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ARTICLE

A deep learning model to predict RNA-Seq
expression of tumours from whole slide images
Benoît Schmauch 1✉, Alberto Romagnoni1,4, Elodie Pronier1,4, Charlie Saillard1, Pascale Maillé2,3,

Julien Calderaro2,3, Aurélie Kamoun 1, Meriem Sefta1, Sylvain Toldo1, Mikhail Zaslavskiy1, Thomas Clozel 1,

Matahi Moarii1, Pierre Courtiol1,5 & Gilles Wainrib1,5✉

Deep learning methods for digital pathology analysis are an effective way to address multiple

clinical questions, from diagnosis to prediction of treatment outcomes. These methods have

also been used to predict gene mutations from pathology images, but no comprehensive

evaluation of their potential for extracting molecular features from histology slides has yet

been performed. We show that HE2RNA, a model based on the integration of multiple data

modes, can be trained to systematically predict RNA-Seq profiles from whole-slide images

alone, without expert annotation. Through its interpretable design, HE2RNA provides virtual

spatialization of gene expression, as validated by CD3- and CD20-staining on an independent

dataset. The transcriptomic representation learned by HE2RNA can also be transferred on

other datasets, even of small size, to increase prediction performance for specific molecular

phenotypes. We illustrate the use of this approach in clinical diagnosis purposes such as the

identification of tumors with microsatellite instability.
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H istological analyses of tumor biopsy sections are impor-
tant tools in oncology, providing a high-resolution map of
the tumor that helps pathologists determining diagnosis

and grade1,2. Technological progress and growing availability of
large datasets have made it possible to train increasingly sophis-
ticated algorithms, which can process and learn from high-
definition whole-slide images (WSI). Convolutional neural net-
works (CNNs) have recently emerged as an important image
analysis tool, accelerating the work of pathologists. They have
shattered performance in many challenging clinical diagnosis
applications, including mitosis detection3, quantification of tumor
immune infiltration4, cancer subtypes classification5, and grad-
ing6. These tools emerge as exciting opportunities in the clinical
and biomedical field7, ultimately improving the prediction of
patient survival outcomes and response to treatment8,9.

While it is becoming clear that the application of such models to
tissue-based pathology can be very useful, few attempts have been
made to connect specific molecular signatures directly to mor-
phological patterns. Recent studies have shown how models of this
class can connect histological images to tumor-specific mutations or
tumor mutational burden in the lung8, prostate10, brain cancers11,
and melanoma12,13. Massive changes in gene expression are known
to occur in many cancers secondary to mutations or epigenomic
modifications, and the comprehensive characterization of disease-
related gene signatures can help to clarify disease mechanisms and
prioritize targets for novel therapeutic approaches14,15. Whole-
transcriptome sequencing techniques (RNA-Seq) have been devel-
oped, together with dedicated bioinformatic tools16,17, to recon-
struct gene information in carcinogenesis18,19. Despite their
sustained decrease in cost20, these technologies are not routinely
used by all medical centers. They are time-consuming and present
several challenges impairing their adoption into clinical practice.
Gene expression is highly variable and particularly affected by cell
type, proliferation, and differentiation status21,22. However, the
possibility of quantifying the expression levels of specific genes
based on a visual observation of hematoxylin & eosin (H&E)-
stained WSI has never been investigated in detail. Predicting gene
expression from WSIs would greatly facilitate patient diagnosis and
prediction of response to treatment and survival outcome23.

Here, we present HE2RNA, a deep-learning algorithm speci-
fically customized for the prediction of gene expression from WSI
(Fig. 1). For training our model, we collected WSIs and their
corresponding RNA-Seq data from The Cancer Genome Atlas
(TCGA) public database. We then investigated how HE2RNA
could be used to generate heatmaps for a spatial visualization of
any gene expression. Finally, we show how the internal repre-
sentation (transcriptomic representation) learned by the model
can improve the prediction of a specific molecular phenotype
such as microsatellite instability.

Results
A deep-learning model for the prediction of gene expression.
We used matched WSIs and RNA-Seq profiles from TCGA data
(https://portal.gdc.cancer.gov/), including 8725 patients and 28
different cancer types, to develop HE2RNA, a deep-learning
model based on a multitask weakly supervised approach24

(architecture in the “Methods”). The model was trained to predict
normalized gene expression data (logarithmic FPKM-UQ values,
see “Methods”) from WSIs. We performed a five-fold cross-
validation, i.e., patients were randomly assigned to five different
sets, and each set was used in turn as the validation set, the other
four sets being used for training. The final results were expressed
as a mean over all five runs (see “Methods”).

We restricted our analysis to 30,839 (coding/noncoding) genes
with nonzero median expression (see “Methods”). WSIs were

partitioned into “tiles” (squares of 112 × 112 μm) and aggregated
into clusters, called supertiles. The number and size of these
supertiles were optimized for each specific task detailed thereafter.
For the transcriptome prediction task, 100 supertiles were created
for each WSI. A multilayer perceptron was applied to all
supertiles to generate a predicted value per gene and per super-
tile. For comparison of the model predictions with the real RNA-
Seq value, the predictions per super-tile were aggregated by
calculating a weighted mean to give a final prediction per-WSI
(see “Methods” and Supplementary Fig. 1).

This correlation was assessed for each gene, separately for each
different type of cancer. We considered a prediction to be
significantly different from the random baseline value if the
p-value associated with its coefficient R was below 0.05, after
applying Holm–Šidák (HS) or Benjamini–Hochberg (BH)
correction to account for multiple-hypothesis testing. An average
of 3627 genes (respectively 12,853), including 2797 protein-
coding (respectively 8450) per cancer type were predicted with a
statistically significant correlation under HS correction (Fig. 2)
(respectively under BH adjustment, Supplementary Fig. 2).

The number of significantly well-predicted genes varied
considerably between cancer types, mostly due to the size of the
dataset considered (Fig. 2a): the smaller the number of samples,
the higher the correlation coefficient required for statistical
significance. For example, under HS correction, only seven genes
were accurately predicted for the 44 samples of diffuse large B-cell
lymphoma (DLBC), (R > Rsign= 0.64), whereas 15,391 genes were
correctly predicted for the 1046 samples of lung carcinoma
(indicated as LUNG, including 535 WSIs for lung adenocarci-
noma—LUAD—and 511 slides for lung squamous cell carci-
noma—LUSC), (R > Rsign= 0.20).

We compared the list of genes well-predicted in each cancer to
analyze the consistency of the predictions. None of the genes were
well-predicted in all 28 available cancer types (Fig. 2b), but few
genes were consistently above the significance threshold when
considering smaller subsets of cancer. In particular, C1QB
expression was strikingly well-predicted in 17/28 different cancer
datasets (R= 0.39 ± 0.15). Similarly, NKG7, ARHGAP9, C1QA,
and CD53 were accurately predicted in 15/28 datasets (R=
0.38–0.46 for the various cancer types). CIQA and CIQB are
proteins of the complement known to be involved in T-cell
activation following antigen presentation by antigen-presenting
cells (APC)25, whereas CD5326 and NKG727 are known to be
expressed by T and NK cells, respectively.

Longer lists of genes were consistently well-predicted by
HE2RNA in smaller subsets of cancer types, and we used
ingenuity pathway analysis (IPA) software to identify the
corresponding biological networks. We found 156 genes that
were well-predicted separately in at least 12 out of 28 different
cancer types. For this subset of genes, we performed a functional
annotation (Fig. 2c).

This analysis revealed an enrichment in genes involved in
immunity and T-cell regulation, as already suggested by the genes
mentioned above. Indeed, the most significant functional network
was the Th1–Th2 activation pathway (p-value= 7.94 × 10−15,
right-tailed Fisher’s exact test), iCOS-iCOSL signaling in T-helper
cells, T-cell receptor signaling and CD28 signaling in T-helper
cells. Given the large variability of gene expression profiles
between different cancer types, we performed a similar analysis
on two different cancers, namely liver hepatocellular carcinoma
(LIHC) and invasive breast carcinoma (BRCA). In LIHC, the
genes for which expression was most accurately predicted were
associated with mitosis and cell-cycle control (cell-cycle control of
chromosomal replication, mitotic roles of polo-like kinase),
known hallmarks of cancer (Fig. 2d). Hepatic fibrosis, a known
risk factor for the development of LIHC28, was also among the
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most significantly well-predicted networks. Similarly, we found
that the model performed well on BRCA samples (Fig. 2e) for the
prediction of expression levels for genes involved in cell-cycle
regulation (cell cycle: G2/M DNA damage checkpoint regulation,
cell-cycle control of chromosomal replication, mitotic roles of
polo-like Kinase), but also for the prediction of expression levels
for CHEK2 (known to be mutated in BRCA29 and involved in its
progression30) and Cyclin E (known to be overexpressed in
BRCA31). These results demonstrate that HE2RNA, despite
training on a diverse range of cancer types, was able not only
to predict expression levels for genes involved in immune
regulation but also to detect pathways deregulated in specific
types of cancer.

Finally, we investigated whether known gene signatures
dysregulated in a majority of cancer types could be accurately
predicted by HE2RNA. We focused on the hallmarks of cancer,
corresponding to the six biological capabilities acquired during
the multistep development of human tumors32. Based on these
hallmarks, we combined several lists of genes from Gene Set
Enrichment Analysis (GSEA) software for each of these biological
networks, to obtain six lists of genes involved in pathways known
to be deregulated in several cancer types: increased angiogenesis,

increased hypoxia, deregulation of the DNA repair system,
increased cell-cycle activity, immune response mediated by B
cells, and adaptive immune response mediated by T cells (see
“Methods” and Supplementary Table 7).

HE2RNA was able to significantly predict the activity of each of
these pathways. (Fig. 3a). We found that, in 50% of cancer types
for angiogenesis, and 54% for hypoxia, DNA repair, and cell-cycle
pathways, signatures were significantly better predicted by
HE2RNA than random lists of genes, with these proportions
reaching 75 and 86% for B- and T-cell-mediated immunity,
respectively (Fig. 3a). Similarly, when comparing the proportion
of well-predicted genes, HE2RNA predictions were significantly
better than for a random set of genes in 36% (angiogenesis), 29%
(hypoxia), 25% (DNA repair), 39% (cell cycle), 36% (B-cell-
mediated immunity), and 50% (T-cell-mediated immunity) of
cancer types (Fig. 3b).

As expected, the proportion of genes accurately predicted for
the six pathways was higher in the largest datasets (BRCA and
LUNG) (Supplementary Fig. 3). Nevertheless, HE2RNA pre-
dicted expression profiles for a significant proportion of genes
within these pathways in some of the smallest datasets: 18% of
the cell-cycle pathway genes were accurately predicted in
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pancreatic adenocarcinoma (PAAD), 29% of the angiogenesis
network, and 23% of the hypoxia pathway genes in pheochro-
mocytoma and paraganglioma (PCPG). These results con-
firmed our previous analysis (Fig. 2e) in which genes involved

in cell-cycle regulation were among the most accurately
predicted for the BRCA dataset.

As a control experiment, we used HE2RNA to predict the level
of expression of housekeeping genes (HK) (Supplementary
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Table 7). We expected poor predictive performance for these
genes as their expression levels have very little variations in
diverse cell types under normal or pathological conditions.
Indeed, the prediction performance for this set of genes was not
significantly better than the performance for randomly selected
genes (Supplementary Fig. 4). The correlation for the HK
signature was significantly better than that for a random set of
genes in only 14% of cancer types, and this percentage dropped to
zero for the proportion of well-predicted genes. This analysis

validated our normalization procedure and the ability of
HE2RNA to focus specifically on cancer-related molecular
information.

A tool for virtual spatialization. HE2RNA assigns a score to all
supertiles contributing to gene prediction and is therefore inter-
pretable by design. Once a predictive model has been trained, it
can identify the specific regions predictive of the expression level
of a given gene on the WSIs. The larger the number of supertiles
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chosen for the model, the higher the definition of the spatiali-
zation will be. The limit is reached when all the tiles of the
training WSIs are treated separately (k= 8000) (Supplementary
Fig. 1). Previous studies31,33,34 have demonstrated that a virtual
spatialization map (VSM), covering the entire WSI can be defined
on the basis of CNN models. These heatmaps reflect the
importance score assigned to each tile used in the algorithm.

We validated the accuracy of such VSMs on different datasets.
First, we used a dataset containing tile images from 86 CRC slides,
labeled with nine different classes: background, debris, adipose,
smooth muscle, mucus, normal colon mucosa, cancer-associated
stroma, tumoral epithelium, and lymphocytes35,36.

As a majority of tumor-infiltrating lymphocytes are known to
be T and B lymphocytes37, we considered a subset of genes
specifically expressed by each cell type. To define the T-cell
population, we considered CD3, a transmembrane receptor
glycoprotein specifically expressed at the surface of T lympho-
cytes. CD3 receptor is encoded by four genes: CD3D, CD3E,
CD3G, and CD24738. We used their prediction (correlations and
p-values in Table 1) to define the spatial localization of the T cells.
Similarly, to define the B-cell population, we considered CD19
and CD20 proteins expressed exclusively by B lymphocytes39, and
used their prediction (Table 1) to define the spatial localization of
the B cells (later named B-cell model).

We compared the average predicted expression of the
considered genes on tiles labeled with lymphocytes and on tiles
from other categories. This prediction allows to distinguish very
well tiles containing lymphocytes, as measured by the area under
the ROC curve (AUC): the overall AUC for distinguishing tiles
with lymphocytes from all other classes is 0.94, and when
considering every class separately, values range from 0.87
(lymphocytes vs adipose) to 0.98 (lymphocytes vs mucus).

We further validated the spatialization of the T-cell model on a
single external H&E-CD3 double-stained slide from a LIHC
sample (Fig. 4a). We calculated the correlation between the
expression per tile, predicted from the H&E staining, and the
actual number of T cells obtained by using QuPath software40 on
the CD3-stained slide. We obtained a correlation coefficient of
Rtile= 0.51 (p-value < 10−4, two-tailed Student’s t test). Moreover,
as HE2RNA focuses particularly on histological regions associated
with higher levels of gene expression, we analyzed the 100 tiles

with the highest predicted value for CD3-genes expression. The
median number of T cells in those tiles was 36 cells, whereas the
median number of T cells on all 28,123 tiles of the slide was 4,
confirming the accurate spatial interpretability of the predictive
model (Fig. 4c; Supplementary Fig. 6a, b).

These results show that, while trained in a weakly supervised
manner based only on the overall expression of genes of TCGA
samples, HE2RNA was able to distinguish lymphocytes at the
level of individual tiles on an external dataset. We further assessed
whether HE2RNA could distinguish different types of lympho-
cytes, by analyzing another slide from a different sample of LIHC
and performed a H&E-CD20 double stain.

We applied both the T-cell and the B-cell models to this new slide
and determined the agreement between the predicted gene expression
and the number of B cells at the tile level. The T-cell model achieved
a correlation coefficient Rtile= 0.19 (p-values < 10−4, two-tailed
Student’s t test), while the B-cell model achieved a significantly
higher correlation Rtile= 0.23 (p-value < 10−4, two-tailed Student’s t
test). Since B cells are more sparsely distributed than T lymphocytes
(with an average of 0.6 B cells per tile), an alternative metric is the
ROC-AUC obtained by the model for distinguishing tiles containing
more than a given number n of B cells. We considered n= 0, 1, 3,
and 11 corresponding, respectively, to the 75th, 90th, 95th, and 99th
percentile of the number of B cells per tile. For every threshold except
the lowest one, the B-cell model outperformed the T-cell model, with
AUCs ranging from 0.66 (respectively 0.68) at n= 0 to 0.89
(respectively 0.81) at n= 11 (Fig. 4c, d and Table 2).

Conversely, we applied the B-cell model to the H&E-CD3 slide.
As expected, the correlation between the prediction of the model
and the number of T cells was positive (Rtile= 0.39, p-value < 10−4,
two-tailed Student’s t test), but significantly lower than the Rtile=
0.51 previously reported. Moreover, for every considered threshold,
the T-cell model outperformed the B-cell model (Fig. 4e, f and
Table 2). These results indicate that HE2RNA could potentially
distinguish different types of lymphocytes.

In addition to genes related to immunity, we considered genes
characteristic of the epithelium in prostate adenocarcinoma.
Bulten et al.41 used a similar multiple-staining procedure to
generate segmentation masks of prostate epithelium of WSIs
using anti-P63, CK8, and CK18 IHC stainings. The resulting
dataset42 (PESO) contains 62 H&E slides with the corresponding
segmentation masks. We trained a model predicting the three
corresponding genes (TP63, KRT8, and KRT18) on TCGA-
PRAD, and applied it on this dataset. We compared the average
predicted expression of those three genes at the level of individual
tiles to the fraction of epithelium on those tiles, simply defined as
the percentage of positive pixels of the mask. As with
lymphocytes, we found a significant correlation between the
prediction of HE2RNA and the fraction of epithelium (Rtile=
0.41, p-value < 10−4, two-tailed Student’s t test) (Fig. 5a–c).

Finally, we applied a model trained to predict the expression
level of MKI67 (Table 2) to an independent dataset of 369 slides
from 194 patients with LIHC43 from hospital Henri Mondor
(Mondor dataset). MKI67 is a well-known marker of cell
proliferation, expressed both by tumor and nontumor cells,
clinically determined by MIB1 or Ki67 IHC staining of WSIs. Its
overexpression has been found to correlate with tumor growth
rate44, histological stage45, and tumor recurrence46. A higher
MKI67 labeling index confers a fast progression and poor
prognosis for LIHC patients47.

Per-tile annotation of tumor vs healthy tissue was performed
by a pathologist43. We spatialized the expression of MKI67, and
compared it with the pathologist’s annotation. First, we observed
that tiles predicted to have high expression of MKI67 were
almost always located in tumoral regions: among the 10,000
(respectively 100,000) tiles with the highest predictions, 94%

Table 1 Performance metrics for the prediction of genes of
interest for virtual spatialization.

Cancer type Gene Correlation (R) p-value (HS) p-value (BH)

LIHC CD3D 0.40 <10−4 <10−4

LIHC CD3E 0.41 <10−4 <10−4

LIHC CD3G 0.41 <10−4 <10−4

LIHC CD247 0.37 <10−4 <10−4

LIHC CD19 0.32 <10−4 <10−4

LIHC CD20 0.27 0.58 2 × 10−4

LIHC MKI67 0.47 <10−4 <10−4

COAD CD3D 0.43 0.63 8 × 10−4

COAD CD3E 0.39 0.63 8 × 10−4

COAD CD3G 0.41 0.63 8 × 10−4

COAD CD247 0.39 0.63 8 × 10−4

COAD CD19 0.20 ~1 0.009
COAD CD20 0.11 ~1 0.07
PRAD TP63 0.18 ~1 0.009
PRAD KRT8 0.12 ~1 0.06
PRAD KRT18 0.12 ~1 0.07

LIHC liver hepatocellular carcinoma, COAD colorectal carcinoma, PRAD prostate
adenocarcinoma samples from TCGA dataset.
We used Pearson correlation, and one-sided empirical p-values corrected with Holm–Šidák (HS)
and Benjamini–Hochberg (BH) correction for multiple-hypothesis testing.
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(respectively 90%) were found in the tumoral areas, while the
tumor tiles only represent 57% of the whole dataset. Then, to
assess how the predicted expression of MKI67 varies within each
sample, we calculated the AUC for distinguishing tiles located in
the tumor from those located in the healthy tissue for every

given slide. The results varied over a wide range, with an average
value AUCaverage= 0.65 and a median value AUCmedian= 0.67,
with a significant dependence on the tumor stage, measured by
the Barcelona Clinic Liver Cancer (BCLC) stage48. For patients
with an advanced-stage tumor, the predicted expression of
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MKI67 overlapped neatly with the tumor area, while for
more early stages we observed less discriminate patterns:
AUCaverage= 0.63 (AUCmedian= 0.65) for patients with BCLC
stage A, AUCaverage= 0.63 (AUCmedian= 0.62) for patients with
BCLC stage B, and AUCaverage= 0.74 (AUCmedian= 0.76) for
patients with BCLC stage C (Table 3).

Finally, we also observed that the sample-wise prediction for
the expression of MKI67 is predictive of a high BCLC stage, with
an AUC of 0.80 for distinguishing stage C from stages A and B.
Altogether, these results are consistent with the fact that a high
expression level of MKI67 is correlated with the most advanced
stages of liver cancer (Fig. 5d, e).

HE2RNA for microsatellite instability status prediction.
HE2RNA provides a transcriptomic representation of WSIs, of
potential utility for different clinical situations. This representa-
tion is obtained while learning the transcriptome, when HE2RNA
transforms each WSI into a vector of P features corresponding to
the dimensionality of the last hidden representation of the neural
network. To illustrate the clinical applications of this repre-
sentation, we studied microsatellite instability (MSI) status pre-
diction as a diagnosis use case directly using WSIs. MSI
phenotype is frequently observed in adrenocortical, rectal, colon,
stomach, and endometrial tumors49, and also occur in other
cancers (e.g., breast, prostate)50. The failure to correct replication
errors at tandem repeats of short DNA sequences known as
microsatellites can lead to the phenomenon of high-level MSI

(MSI-H)51,52, recently identified as a predictor of the efficacy of
immunotherapy53,54. The analysis of gene expression prediction,
restricted to MSI-H patients from TCGA-COAD (81 samples),
revealed that a surprisingly high number of genes were sig-
nificantly well-predicted by HE2RNA on this subset (1027 genes
well-predicted under HS correction), more than on the whole
dataset (324 well-predicted genes for 463 samples) or on the
subset of MSS patients (592 well-predicted genes for 277 samples)
(Fig. 6a). A gene set enrichment analysis of the genes well-
predicted in MSI-H patients revealed an enrichment in T-cell
activation and immune activation (PD-1 signaling, interferon
gamma signaling…). These results confirmed the high perfor-
mance of HE2RNA to predict immune infiltrate and are aligned
with the known higher immune infiltration observed in these
patients and linked to their positive response to immunotherapies
(Fig. 6b). Performing a similar analysis in MSS patients, we
identified mostly pathways involved in RNA metabolism and
translation regulation (formation of free 40S subunits, translation
initiation…) (Supplementary Fig. 7).

MSI status can be determined by immunohistochemistry
(IHC) or genetic analyses55. Although broadly recommended by
medical guidelines, systematic screening for MSI condition is
performed at high-volume tertiary care centers, but less
frequently in low-income hospitals. There is, therefore, a great
need to screen directly WSIs from cancer patients with a high
probability of MSI-H to facilitate access to immunotherapy. A
recent study56 showed that CNNs can learn to predict MSI status
directly from histology slides for stomach adenocarcinoma and
colorectal cancer. Based on these results, we collected RNA-Seq
measurements, WSIs, and MSI status of each patient from TCGA
colorectal cancer dataset, later referred to as TCGA-CRC-DX
(corresponding to TCGA-COAD and TCGA-READ) and TCGA-
STAD dataset, and investigated the effects of integrating RNA-
Seq information for the prediction of MSI status from pathology
images. To enable the comparison with previously published
results56, in addition to the formalin-fixed, paraffin-embedded
(FFPE) slides used above, we also collected frozen slides from
colorectal cancer cases (TCGA-CRC-KR). Patients with MSI-
High (MSI-H) and microsatellite stable (MSS) were both
randomly split between two hospitals named A and B. In hospital
A, the first subset of patients was used to train a simplified version
of HE2RNA (see “Methods”) to predict RNA-Seq data, but not
MSI status (Fig. 6c). In hospital B, the second subset of patients
was used to directly train a binary classifier MSI-H vs. MSS. To
test HE2RNA’s robustness, we considered several splitting
proportions for the data subsets used in the two hospitals,
ranging from 5/6–1/6 (corresponding to 388–78 patients for the
TCGA-CRC-DX dataset), to 100% of the patients in hospital B.
Two different performance patterns emerged as shown on Fig. 6d
(TCGA-CRC-DX) and Supplementary Fig. 8 (TCGA-STAD and
TCGA-CRC-KR). When a few samples were used to learn the

Fig. 4 Virtual spatialization of CD3 and CD20 expression, confirmed by immunohistochemistry. a Top left inset: H&E-stained slides were obtained from
a LIHC patient. Main top image: The corresponding heatmap of the CD3-encoding genes expression predicted by our model. Main bottom image: CD3
immunohistochemistry (IHC) results obtained by washing out H&E stain and staining the same slide for IHC. b Pearson’s coefficient (R= 0.51, p-value <
10−4, two-tailed Student’s t test) for the correlation between the CD3 expression predicted by our model and the percentage of CD3+ cells actually
detected on the IHC slide. The red dashed line indicates the average predicted expression per tile as a function of the number of CD3+ cells; shaded area:
s.d. The vertical dashed line indicates the median number of CD3+ cells per tile, and the dotted line the 3rd quartile. c, d Same as in a and b using CD19 and
CD20 coding genes and one CD20 IHC (R= 0.23, p-value < 10−4, two-tailed Student’s t test). Red dashed line: average prediction per tile as a function of
the number of CD20+ cells; shaded area: s.d. Vertical dotted line: 95th percentile of the number of CD20+ cells per tile (median= 0). e ROC curves for
distinguishing tiles from the HE/CD3 slide with a number of T cells above a given threshold (with threshold values corresponding to the 75th, 90th, 95th,
and 99th percentile of the number of T cells per tile), obtained by applying both the T-cell model and the B-cell model. The dashed line is the expected ROC
curve from a random classifier. f Same as in e for tiles from the HE/CD20 slide with a number of B cells above a given threshold. Scale bars: 5 mm. One
slide was double-stained for each IHC marker.

Table 2 Comparison of per-tile predictions of the T- and
B-cell model to the real number of T and B cells.

T-cell model B-cell model

Correlation coefficient with #
T cells on the H&E/CD3-
stained slide

0.51 0.39

AUC threshold 10 T cells 0.79 0.73
AUC threshold 20 T cells 0.86 0.79
AUC threshold 25 T cells 0.89 0.83
AUC threshold 51 T cells 0.93 0.90
Correlation coefficient with # B
cells on the H&E/CD20-
stained slide

0.19 0.23

AUC threshold 0 B cells 0.68 0.66
AUC threshold 3 B cells 0.74 0.76
AUC threshold 5 B cells 0.78 0.82
AUC threshold 11 B cells 0.81 0.89

Comparaison was calculated respectively from the HE/CD3 and HE/CD20 double-stained
slides. For the HE/CD3 slide (respectively HE/CD20), we display the correlation between the
tile-level predictions of each model and the number of T cells (respectively B cells) per tile, as
well as the AUC for distinguishing tiles that contain more T cells (respectively B cells) than a
given threshold (respectively 75th, 90th, 95th, and 99th percentiles).
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Fig. 5 Virtual spatialization of epithelium-associated genes (TP63, KRT8, and KRT18) and MKI67 expression. a Representative H&E slide from the PESO
dataset59 (n= 62 slides with segmentation mask). b. Heatmap for the expression of TP63, KRT8, and KRT18 predicted by HE2RNA for the slide in a. c Tiles
with highest predicted expression for those genes on this slide, with the segmentation mask of epithelium obtained from an IHC staining of the same
slide42. S= Score corresponding to the log expression score of each tile; %e= fraction of pixels marked as belonging to the epithelium (n= 21,714 tiles in
total). d Spatialization of MKI67 predicted expression on a liver hepatocarcinoma sample from an early stage tumor (BCLC stage A) (n= 284 samples)43.
Left panel: Representative H&E staining, with annotation of tumor (T) and nontumor (N) areas performed by a pathologist. Right panel: Heatmap for the
expression of MKI67 predicted by the model. e Same as d, for a sample from an advanced tumor (BCLC stage C) (n= 65 samples). In a, d, e, scale bar:
5 mm. In c, scale bar: 100 µm. d, e are representative slides (n= 369 annotated slides). BCLC Barcelona Clinic Liver Cancer.
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Table 3 Agreement between the predicted expression of MKI67 and the tumor annotation.

BCLC stage # Patients # Slides # Tiles healthy tissue # Tiles tumor AUC mean AUC median

A 147 284 1.85M 2.46M 0.63 0.65
B 4 20 175 k 122 k 0.63 0.62
C 35 65 325 k 570 k 0.74 0.76

BCLC Barcelona Clinic Liver Cancer, # number.
The metric is the ROC-AUC per slide for determining whether a tile is located in the tumor or in healthy tissue.
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transcriptomic representation (hospital A) and most patients
were used to train the model for MSI prediction, the classifier
trained directly on WSI outperformed the classifier using the WSI
transcriptomic representation learned at hospital A. With 100%
of the data in hospital B, the classifier trained directly on WSIs
demonstrated similar results than previous studies56 (Table 4). In
contrast, when a few examples were available to train the
classifiers at hospital B, a reverse pattern was observed. With a
3/4–1/4 data split between the two hospitals, the transcriptomic-
based model gave more accurate predictions than the WSI-based
model (two-tailed Wilcoxon test: p < 0.0001; Fig. 6e). To confirm
that the performance improvement was not only due to the
dimensionality of the representation, we also considered the
same MSI classifier trained with a 256-dimensional representa-
tion (same size as our transcriptomic representation) given
by two different autoencoders, respectively trained on hospital A
and hospital B subsets. A two-tailed Wilcoxon test confirmed
(p-value < 0.0001) that the classifier based on the transcriptomic
representation of WSI slides still outperformed the direct
classifiers with reduced dimension representations. Finally, to
compare HE2RNA with the work of Kather et al.56, we re-
implemented the published method in the 3/4–1/4 setting (see
“Methods”). The use of the transcriptomic representation resulted
in a significant improvement on TCGA-CRC-DX (AUCHE2RNA=
0.81 vs AUCKather= 0.68) and TCGA-CRC-KR (respectively, 0.79
and 0.63) datasets. On TCGA-STAD, the methods showed close
performances (respectively, 0.66 and 0.65) (Table 4). Similar
results were obtained when MSI-low patients were included
together with the MSS patients in a MSI-non high (MSI-NH)
class (Supplementary Fig. 8).

Altogether, our results demonstrated that learning and
transferring a transcriptomic representation learned on a dataset
with such available data could help increase the prediction

performances of WSI-based models for a clinical diagnosis
purpose such as MSI detection in hospitals where transcriptomic
and molecular profiling are not done routinely.

Discussion
We presented HE2RNA, a deep-learning model to infer tran-
scriptomic profiles from histological images. This paper covers a
broad spectrum of applications using the transcriptomic infor-
mation encoded within cancer tissue images. HE2RNA robustly
and consistently predicted subsets of genes expressed in different
cancer types, including genes involved in immune cell activation
status and immune cell signaling. We hypothesize that the algo-
rithm can recognize immune cells and correlate their presence
with the expression of a subset of protein-coding genes (such as
CQ1B). Major breakthroughs in cancer therapy are driven by
discoveries of treatment targets for immunotherapy in many
types of cancer. HE2RNA could be a useful tool for pathologists
and oncologists to consistently quantify immune infiltration or
guide treatment decision in the context of immunotherapy. In the
future, it would be interesting to determine whether similar
models could be trained to predict patient response to immu-
notherapy, making it possible to identify histology-based bio-
markers of treatment response.

HE2RNA also correctly predicts the expression of genes
involved in cancer type-specific pathways, such as fibrosis in
hepatocellular carcinoma, or CHK gene expression in breast
cancer. The ability of our model to detect molecular and cellular
modifications within cancer cells was also confirmed by the
greater prediction accuracy for defined gene signatures than for
lists of random genes. Many previous studies have shown that
tissue sections contain tremendous amounts of information57–59.
Our model might capture more subtle structures in tissue images,
unraveling interesting histological patterns, an enlightening

Fig. 6 Prediction of microsatellite instability status using transfer learning from transcriptomic representation. a Distribution of Pearson correlation
coefficients on TCGA-COAD and TCGA-STAD, for microsatellite-stable (MSS) patients (green) or patients with high-level microsatellite instability
(MSI-H) (orange). Black triangles (respectively grey squares): minimum correlation required for significance under Holm–Šidák (respectively
Benjamini–Hochberg) correction. b Computational analysis of the most accurately predicted genes in MSI-H patients from TCGA-COAD. p-values were
calculated using right-tailed Fisher’s exact test. c Setup: in hospital A, a neural network is trained to predict gene expression from WSIs. The internal
transcriptomic representation is then used in hospital B to improve MSI status prediction. d Area under the ROC curve (AUC) for the model based on the
transcriptomic representation (blue) or directly based on WSIs (red), as a function of the fraction of the TGCA-CRC-DX dataset used in the two hospitals
(n= 50 data splits per fraction, averaged over ten different three-fold cross-validations (CVs); solid line and triangles: mean over splits; shaded area: s.d.).
Boxplot: distribution of AUCs (500 three-fold CVs) over the whole dataset, for the model based on WSIs (box: interquartile range (IQR); horizontal line:
median; whiskers: 1.5 times IQR, triangle: mean; circles: outliers). Star: result from Kather et al.56; its location accounts for the different number of patients
in the training set with respect to this manuscript; circle: result from the same method56 with 25% of the data in hospital B (see “Methods”). Dashed line:
fractions of the dataset used in panel c. e Boxplots (defined as in panel d) of the distribution of AUCs for MSI status classifiers at hospital B, trained,
respectively, on the 256-dimensional transcriptomic representation, WSIs, and 256-dimensional representations given by two autoencoders trained on
hospital A and B subsets. Dashed line: result obtained by adapting Kather et al.56 method. Circles: average over ten three-fold CVs for each split between
the hospitals (n= 50). **p < 0.01, ***p < 0.001, and ****p < 0.0001, two-tailed Wilcoxon test. WSI whole-slide image. Hospital illustration based on
“hospital” by H Alberto Gongora, from thenounproject.com, used under CC-BY 3.0/colored.

Table 4 ROC-AUCs for the prediction of MSI status in two extreme regimes.

Regime Dataset Transcriptomic (this paper) WSIs (this paper) WSIs. (ref. 56)

1 (100% of data in hospital B) TCGA-CRC-DX — 0.82 0.77
1 TCGA-CRC-KR — 0.83 0.84
1 TCGA-STAD — 0.76 0.81
2 (25% of data in hospital B) TCGA-CRC-DX 0.81 0.71 0.68
2 TCGA-CRC-KR 0.79 0.72 0.63
2 TCGA-STAD 0.66 0.63 0.65

In regime 1, 100% of the data in hospital B. In regime 2, 75% of the data in hospital A and 25% in hospital B. TCGA-CRC-DX: TCGA colorectal cancer dataset (FFPE slides), TCGA-CRC-KR: TCGA
colorectal cancer dataset (frozen slides) and TCGA-STAD: Stomach adenocarcinoma.
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important tumor region for the development of specific cancer
types. Strikingly, even with RNA-Seq profiles obtained from bulk
cells isolated from WSIs, our model was able to predict the spatial
expression of various genes from the H&E slide alone. In parti-
cular, HE2RNA was able to spatialize differentially genes speci-
fically expressed by T cells or B cells, even though discriminating
between those two types from their morphology alone is notor-
iously difficult, as indicated by scanning-flow cytometry experi-
ments50. Such methods could be extended to other genes,
including genes related to immunity, the expression levels of
which were well-predicted by our model, and which could
represent a major tool for medical diagnosis and prediction, by
providing virtual multiplexed staining for all WSIs alone. These
innovative approaches may help to overcome technical issues in
IHC, such as fixation or antigen retrieval, together with the high
level of variability between observers. However, recent studies60

have shown that mRNA and protein expressions may be poorly
correlated due to various factors, such as different half-lives and
post-transcription machinery. Thus, a joint analysis of the tran-
scriptomic and proteomic data could provide useful insights and
increase the overall performance of our model.

CNNs for image recognition make use of an internal repre-
sentation of the original data that they infer. The features of this
latent space encode the statistics of natural images and the
information of importance for image recognition. Similarly, the
internal transcriptomic representation, learned by HE2RNA
during the prediction of RNA-Seq data, may constitute an
important step toward understanding the biological descriptors
required for clinical classification problems and the link between
the information contained at the tissue and molecular levels. We
have shown that the lower-dimensional transcriptomic repre-
sentation learned during the RNA-Seq prediction task can be very
powerful when transferred to other datasets used for a different
task. This seems to be particularly true for small WSI datasets, for
which even partial information about the connection between
histological and molecular information can significantly improve
the performance of deep-learning models. Such situations are
frequently encountered when a research center develops models
for predicting treatment outcomes from a small dataset, with
access to additional external data but not the corresponding
biological status of interest. The approach proposed here could
constitute a paradigm in transfer learning in medicine. We used
MSI status prediction from a small dataset of H&E-stained
images as a representative case study, and we showed that the use
of a transcriptomic representation in a transfer learning frame-
work outperformed similar models based on less informative
representations, such as WSI only. This aspect is particularly
important, as MSI-H status is a predictive biomarker of response
to immunotherapy53,54, and of better overall prognosis relative to
patients with microsatellite-stable disease (MSS), in gastric ade-
nocarcinoma and CRC55. However, not all patients are screened
for MSI status outside of high-volume tertiary care centers. Our
model could therefore be used in the future to facilitate the
definition of patient MSI status and to facilitate access to
immunotherapies for a larger number of eligible patients. The
practical implications of predicting gene expression level from
H&E slides should not be underestimated. In the future, the
performance of this model may improve considerably, through
the use of larger, richer datasets for training. Such approaches
could also be used to detect histological subtypes, genetic muta-
tions, to map the infiltration of tumors by tumor-infiltrating
lymphocytes (TILs), or to predict molecular profiling from
pathology slides, such as the hormonal status of breast cancer
cases. HE2RNA offers useful applications to enable more patients
to gain access to precision medicine, without the need for hos-
pitals to resort to NGS techniques.

Methods
TCGA Pan-cancer dataset. This study was based on publicly available data from
TCGA (https://portal.gdc.cancer.gov/). We selected samples from primary tumors
only, for which both RNA-Seq and WSI data were available. Transcriptomic data
(FPKM-UQ) were extracted from frozen tissues, and the slides analyzed were
digitized H&E-stained formalin-fixed, paraffin-embedded (FFPE) histology slides,
referred to here as whole-slide images (WSIs). WSIs were available for the cancer
types (and corresponding abbreviations) listed in Supplementary Table 1.

Gene expression pre-filtering and normalization. Gene expression data in
fragment per kilobase million with upper-quartile normalization (FPKM-UQ) were
available for 60,483 Ensembl gene identifiers, many corresponding to noncoding
genomic regions. We chose to exclude genes with a median expression of zero (i.e.,
not expressed in more than half the samples considered), to improve the inter-
pretability of the results, using an approach similar to that used in existing tools61

for differential gene expression analysis. After the application of this filter, 30,839
genes remained, 17,759 of which encoded proteins (all Ensembl genes associated
with a corresponding Ensembl protein ID, for the Hg19 human genome sequence).
Our selection included almost 90% of known protein-coding genes. Gene expres-
sions values covered several orders of magnitude. Thus, regression analysis directly
on raw RNA-Seq data would lead the model to focus only on the most strongly
expressed genes, which would dominate the mean squared error. We overcame this
problem by an a→ log10(1+ a) transformation on gene FPKM-UQ expression
values.

Preprocessing of whole-slide images. The application of deep-learning algo-
rithms to histological data is a challenging problem, particularly due to the high
dimensionality of the data (up to 100,000 × 100,000 pixels for a single whole-slide
image) and the small size of available datasets. We divided the whole-slide images
into squares of 112 × 112 μm (224 × 224 pixels) called “tiles”, and used the Otsu
algorithm62 (as implemented in python package skimage) to select only those
containing tissue, excluding the white background. We sampled a maximum of
8000 such tiles from each slide. We then extracted 2048 features from those tiles
with a 50-layer ResNet63 pretrained on the ImageNet dataset64 (using the Keras
implementation), such that a slide could be represented as a 8000 × 2048 matrix.

For the first phase of this work (transcriptome prediction), we accelerated the
training of our models through a simple preprocessing step inspired by simple
linear iterative clustering (SLIC)65: we used the k-means algorithm (as
implemented in python package libkmcuda) to create 100 clusters (supertiles) of
tiles on the basis of tile location on the slide, and we averaged the features of the
tiles within each cluster. The use of these supertiles reduces the dimensions of a
slide to 100 × 2048. The model was first trained on this reduced dataset, with all the
TCGA data. Then, for specific organs, fine-tuning was achieved with full-scale data
from the organs concerned only.

HE2RNA model architecture. The HE2RNA model is a multilayer perceptron
(MLP), applied to every tile (or super-tile) of the slide. This choice, as opposed to a
simple linear regression, allows to perform multitask learning by taking into
account the correlations between multiple gene expressions at the (super-)tile level.
For practical purposes, this is equivalent to applying successive 1D convolutions of
kernel size 1 and stride 1 to slide data. The activation function is a rectified linear
unit and dropout is applied between consecutive layers. For an input matrix of size
ntiles × 2048 (with ntiles= 100 or ntiles= 8000), the output of this neural network is
a matrix of size ntiles × ngenes, where ngenes is the number of genes for which
expression is to be predicted. Thus, the model produces one prediction per gene
and per tile, but the real value is available only at the scale of the slide. For this
reason, tile predictions must be aggregated to produce one prediction per gene and
per slide for model training and the calculation of metrics.

The aggregation strategy we use is the following. During the training phase, the
model randomly samples a number k at every iteration, and for every gene,
averages only the k highest tile predictions to produce the slide-level prediction.
Indeed, we are predicting the logarithm of gene expression, and the (super-)tiles
with the highest levels of expression should contribute the most to this value. The
number k is sampled from the list L= (1, 2, 5, 10, 20, 50, 100) for super-tile-
preprocessed data (ntiles= 100), and from the list L= (10, 20, 50, 100, 200, 500,
1000, 2000, 5000) for full-scale data (ntiles= 8000). For instance, if k= 1, the slide-
level prediction for a given gene is the largest (super-)tile prediction for this gene,
whereas if k= ntiles, the slide-level prediction is the average of all tile predictions.
More generally, the slide-level prediction S for a given gene is defined as follows,

S kð Þ ¼
Xk

i¼1

si=k;

where the si are the tile-wise predictions for this gene, ordered from the largest (s1)
to the smallest. This stochastic aggregation increases the difficulty of the task and
thus reduces overfitting. As such, it acts as a regularization process. During
inference, slide-level predictions obtained with every possible value of k are
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averaged,

S ¼
X

k2L
S kð Þ= Lj j:

This is equivalent to calculating a weighted mean of per-tile predictions, with a
greater weight for tiles for which the model predicts high levels of expression. A
summary of the weights of tile predictions in this weighted average as a function of
their rank is detailed in Supplementary Table S2.

HE2RNA training and evaluation. HE2RNA was trained with a five-fold cross-
validation designed to meet the following requirements: every sample from a
patient should be in the same fold, and, when training on all TCGA data, TCGA
projects should be evenly distributed between folds. When training a model on a
single subset (e.g., BRCA), we ensured that the folds used for cross-validation were
consistent with those used for all the TCGA data. The model simultaneously
predicting all genes for all types of cancers was trained on all TCGA data
(10,514 samples), with super-tile preprocessing for a maximum of 200 training
epochs. Training was stopped when the average per-gene and per-cancer type
correlation computed on a validation set comprising 10% of the training data did
not improve for 50 consecutive epochs.

When specific sets of genes (such as CD3 receptor encoding genes) were used to
produce a precise heatmap of gene expression, the model was trained at the
finest scale.

To optimize the trade-off between achieving optimal performance using full-
scale TCGA data (10,514 slides × 8000 tiles × 2048 features) and minimizing the
machine time for training, we first trained the model for 200 epochs on all super-
tile-preprocessed TGCA data (10,514 slides × 100 tiles × 2048 features), before
continuing training for 100 epochs on full-scale data for a subset of five organs of
interest (3464 slides × 8000 tiles × 2048 features). The organs of interest we chose
for training the models of part 2 are those on which we performed spatialization
(colon, liver, and prostate), augmented with the two largest TCGA datasets (lung
and breast), which are also those with the largest numbers of significantly well-
predicted genes. In Table 1, the performance metrics for the genes of interest for
virtual spatialization are displayed.

The performance metric was always calculated separately for each organ
considered, to prevent bias. Gene expression levels can differ considerably between
organs and a good performance for gene expression could otherwise be achieved
simply through recognition of the organ of origin.

All models were trained with the Adam optimizer and a learning rate of 3 ×
10−4. We used a minibatch size of 16 when working with super-tile preprocessing,
and 4 when working on full-scale data due to GPU memory constraints.

Per-tile inference. As mentioned above, the model produces one score per tile and
per gene. For each gene, the predictions per tile are subsequently aggregated to
produce one prediction per gene at the level of the slide. To generate virtual
spatialization maps, we simply omit this aggregation step and interpret the score of
a tile as the predicted gene expression for this tile.

Gene signatures for gene set enrichment analyses. Using Gene Set Enrichment
Analysis (GSEA) software and Molecular Signatures Database v6.2, we analyzed the
following signatures for the following pathways (Supplementary Table 3). For each
pathway, we selected the genes present in at least two of the chosen signatures (see
Supplementary Table 7 for a complete list of the genes retained for each pathway).

Virtual spatialization and double staining. Features were extracted from every
tile containing matter, with the ResNet50 algorithm. The model was then used to
calculate a score for each tile. Finally, the heatmap at the scale of the whole slide
was obtained by weighting each tile by its score. For the single double-stained HE-
CD3 (respectively HE-CD20) slide, we extracted a total of 28,123 (respectively
25,088) tiles to generate the heatmap shown in Fig. 4.

The tissue section was first stained with hematein, eosin, and saffron,
coverslipped and scanned using a Leica Aperio Scanner. The coverslip and the
mounting reagents were removed using acetone, and the slide was further
unstained using an alcohol/acid solution (1%). Immunostaining was performed
using a Leica Bondmax Autostainer (Leica Biosystems, Wetzlar, Germany) with an
anti-CD3 antibody (Dako, Santa Clara, California, Clone, F7.2.38, dilution 1/50), or
an anti-CD20 antibody (Dako, Santa Clara, Clone L26, dilution 1/50) according to
manufacturer’s instructions. Antigen retrieval was performed with E2 reagent, and
Immunodetection was performed using Polymer and 3,3’ di-aminobenzidine
(Bond Polymer Refine Detection Kit, Leica Biosystems). The immunostained slide
was further scanned.

For comparison of the predicted heatmap and the CD3- or CD20-stained WSI,
we used QuPath software on the WSIs to estimate the actual number of T cells per
tile, and then calculated the correlation between this number and the score per tile.

Data for virtual spatialization of MKI67. The Mondor dataset consists of
390 slides (NDPI format, 40x magnification) from 206 patients, with the following
inclusion criteria:

Patients treated by surgical resection without any prior anti-tumor therapy
Available follow-up
Unequivocal diagnosis of HCC
Available histological slides from formalin-fixed paraffin-embedded material
Lack of extra-hepatic metastatic disease at time of surgery.

The tumor and nontumor areas were annotated by an expert liver pathologist
(JC) on 369 slides (corresponding to 190 patients). BCLC stage was retrieved from
medical records. Informed consent was obtained for each patient, and the study
was approved by Saint Louis Hospital Ethics Committee (Assistance Publique—
Hôpitaux de Paris).

Data for MSI prediction. We used the histology images for n= 465 patients with
colorectal carcinoma (TCGA-COAD and TCGA-READ) (diagnostic slides, FFPE
tissue) from the TCGA dataset, together with the corresponding MSI status data
obtained from TCGAbiolinks66. MSI status is assessed by measuring the lengths of
a set of mono- and dinucleotide repeats in tumor and matched normal DNA. The
MSI-Mono-Dinucleotide Assay used by the Cancer Genome Atlas (TCGA) consists
of a panel of four mononucleotide-repeat loci (polyadenine tracts BAT25, BAT26,
BAT40, and transforming growth factor receptor type II) and three dinucleotide
repeat loci (CA repeats in D2S123, D5S346, and D17S250)67,68. Tumors are clas-
sified as MSI-H if more than 40% of the markers are altered, MSI-low (MSI-L) if
less than 40% of the markers are altered and MSS if no marker is altered69.

Transcriptomic learning for MSI prediction. For transcriptomic learning at
hospital A, we used the simplest version of HE2RNA, in which the input for each
slide was the mean value over the ResNet50 representation of every tile, which is
equivalent to a preprocessing with one super-tile (see Supplementary Fig. 1).

We also set the MLP architecture as follows: two hidden dense layers of 1024
and 256 neurons with sigmoid activation followed by the last prediction layer with
28,334 output neurons and linear activation (28,334 being the number of coding or
noncoding genes with nonzero median expression levels over the samples of CRC
dataset). The model was trained for 50 epochs without hyperparameter tuning. For
the MSI classifier at hospital B, we compared two different models. The first one
was an MLP with two hidden dense layers of 256 and 128 neurons and a one-
neuron output layer, all with sigmoid activation, also fed with the all-image average
of the ResNet50 representation of the tiles and trained for 50 epochs. The second
consisted of a neural network with the same architecture, without the first hidden
layer of 256 neurons; this second classifier was trained on the 256-dimensional
representations of hospital B WSIs, given by the transcriptomic representation
learned at hospital A, or by an autoencoder (with a mirror architecture and three
hidden dense layers of 1024, 256, and 1024 neurons, with rectified linear activation
unit (ReLU)70 and linear activations), trained on either the hospital A or hospital B
subset. We performed different experiments, for different ratios of sample size
between the hospital A and B subsets. We performed a three-fold cross-validation
on the hospital A task, and the transcriptomic representation for the hospital B
dataset was obtained by averaging the three corresponding inferences for the
hospital B subset. MSI status was also predicted in a three-fold cross-validation
setup. Moreover, for each A-/B-subset size ratio, the random split between the two
hospitals was bootstrapped 50 times to generate robust performance estimates.
Whenever several samples were available for the same patient, we simply averaged
the predictions of the model over every sample, to obtain one single prediction for
the patient.

For comparison with the work of Kather et al.56, we re-implemented the
method described in this study, in the regime where the hospital B dataset
represents 1/4 of the total amount of data (dashed line on Fig. 6). For instance, for
the TCGA-CRC FFPE dataset, we considered the configuration where there are 116
patients with MSI status in hospital B. We fine tuned a ResNet18, pretrained on the
ImageNet database, on tile images with all layers but the ten last ones frozen, with
the ADAM optimizer, and a learning rate of 10−6, with a L2-penalty of 10−4 on
weights. The AUC on a hold-out validation set containing 12.5% of the training
data was computed every 256 iterations, and training was interrupted when this
score did not improve for a given number of consecutive epochs (patience). We
performed experiments with a patience of three epochs, as described in ref. 56, and
with a patience of ten epochs, which slightly improves the results in this particular
setting with few training samples.

Statistics and reproducibility. We determined whether the correlation between
the prediction of the RNA-Seq expression levels for a given gene and the real values
was statistically significant, by comparison with the distribution of correlations
predicted by a model with the same architecture as HE2RNA but untrained. The
estimated p-values for tests against the null hypothesis of random correlations were
then corrected by the Holm–Šidák method, to account for multiple comparisons.
This correction was performed separately for each cancer type. A gene was con-
sidered significantly well-predicted, for a given cancer type, if its corrected p-value
was below 0.05. The IPA analysis in Figs. 1c–e is based on Fisher’s exact tests. The
direction of the change in gene expression is not taken into account in this cal-
culation. For the analysis on LIHC and BRCA, given the large number of genes
with p-value below 0.05, we focused on genes for which the coefficient of the
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correlation between the predicted and true value was greater than 0.4: 786 genes for
BRCA and 765 for LIHC.

For the analysis of the hallmark of cancer pathways, we selected, for each
pathway and cancer type, 10,000 different random lists of genes of the same length
as the pathway list. We then determined the correlation for all genes and the
number of genes for which expression was well-predicted (in terms of the Holm–
Šidák corrected p-value), for all these lists.

We compared the mean correlation Rp over the pathway gene list, with the
distribution of the mean correlation over the random gene lists and calculated the
associated p-value. We plotted Rp against the mean R0 over all the 10,000 averages
of Rr for the random list (Fig. 3). We considered a given pathway for a given cancer
type to be better predicted than a corresponding random set, when the probability
p of Rr > Rp was <0.05.

We adopted the same approach for the percentage of well-predicted genes as a
measure, but compared the percentages fp of well-predicted genes in the pathway,
with the distribution f0 over the 10,000 random lists.

The MSI prediction scores are expressed as area under the ROC curve (AUC)
and a two-tailed Wilcoxon test was used to compare the different distributions of
scores.

The analyses in this work were carried with python (version 3.7.4) and made
use of the following packages: cffi (version 1.14.0), colorcorrect (version 0.9),
cryptography (version 2.8), Cython (version 0.29.14), decorator (version
4.3.0), gdc-client (from https://github.com/NCI-GDC/gdc-client/tree/
1c69ed0c2bfa3c6b3784bca1ab6feaed7a81f6cb), h5py (version 2.9.0), intervaltree
(version 3.0.2), ipykernel (version 5.0.0), ipython (version 7.0.1), ipython-genutils
(version 0.2.0), ipywidgets (version 7.4.2), jsonschema (version 2.6.0), jupyter
(version 1.0.0), jupyter-client (version 5.2.3), jupyter-console (version 5.2.0),
jupyter-contrib-core (version 0.3.3), jupyter-contrib-nbextensions (version 0.5.0),
jupyter-core (version 4.4.0), jupyter-highlight-selected-word (version 0.2.0),
jupyter-nbextensions-configurator (version 0.4.0), Keras (version 2.2.4), Keras-
Applications (version 1.0.6), Keras-Preprocessing (version 1.0.5), libkmcuda (from
https://github.com/src-d/kmcuda.git#subdirectory=src), lxml (version 4.4.2),
matplotlib (version 3.1.1), mygene (version 3.0.0), ndg-httpsclient (version 0.5.0),
numba (version 0.45.1), numpy (version 1.17.0), openslide-python (version 1.1.1),
pandas (version 0.23.4), pathlib (version 1.0.1), Pillow (version 6.1.0), progressbar2
(version 3.43.1), pyasn1 (version 0.4.3), pyOpenSSL (version 18.0.0), PyYAML
(version 3.13), requests (version 2.22.0), scikit-learn (version 0.21.2), scipy (version
1.2.1), seaborn (version 0.9.0), setuptools (version 45.3.0), skimage (version 0.16.2),
statsmodels (version 0.9.0), tables (version 3.5.2), tensorboard (version 1.14.0),
tensorboardX (version 1.4), tensorflow-estimator (version 1.14.0), tensorflow-gpu
(version 1.14.0), termcolor (version 1.1.0), torch (version 1.4.0), torchvision
(version 0.5.0), tqdm (version 4.32.2).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The TCGA dataset is publicly available at the TCGA portal (https://portal.gdc.cancer.
gov). Labeled tiles from colorectal cancer samples “100,000 histological images of human
colorectal cancer and healthy tissue” and the PESO dataset are publicly available at
https://zenodo.org/record/1214456#.XpWJbm46—w and https://doi.org/10.5281/
zenodo.1485967, respectively. The Mondor dataset (whole-slide images) is available from
hospital Henri Mondor but restrictions apply to the availability of data, which were used
with permission for the current study, and so are not publicly available. The data, or a
test subset, may be available from hospital Henri Mondor subject to ethical approvals
(details of the data and how to request access are available from Dr Julien Calderado at
Hospital Henri Mondor). Model interpretability can be explored at: https://owkin.com/
he2rna-result-visualization/.

Code availability
Source code is available at https://github.com/owkin/HE2RNA_code.
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