient, 5) characterization of 

the model performance using the Youden Index (Y=sensitivity+specificity-1). The final model 

selection was based on the consistency of Y values as a function of alpha and R, on the 

consistency of selected features between the different models, and favored models involving a 

low number of features. To test the reliability of the selected signature, we repeated the process 

by excluding one patient using a jackknife procedure (ie, 84 LOO of 83 patients each). We 

compared the results with those obtained with the same alpha and R when randomly assigning a 

label to each patient (sham task).  

 

Results: 61 patients had tumor recurrence and 23 had radiation necrosis. Visual interpretation 

yielded Y equal to 0.35 (Lizarraga scale, Se=100%, Sp=35%). Using LOO, 10/28 radiomic models 

had Y>0.35. The largest Y (Y=0.49, Se=62%, Sp=87%) were obtained with 4 features on average, 

reflecting the volume, sphericity and heterogeneity (GLCM_Correlation, GLCM_Contrast) of the 

lesion uptake. Using the jackknife procedure, Y was 0.47±0.06 (range: [0.32;0.56]), significantly 

higher (Wilcoxon p < 0.05) than for the sham task (Y=0.06±0.18, range: [-0.52;0.47]).  

 

Conclusion: The proposed systematic screening procedure enabled the identification of a 

parsimonious radiomic signature from scarce data.  
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