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Identification of flux checkpoints 
in a metabolic pathway 
through white‑box, grey‑box 
and black‑box modeling 
approaches
Ophélie Lo‑Thong1,2, Philippe Charton 1,2, Xavier F. Cadet3, Brigitte Grondin‑Perez4, 
Emma Saavedra5, Cédric Damour4 & Frédéric Cadet1,2*

Metabolic pathway modeling plays an increasing role in drug design by allowing better understanding 
of the underlying regulation and controlling networks in the metabolism of living organisms. However, 
despite rapid progress in this area, pathway modeling can become a real nightmare for researchers, 
notably when few experimental data are available or when the pathway is highly complex. Here, three 
different approaches were developed to model the second part of glycolysis of E. histolytica as an 
application example, and have succeeded in predicting the final pathway flux: one including detailed 
kinetic information (white‑box), another with an added adjustment term (grey‑box) and the last one 
using an artificial neural network method (black‑box). Afterwards, each model was used for metabolic 
control analysis and flux control coefficient determination. The first two enzymes of this pathway are 
identified as the key enzymes playing a role in flux control. This study revealed the significance of the 
three methods for building suitable models adjusted to the available data in the field of metabolic 
pathway modeling, and could be useful to biologists and modelers.

Entamoeba histolytica is a protozoan parasite responsible for the development of amoebiasis in humans. This 
disease is a worldwide public health problem that causes over 100 000 deaths per  year1. Indeed, a recent report 
estimates the prevalence of E. histolytica infection at 42% in Mexico, 41% in China and 34% in South  Africa2. 
So far, no vaccine exists to prevent the infection, but patients who suffer from amoebiasis can be treated with 
different drugs such as metronidazole or tinidazole. However, intolerances to these treatments and potential 
appearance of drug  resistance2–5 reveal the urgency of the situation and the need to find new therapies. Previous 
studies have focused on the identification of new drug targets in E. histolytica  glycolysis6–8, since the parasite 
depends completely on glycolysis to produce  ATP9.

While drug research and development is time consuming and expensive, the use of computational approaches 
might help to speed up the process. Lately, the combination of in vitro reconstitution and in silico modeling 
of the glycolysis pathway in E. histolytica highlighted the possibility of using modeling for predicting flux and 
metabolite concentrations under given  conditions7 and for appraising the effect of the addition of alternative 
 routes8. Pathway modeling can be done through many statistical or knowledge driven  approaches10. The first one 
only uses experimental data to understand relationships between biological variables, whereas the second uses 
pathway information (metabolic reactions, thermodynamic and kinetic parameters) to design complete detailed 
metabolic pathway reconstructions. Artificial Neural Network (ANN) can be classified among the data-driven 
approaches and is based on the creation of a network whose structure and functioning are similar to those of a 
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biological neural  network11. Traditionally, this method is employed to identify new biomarkers of diseases such 
as  cancer11 or to predict the bioavailability of drugs in  patients12,13.

The recent model of E. histolytica glycolysis applies a knowledge-based method called metabolic network to 
each part of the pathway: the first part from glucose to dihydroxyacetone phosphate and the second part (Fig. 1) 
from 3-phosphoglycerate (3PG) to pyruvate (Pyr)8. Interestingly, these studies found that 3-phoshoglycerate 
mutase (PGAM) was the main controlling factor in the second part of glycolysis, whereas pyruvate phosphate 
dikinase (PPDK) exerted the lowest flux control. This result comes in conflict with previous  research6, which 
identified PGAM and PPDK as important flux control steps of amoebal glycolysis. This difference is explained 
by the use of inappropriate enzyme proportions in the in vitro reconstitution experiments, not identical to 
those determined in amoebas, in the first study. Moreover, here our study is based on the experimental results 
of Moreno-Sanchez8.

It should be noted that obtaining a solid knowledge-based model relies, as the name suggests, upon an 
advanced understanding of the cell system, including physiological metabolite concentrations and enzyme activi-
ties, kinetic parameters and the type of mechanism involved, as well as thermodynamic constants of the pathway 
reactions. However, this knowledge is often not available in the literature or is highly complex to model, as seen 
with the kinetic mechanism of  PPDK8,14.

In the present study, our objective is to contribute to overcome the lack of knowledge and the complexity of 
kinetic modeling (white-box modeling), by testing two new modeling approaches: a data-driven approach (black-
box modeling) which uses ANN model, and a hybrid-based approach (grey-box modeling) which uses a tradi-
tional kinetic-based model with an added adjustment term. For this purpose, these three modeling approaches 
are applied to an experimental example: the second part of E. histolytica glycolysis, using the experimental results 
previously published by Moreno-Sanchez et al.8

Our analysis shows that the different models predict correctly the final flux values in the second part of E. 
histolytica glycolysis pathway. The ANN model presents great predictive and generalization abilities; however, its 
complexity, through high Akaike Information Criterion value (AIC), ranks it among the less satisfactory models. 
The COPASI models provide satisfactory predicted fluxes, as well as the ANN model, with a marked preference 
for the grey-box approach. Subsequently, the flux control coefficients of the enzymes ( CJ

E ) are calculated and 
allow the identification of the key enzymes involved in flux  control15–17. Taken together, these models enable the 
construction of the pathway from experimental data and the determination of the main controlling enzymes in 
the system, revealing the relevance of both the traditional white-box approach and the novel grey- and black-box 

Figure 1.  Second part of E. histolytica glycolysis pathway. The pathway is formed by 3-phosphoglycerate mutase 
(PGAM), enolase (ENO) and pyruvate phosphate dikinase (PPDK). Reduction of pyruvate to L-lactate (Lac) 
consuming NADH (dashed lines) is not part of the parasite pathway, but lactate dehydrogenase (LDH) was 
used in the in vitro reconstituted pathway in order to experimentally follow the final flux and establish a quasi 
steady-state to Lac 8. Metabolite action in enzyme inhibition is represented in red. 3PG 3-phosphoglycerate; 2PG 
2-phosphoglycerate; PEP phosphoenolpyruvate; Pyr pyruvate.
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approach. Such approaches could be extended to further biological pathway modeling, as they provide models 
adapted to various backgrounds.

Materials and methods
Second part of glycolysis experimental data. Experimental data of PGAM, ENO and PPDK activities 
and pathway flux (Jobs) are obtained from plots of a previous  study8. The free online software WebPlotDigitizer 
(Version 4.1, https ://autom eris.io/WebPl otDig itize r/) is used to extract data from plots. These data are available 
in Tables S1 and S2.

Artificial neural networks (ANNs). ANNs functioning mimics that of biological neurons, the networks 
consist of many layers allowing input reception and processing and output delivery. This technique can be used 
for solving classification or regression  problems18. To build the second part of glycolysis in ANNs, different types 
of software are employed: RStudio (Version 1.1.456), an open-source integrated development environment for 
 R19 and two packages: NeuralNet (Version 1.44.2) and Nnet (Version 7.3–12)20,21.

Complex pathway SImulator (COPASI) metabolic networks. A first metabolic network of the stud-
ied pathway was kindly provided by the authors of a previous  study8. This model is developed on  GEPASI22, an 
old software for metabolic pathway modeling, replaced by COPASI since 2002.

The second part of the glycolysis is also modeled by using the open source software called COPASI (Version 
4.24)23. This software is used for metabolic network design, analysis and optimization. The resulting metabolic 
networks are based on the use of enzyme properties (kinetic parameters and mechanism-based rate equations).

Ethics approval and consent to participate. Not applicable.

Methodology
Black‑ white‑ and grey‑box approach procedure. To conduct the present study, a specific methodol-
ogy, different from that envisaged in the original  article8, is defined (Fig. 2). In the first case of the black-box 
approach, ANN models are built with the experimental data concerning the relationship of pathway flux ver-
sus enzyme activity in the pathway in vitro reconstruction. Then, in the second and third case of the white- 
and grey-box approach, metabolic networks are built with enzyme parameters measured experimentally, and 
rate  equations24 according to the type of kinetic mechanism described for each enzyme. Once the models are 
designed, a comparison of their final flux and product concentrations is made. Also, for each approach, two dif-
ferent models are designed: one reaching a pseudo-steady-state flux through lactate and another at physiological 
metabolite concentrations. Subsequently, calculations of flux control coefficient for each of these models are 
made, allowing the determination of the main flux controlling enzyme.

Black‑box approach. Artificial neural networks (ANNs) design. Typical feed-forward networks are de-
signed and consist of three layers of neurons: an input layer, a single hidden layer and an output layer (Fig. 3). 
Input data are connected to the neurons and weights (wi and w’j) are assigned to each connection. When input 
data are processed by the neuron, the latter computes the weighted sum of its inputs, then applies an activation 
function (f). The activation function makes it possible to convert input into output and decides whether the 
neuron is activated or not. There are several activation functions, including the non-linear activation functions: 
logistic (log) and hyperbolic tangent (tanh). If the resulting output is higher than the set threshold, the neuron 
is considered as being activated, otherwise not. Lastly, the hidden layer leads to the final output result, displayed 
in the output layer.

Optimization of ANNs is ensured through the back-propagation  method25 in the NeuralNet package and the 
Broyden-Fletcher-Goldfarb-Shanno (BFGS)  method26 in the Nnet package. For detailed information on ANN 
functioning,  see27. In the ANN models, the inputs are the activities of each enzyme (PGAM, ENO and PPDK) 
used in the in vitro experiment (Table S1,8), and the output is the predicted pathway flux  (Jpred). Also, each weight 
in the ANN is assigned automatically by RStudio. Given the small amount of experimental data (Table S1), 
ANN models are built with a training set made up of the complete Tables S1 or S2 datasets (the data from the 
experimental dots or data from the fitting curves, respectively), then optimized through a Leave-One-Out cross 
validation (LOOcv) procedure. Then, since we needed a separate test set to prevent overfitting, the models are 
evaluated on a different test set generated by the grey-box COPASI model (Table S3).

ANN selection and performance evaluation. The number of artificial neurons (or units) in the hidden layer is 
selected based on:

• the root-mean-square error (RMSE):

with Yi and Ŷi respectively the observed and predicted values, n the total number of values, and i = 1, 2…n;
• the mean absolute error (MAE) calculations:

(1)RMSE =

√√√√ 1

n

n∑

i=1

(Ŷi − Yi)
2

https://automeris.io/WebPlotDigitizer/
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with |…| symbolizing the absolute value;
• and a specific equation estimating a range of numbers of  HUs28,29:

with  Nh the number of HUs,  Ns the number of samples in the training data,  Ni the number of input units,  No the 
number of output units and α an arbitrary scaling factor, usually 2–10.

RMSE and MAE are statistical metrics commonly used to evaluate the model  performance30–33.

White‑box approach. Complex Pathway SImulator (COPASI) metabolic network design. The metabolic 
networks built in this study use the enzyme properties (kinetic parameters and kinetic rate equations), which 
are summarized in Tables 1, 2, and metabolite concentrations defined in Table 3. Furthermore, several models 
are built using either Vmax or kcat and E and pseudo-steady state metabolite concentrations or physiological me-
tabolite concentrations. All simulations are carried out during the first hour, as was done in the experimental 
 procedure8.

As in the previous study, for establishing a quasi steady-state and calculating the flux control coefficients dur-
ing modeling, a last reaction is added: Lac formation from Pyr (Fig. 1). The kinetic equation of LDH is k × [Pyr] , 
with the rate constant k = 2, 000 min−1, and the Lac concentration is fixed at 300 µM.

Metabolic network refinement and validation. To enhance the COPASI model predictions, changes 
to their contents are carried out. First of all, the PPDK kinetic equation is modified and a more accurate one 

(2)MAE =
1

n

n∑

i=1

∣∣∣Yi − Ŷi

∣∣∣

(3)Nh =
Ns

α ∗ (Ni + No)

Figure 2.  Study workflow. Moreno-Sanchez et al.  methodology8 is represented in orange, whereas the 
methodology proposed here is represented in yellow. Boxes with a thick line indicate the experimental data used 
in this study; left box: the flux mentioned here refers to pathway flux titration by changing enzyme activities. 
The last boxes are the techniques used for a better understanding of the metabolic pathway. The five final models 
designed in this work are colored in black, white or grey. aSee “Complex Pathway SImulator (COPASI) metabolic 
networks” part.
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describing the full rate equation is used, the Uni Uni Bi Bi Ping-Pong (UUBB) mechanism (Eq. 4) as previously 
 determined14:

(4)v2 =
Vf Vr

(
ABC −

PQR
Keq

)

D

Figure 3.  Structure of the ANN models. Each node represents an artificial neuron or unit.  Ui,  HUj and O 
are, respectively, the input unit, the hidden unit and the output unit of the different layers; wi and w’j are the 
weights associated with each connection of the network between the input and the hidden layer for the first, and 
between the hidden and the output layer for the second. Only weights for the first unit (associated with PGAM) 
of the layers are labelled. ∑ constitutes the weighted sum of the input and f constitutes the activation function 
applied in the unit.

Table 1.  Kinetic parameters of the enzymes in the second part of the glycolysis. Michaelis constants (Km) and 
inhibitor constants (Ki) are in µM, maximum rates of the forward and reverse reactions (Vf and Vr) in mU, 
enzyme amounts (E) in nmol and kcat of the forward and reverse reactions (kcat_f and kcat_r) in  min−1. Keq is the 
equilibrium constant of the reaction. a Data taken from a previous  study8 and Vr were calculated from enzyme 
 proportions7. b Data taken from a previous  study6 and kcat_r were calculated from Vr and E. c E were calculated 
from Vf and kcat_f by using the equation: E =

Vf

kcat_f
.

Enzyme Km
a Ki

a Keq
a Vmax

a kcatb Ec

PGAM 473 (3PG)
106 (2PG) 173 (PPi) Vf = 75

Vr = 67.24
kcat_f = 3,420
kcat_r = 3,066.14 2.19*10–2

ENO 86.4 (2PG)
102 (PEP)

137 (PPi)
610 (3PG)

Vf = 328.5
Vr = 66.61

kcat_f = 8,820
kcat_r = 1,788.43 3.72*10–2

PPDK

30 (PEP)
2 (AMP)
91 (PPi)
221 (Pyr)
597 (ATP)
1,342 (Pi)

0.73 Vf= 196.5
Vr = 12.28

kcat_f = 5,220
kcat_r = 326.22 3.76*10–2
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with the denominator D = VrKiBKCA+ VrKCAB+ VrKBAC+

Vf

Keq
KiRKQP+

Vf

Keq
KRPQ+ VrKiB

KC
KiQ

AQ

+

Vf

Keq
KQPR+

Vf

Keq
KPQR+

Vf

Keq
KQPR+VrKABC+

Vf

Keq

KiRKQ

KiC
CP+Vr

Kc
KiQ

ABQ+

Vf

Keq

KR
KiA

APQ+

Vf

Keq

KP
KCB

BQR+ Vr
KA
KiP

ACP+ Vr
KA
KiR

BCR+

Vf

Keq

KP
KiB

BQR+ Vr
KC

KiQKiiC
ABCQ

+

Vf

Keq

KQ

KiC
CPR+

Vf

Keq

KQ

KiCKiiC
CPR+ Vr

KA
KiRKiiC

BCQR+ VrABC+

Vf

Keq
PQR+

Vf

Keq

KiRKQ

KiA
AP; A, B and C and P, Q 

and R are respectively the concentrations of the substrates PEP, AMP and  PPi and of the products Pyr,  Pi and 

ATP of PPDK reaction; K is the Michaelis constant; Ki and Kii are respectively the dissociation constant of the 

substrate or product and the inhibitor constant that affects the intercept (1/Vmax). The experimental and fitted 

constants are listed in Table 4.
Also, the estimation of kinetic parameters is made with COPASI Parameter Estimation task. With this task, 

a range of parameters is tested by COPASI, which predicts the final flux or the product concentrations and 
compares them to the experimental data. The process relies on the minimization of the cost function (5), i.e. the 
minimization of the error between the experimental values and the corresponding predicted values.

(5)E(P) =
∑

i,j

ωj .(xi,j − yi,j(P))
2

Table 2.  Kinetic equations of the enzymes in the second part of the glycolysis. a In models using kcat and E, Vf 
were replaced by kcat_f · E and Vr were replaced by kcat_r · E. b A, B and C and KmA, KmB and KmC are respectively 
the concentrations and Km of the substrates PEP, AMP and  PPi; P, Q and R and KmP, KmQ and KmR are the 
concentrations and Km of the products Pyr, ATP,  Pi.

Enzyme Kinetic  equationsa

PGAM v =
Vf

[3PG]
Km3PG

−Vr
[2PG]
Km2PG

1+
[3PG]
Km3PG

+
[2PG]
Km2PG

+
[PPi ]
KiPPi

ENO v =
Vf

[2PG]
Km2PG

−Vr
[PEP]
KmPEP

1+
[2PG]
Km2PG

+
[PEP]
KmPEP

+
[PPi ]
KiPPi

+
[3PG]
Ki3PG

PPDKb v =
Vf

(
ABC− PQR

Keq

)

KmAB+KmBA+KmCB+KmBC+
Vf KmQP

Vr Keq
+

Vf KmPQ

VrKeq
+

Vf KmQR

VrKeq
+

Vf KmRQ

VrKeq
+ABC+

Vf PQR

VrKeq

Table 3.  Metabolite concentrations used in the models. a See Tables 1, 2 of Ref.8. b See Table 3 of Ref.8.

Metabolite Pseudo-steady state concentrations (in µM)a Physiological concentrations (in µM)b

3PG 4,000 400

AMP 200 1,600

PPi 1,700 450

ATP 3,000 5,000

Pi 10,000 5,400

Table 4.  Ki, Kii and KPPi_AMP used in the UUBB equation. a Fixed at an arbitrary value.

Constant Value (in µM)

Kii_Pi 7,200

Ki_Pyr 2,300

Ki_Pi 23,000

Ki_ATP 140

Kii_PPi
a 1,000

Ki_PEP
a 1,000

Ki_AMP
a 1,000

KPPi_AMP
a 1,000

Ki_PPi
a 1,000
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 with E the calculated error, P the tested parameter, ωj is the calculated weight for each experimental data column, 
xi,j a point in the dataset and yi,j(P) the corresponding predicted value; i and j are the rows and columns in the 
experimental dataset. The weight calculation method was the mean square: ωj =

1

x2 j
 , with x2j the mean of squared 

data from one column. The software provides a list of optimization methods, to find optimized values for the 
estimated parameters (https ://copas i.org/Suppo rt/User_Manua l/Metho ds/Optim izati on_Metho ds/).

Again, two types of estimations are carried out:

• one estimating one or several parameters with one target value and
• the other estimating one or several parameters with many target values.

The models obtained constitute the white-box approach, with known enzymatic parameters and equations.

Grey‑box approach. In the specific case of the grey-box approach, to improve the COPASI model predic-
tions, the kinetic equation of PPDK is changed to a ter-reactant reversible  equations8 which was modified as 
follows (6):

 with the adjustment term α
∣∣Vf − Vf 0

∣∣ in the denominator, α is a defined number, Vf 0 is the PPDK maximum 
rate in the forward direction used in the in vitro reconstitution and Vf  is the PPDK maximum rate in the forward 
direction in the model.

This particular model was built because, although the previous model could predict fairly well the final flux 
when PGAM and ENO activities were varied, it overestimated the flux when PPDK activity was varied. How-
ever, the previous model predicted the flux well, with the enzyme parameters used in the in vitro reconstitution. 
Therefore, an adjustment term should be added, in order to decrease PPDK rate with α . Also, as Vf  of PPDK is 
equal to Vf 0 when PGAM’s or ENO’s activity is varied, α is multiplied by Vf − Vf 0 , so that the adjustment term 
to be zero when Vf = Vf 0 and the flux predictions are not modified in these two cases mentioned above. Also, 
to ensure that the adjustment term is positive, we used the absolute value 

∣∣Vf − Vf 0

∣∣.
To determine the value of α , first a range of values from 0 to 4*106 with steps of  106 is assessed. Then the range 

and the steps are reduced, from  106 to 1, until we obtain better results for RMSE, and coefficient of determination 
 (R2) between the predicted and experimental data. The equation for  R2 is given below:

with Yi and Ŷi respectively the observed and predicted values, n being the total number of values and i = 1, 2…n.
It is important to note that this parameter α has no biological significance and is determined by a data-driven 

learning method, hence the name “grey box” for this model.

Model comparison. To compare accuracy of the models, RMSE,  R2 and AIC are assessed for the experi-
mental dataset (Table S2). The same statistical metrics are used to evaluate their generalization ability with the 
test dataset (Table S3).

AIC measures the quality of the model by taking into account its complexity. Additionally, as the ratio “num-
ber of data-number of parameters” is less than 40, a corrected AIC is calculated as  follows20,34:

with k being the number of parameters, SSE the Sum of Square Errors and n the number of data.
Furthermore, to assess the generalization ability of the models, a comparison of RMSE,  R2 and MAE is made 

on the previous test set (Table S3).

Flux control analysis. For purposes of analyzing the pathway flux control and identifying the key enzymes 
involved in the flux control, the flux control coefficient of each enzyme ( CJ

E ) is calculated with each model 
(ANNs and metabolic networks). This measure, generally used in Metabolic Control Analysis (MCA), allows us 
to assess quantitatively the impact of the enzyme on the pathway  flux15–17. Here, CJ

E is determined in an analytical 
way using the formula mentioned below (9):

where J is the flux and x is either the enzyme activity in the case of ANNs or the rate of the reaction catalyzed 
by the enzyme in the case of metabolic networks (COPASI), multiplied by a scalar factor x0J0  which represents the 
reference values of enzyme activity/reaction rate and pathway flux.

(6)

v1 =
Vf

(
ABC −

PQR
Keq

)

KmAB+ KmBA+ KmCB+ KmBC +
Vf KmQP

VrKeq
+

Vf KmPQ

VrKeq
+

Vf KmQR

VrKeq
+

Vf KmRQ

VrKeq
+ ABC +

Vf PQR

VrKeq
+ α

∣∣Vf − Vf 0

∣∣

(7)R2
= 1−

∑n
i=1 (Yi − Ŷi)

2

∑n
i=1 (Yi − Y)

2

(8)AIC = 2 ∗ k + n ∗ ln

(
SSE

n

)
+

2 ∗ k ∗ (k + 1)

n− k − 1

(9)CJ
E =

∂J

∂x
∗
x0

J0

https://copasi.org/Support/User_Manual/Methods/Optimization_Methods/
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Figure 4.  ANN model selections and flux predictions. (A) cvRMSE and cvMAE for the first dataset and using 
NeuralNet package and log activation function. The numbers represent the number of HUs. (B) Flux prediction 
with the best ANN model with 1 HU. Training: cvRMSE = 4.23 nmol·min−1, cvMAE = 2.78 nmol·min−1, 
 cvR2 = 0.71 and Test: RMSE = 1.56 nmol·min−1, MAE = 1.24 nmol·min−1,  R2 = 0.97. (C, D) cvRMSE and cvMAE 
for the second dataset and using NeuralNet package and tanh activation function (C) or Nnet package and log 
activation function (D). The numbers represent the number of HUs. (E) Flux prediction with the best ANN 
model using NeuralNet, tanh activation function and 18 HUs for the training set (circles) and test set (crosses). 
Training: cvRMSE = 0.52 nmol·min−1, cvMAE = 0.37 nmol·min−1,  cvR2 = 1 and Test: RMSE = 1.61 nmol·min−1, 
MAE = 1.37 nmol·min−1,  R2 = 0.98. (F) Flux prediction with the best ANN model using Nnet, log activation 
function and 23 HUs for the training set (circles) and test set (crosses). Training: cvRMSE = 0.28 nmol·min−1, 
cvMAE = 0.13 nmol·min−1,  cvR2 = 1 and Test: RMSE = 1.69 nmol·min−1, MAE = 1.47 nmol·min−1,  R2 = 0.98. 
Colored circles/crosses refer to the various levels of enzyme activity: PGAM (blue), ENO (yellow) or PPDK 
(red) for the training/test set.
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Application and results
ANN modeling of the second part of glycolysis. First, we model the second part of E. histolytica gly-
colysis using the black-box modeling approach with ANN models and the first experimental dataset (Table S1, 
Fig. 4A,B) or the second experimental dataset (Table S2, Fig. 4C–F). For the first dataset, the evaluation of RMSE 
in cross-validation (cvRMSE) and MAE in cross-validation (cvMAE) shows a fluctuation of the error values 
when the number of HUs is varied and allows the identification of the best ANN model, presenting the lowest 
cvRMSE and cvMAE values. Also, the calculation of  Nh gives a maximum value of 4 ( α = 2), making it possible to 
identify the best model, regarding cvRMSE and cvMAE, with a number of HU equal to 1 (Fig. 4A). By compar-
ing the ANN predicted fluxes with the experimental ones, we observe that this model can predict rather well the 
flux of the pathway for the training set, especially at high values of flux (Fig. 4B), and even if the calculated errors 
remain high (cvRMSE = 4.23 nmol·min−1, cvMAE = 2.78 nmol·min−1). The prediction of the test set shows that 
the model predicts the flux better when PGAM or ENO activity is varied, than when PPDK’s activity is varied. 
This can be explained by the small experimental data number in the training set, which is derived from experi-
mentally controlled conditions. We built other ANN models with the NeuralNet package and tanh activation 
function and Nnet package, but the predictions are less good than those of previous models, with lower  R2 in 
cross-validation  (cvR2) and respectively, cvRMSE = 4.47 nmol·min−1 and cvMAE = 2.84 nmol·min−1, for the first 
one and cvRMSE = 4.56 nmol·min−1 and cvMAE = 2.66 nmol·min−1 for the second one (Fig. S1).

Afterwards, we built another ANN model, this time using the second dataset, corresponding to the data 
from the fitting curves obtained from the experimental points in the first dataset. From the two packages used, 
we notice that, with NeuralNet and tanh activation function, it is easier to identify the optimal number of HUs, 
which is 18, but this is not the case with the Nnet package, where the models with 22 and 23 HUs present a better 
cvMAE or a better cvRMSE (Fig. 4C,D). As RMSE is the most used model selection criterion of both, we use 23 
HUs for the second model with the Nnet package. The comparison of these two models shows their ability to 
simulate the metabolic pathway, with better results for the Nnet model (Fig. 4E,F). Also, the calculation of  Nh 
gives a maximum value of 23 ( α = 2); thus, both models comply with the limit set by the equation.

However, in order to select the best model and ensure that it is not too specific to our second dataset, 
we used the test set from the most performing COPASI model (Table S3), and predicted the final flux with 
our two ANN models. The NeuralNet model produced better results, with RMSE = 1.61 nmol·min−1 and 
MAE = 1.37 nmol·min−1, compared to the Nnet model. These results suggest that this novel black-box approach, 
using ANN, is relevant for constructing metabolic pathways from experimental data, with better predictions 
when working with bigger datasets, whether it be with NeuralNet or Nnet package.

Design of metabolic network with the white‑box approach. After the modeling phase using the 
black-box method approach, we focused on the white-box approach and designed mechanistic models with 
COPASI. The first COPASI model we used was that of Moreno-Sanchez8; although it was created in GEPASI, 
we were able to work with this model on COPASI (Fig. S2A-C). The steady-state flux predicted with this model 
converged around 16.6 nmol·min−1 for the three enzymes, with a flux that decreased for PGAM and increased 
for ENO and PPDK during simulation time (Fig. S2A). This result was lower than the experimentally measured 
result (27 nmol·min−1)8. As for the prediction of metabolite concentrations, after one hour simulation time, 2PG 
was at 139.78 µM, PEP at 6.08 µM and Pyr at 8.31*10–3 µM (Fig. S2B). Here also the predicted concentrations 
were higher than the experimentally measured results, with a concentration of 2PG at 58 ± 29 µM and PEP at 
37 ± 16 µM (Pyr experimental concentration was not available) in the previous  work8. Furthermore, analysis of 
the predicted flux when enzyme activities were varied showed quite good prediction of the flux for PGAM and 
PEP, but not for PPDK, which showed RMSE of 4.33 nmol·min−1 (Fig. S2C).

The results of this first model clearly indicate that the studied metabolic pathway can be modeled with 
COPASI as a biochemical network using different kinetic parameters and equations, but it needs to be fine-tuned 
to be more accurate in terms of predictions. The primary modification made in this model concerned the Vmax 
values and the metabolite concentrations. Indeed, we replaced these values with those used in the experimental 
conditions at a pseudo steady-state (see Tables 1–3 and Fig. 5A–C). These changes have the effect of increasing 
the predicted fluxes and metabolite concentrations, in particular with a flux of 25.2 nmol·min−1 closer to the 
experimental value (Fig. 5A). As for the metabolite concentrations, they were still higher than those measured 
experimentally (Fig. 5B). The comparison between the predicted and observed fluxes revealed an enhancement 
of the predictive capability of our model with RMSE = 3.39 nmol·min−1 and  R2 = 0.88 (Fig. 5C), emphasizing the 
importance of using appropriate parameters in the model.

However, this second model presents a poorer ability to predict the flux when PPDK activity is varied. For 
this reason, we decided to improve it by modifying the PPDK kinetic equation only and replace the Bi Bi Ping 
Pong kinetic equation used in the preceding models with the more precise Uni Uni Bi Bi kinetic equation 
defined by Varela-Gómez et al.14 (Fig. 5D–F). As some kinetic parameters (Ki and Kii) were not characterized 
experimentally, they were arbitrarily fixed at 1,000 µM (see Table 4). This last model yielded a slight decline of 
reaction fluxes to around 22 nmol·min−1 and higher metabolite concentrations than experimentally determined 
(Fig. 5D,E). Interestingly, we noted an improvement of flux predictions when enzyme activities were varied 
(RMSE = 2.43 nmol·min−1 and  R2 = 0.94), in particular in the case of PPDK activity variation (Fig. 5F). Therefore, 
this second attempt to refine the COPASI model revealed that beyond the use of appropriate parameters, our 
model has to include precise kinetic equations to be more efficient.

As we said before, some parameters are not yet defined experimentally; therefore, we use COPASI Parameter 
Estimation task to estimate these kinetic parameters. The best results are obtained with the Particle Swarm opti-
mization method, with a cost function of 771.135; the optimized values of Ki and Kii are presented in Table S4. It 
is worth noting that the cost function value remains high, suggesting a failure of COPASI to estimate parameters 
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better. This could be due to the high number of values to be parameterized and the low number of experimental 
data. Besides, these parameterized values have no physiological meaning, since they are in the molar range, and 
could be explained by the negligible impact of the parameterization with COPASI. Simulations run for one hour 
and fluxes and concentrations are analyzed again (Fig. 5G–I). We notice no significant change between the initial 
model and the optimized one. For the most part, the fluxes are increased: PGAM flux is at 23.4 nmol·min−1 and 
ENO flux at 22.9 nmol·min−1, except for PPDK flux which is at 21.3 nmol·min−1, while metabolite concentra-
tions are greater than their experimental values (Fig. 5G,H). In general, we notice a minor enhancement of flux 
predictions with this optimized model (Fig. 5I). These findings suggest that the white-box modeling approach, 
through COPASI modeling, stands as a conventional method of choice to build consistent in silico models of 

Figure 5.  Flux and metabolite concentration predictions with COPASI models. (A, D, G) PGAM (blue 
squares), ENO (yellow circles) and PPDK (red triangles) flux predicted as function of time with the adjusted 
Moreno-Sanchez model (A), the model containing UUBB equation (D) and the improved model containing 
UUBB equation (G). (B, E, H) 2PG (green), PEP (blue) and Pyr (yellow) concentration predicted with the 
adjusted Moreno-Sanchez model (B), the model containing UUBB equation (E) and the improved model 
containing UUBB equation (H). (C, F, I) Flux predictions by the adjusted Moreno-Sanchez model (C), the 
model containing UUBB equation (F) and the improved model containing UUBB equation (I). Circle colors 
refer to the various levels of enzyme activity: PGAM (blue), ENO (yellow) or PPDK (red).
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metabolic pathways and this, despite the fact that, in our case, metabolite concentrations are poorly predicted 
even after the parameterization of the kinetic constants.

Besides, other approximative models, with lin-log approximation kinetics and Liebermeister kinetics, could 
have been  evaluated35,36. Consequently, we built a model including the approximative lin-log equation (see mod-
eling details in the legend of Fig. S3). Despite simplifying the rate equation by using lin-log kinetics, the model 
gives results comparable to the previous white-box model, with RMSE = 4.8 nmol·min−1 and  R2 = 0.78 (Fig. S3C). 
Another model using the simpler modular rate law from  Liebermeister36 is built (see modeling details in the 
legend of Fig. S4). This model has the immediate effect of simplifying the rate equation for PPDK and allows 
good prediction of flux (26 nmol·min−1) in the experimental conditions (Fig. S4A). However, results show that 
metabolite concentrations are still overestimated and the model presents a lower predictive capacity compared 
to the previous models, with RMSE = 4.03 nmol·min−1 and  R2 = 0.87 (Fig. S4B,C). Both models, with lin-log 
approximation kinetics or Liebermeister kinetics, display the same dynamics, with better flux predictions when 
PGAM’s or ENO’s activity is varied than when PPDK’s activity is varied. Together, these results reveal that there 
are some aspects of PPDK kinetics that are not completely modeled by these different mechanistic approaches.

The grey‑box modeling approach. Based on our previous experiences, the major hurdle in the second 
part of glycolysis modeling is the third reaction catalyzed by PPDK. Then, we investigate the use of a novel 
approach called the grey-box modeling approach, consisting of using an adjustment term ( α

∣∣Vf − Vf 0

∣∣ ) in the 
kinetic equation of PPDK. In order to define the optimal value of α in the adjustment term, we test a range of 
values from 0 to 5*106 and identify the best value α around 3.09*106; below this value, the flux is overestimated, 
and above, the final flux is underestimated (Fig. 6A). Also, no changes are made to the predicted flux when 
PGAM or ENO activity is varied (Fig. S5).

Again, simulations were performed over one hour with COPASI and the results of prediction are shown 
(Fig. 6B–D). We observed that the fluxes were around 25 nmol·min−1 as in a previous model (Figs. 5A and 6B), 
and consequently closer to the experimental value. In regards to the metabolite concentration predictions, they 

Figure 6.  Flux and metabolite concentration predictions with COPASI model with an added adjustment term. 
(A) Flux predictions by the model when PPDK activity is varied. Dotted line: curve obtained with the best 
adjustment term (3,088,970). (B) PGAM (blue squares), ENO (yellow circles) and PPDK (red triangles) fluxes 
predicted as function of time. (C) 2PG (green), PEP (blue) and Pyr (yellow) concentration predictions. (D) Flux 
predicted by the model. RMSE = 1.71 nmol·min−1, MAE = 1.47 nmol·min−1,  R2 = 0.98. Circle colors refer to the 
varied enzyme activity: PGAM (blue), ENO (yellow) or PPDK (red).
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were also similar to those predicted with the previous model and were still higher than expected (Fig. 5B and 
6C). Remarkably, a significant improvement of flux predictions was achieved, notably when PPDK activity was 
varied, compared to all other models analyzed before (Figs. 5C, F, I and 6D). Collectively, these results validate the 
use of the adjustment term in the kinetic equation to improve the metabolic pathway model built with COPASI.

Model comparison and reliability. Following the design of the second part of glycolysis using three 
modeling approaches, we assess the reliability of each approach and proceed to their comparison. Also, for an 
easier understanding of the following results, the properties of each model are summarized in Table 5.

Table 5.  List of the main properties of each model. a Only the best models from each approach are kept. b For a 
complete description of the modeling process, see the “Methodology” section. c Respect of pseudo steady-state 
experimental conditions.

Modela Name Specificityb Number of parameters Based on…

0 Moreno-Sanchez model See8 20
Experimental kinetic data

1 Adjusted Moreno-Sanchez model Respects the experimental conditions at a pseudo 
steady-state 20

2 ANN model (NeuralNet, log, HU = 1) Only uses the experimental dots 6
Enzyme activities and final flux data

3 ANN model (NeuralNet, tanh, HUs = 18) Uses data from the fitting curves 91

4 UUBB model Use of UUBB equation for  PPDKc 29
Experimental and fitted kinetic data

5 UUBB model optimized Uses the UUBB equation for PPDK with opti-
mized  parametersc 29

6 Model with an added adjustment term PPDK equation with an added adjustment  termc 21 Experimental kinetic data + adjustment term

Figure 7.  Comparison of flux predictions and experimental flux for all models. Flux predictions by the model, 
when PGAM activity (A), ENO activity (B) or PPDK activity (C) is varied. Colors refer to the model used: 
Model 1 (green squares), Model 2 (black circles), Model 3 (blue circles), Model 4 (yellow circles), Model 5 
(orange circles) and Model 6 (red circles).
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By comparing the predicted fluxes to their experimental values, we found that all models, from Models 1–6, 
worked well for predicting the final flux when activity of PGAM varies (Fig. 7A). When ENO activity is varied, we 
notice that Model 2 does not perform well, particularly for the low values, for which the model overestimates the 
final flux (Fig. 7B). Besides, for these two enzymes we note that Models 1, 4 and 5 from the white-box approach 
and Model 6 from the grey-box approach underestimate the flux when activity of PGAM or ENO is varied, with 
a gap that seems smaller in the case of the grey-box approach. As expected, dots from Model 3 are practically 
aligned with the first bisector, suggesting an almost perfect flux prediction with this model (Fig. 7A,B). Lastly, 
the variation of PPDK activity shows the greatest effect on model prediction. We observe that Model 2, as well 
as Model 1, are the two models that have the most difficulty in predicting flux under these conditions (Fig. 7C). 
Indeed, they overestimate the flux when PPDK activity is varied; this was also the case for Models 4 and 5, but 
with a smaller difference between the predicted and observed values. In contrast, fluxes are closely predicted 
with Models 3, 5 and 6. These results indicate that these models are suitable to simulate our studied metabolic 
pathway and that we can count on their reliability for the analysis of the flux in the second part of glycolysis, at 
least for an overall flux ranging from 0 to 30 nmol·min−1.

The analysis of the statistics for each model reinforced the results obtained before (Table 6). Indeed, all models 
exhibited a fairly low RMSE under 3 nmol·min−1 and a high  R2, around 0.98, when PGAM activity was varied. 
When ENO activity was varied, almost all models predicted the flux with a good RMSE under 3 nmol·min−1 
and  R2 above 0.97, except for Model 2. However, when PPDK activity was varied, Models 0, 1 and 2 showed the 
weakest results, with RMSE above 5 nmol·min−1 and a  R2 under 0.9. Only the three models mentioned above 
(Models 3, 5 and 6) yielded good results with a low RMSE and a high  R2 value. These results corroborated those 
obtained earlier. Interestingly, the calculation of AIC allows the establishment of a ranking of models (from the 
best to less good): Model 2 > 3 > 6 > 5 > 4 > 1 > 0 (Table 6). Model 2, which has the lowest AIC, proved to be a poor 
model for flux prediction. Conversely, Model 3, that gives the best results in terms of RMSE, MAE and  R2 presents 
a good AIC. We also notice that the second-best model in flux prediction (Model 6) also presents a low AIC value.

Subsequently, in order to evaluate the generalization ability of our models, we predict the flux with the test 
set (Table 7). Many models do not have an adequate ability of generalization; nevertheless, Model 6 from the 
grey-box approach stands out from the others. Indeed, it is the only model able to predict the flux very well from 
new data, regardless of the enzymatic activity that is varied. Model 0 and 1 can predict the flux well, except when 
PPDK activity is varied. Also, AIC calculations identify Model 6 as the best one to generalize (AIC = − 486.7), 
since Model 3 presents higher RMSE, MAE and AIC value (AIC = 539.06). These results confirm the reliability 
of the three approaches for the analysis of the flux in the second part of glycolysis, with a preference for Model 
6, which offers the best compromise between precision and complexity.

Identification of the main controlling enzymes of the pathway. After establishing three types of 
models for the considered metabolic pathway, we determined the enzyme CJ

E with each model. These coeffi-

Table 6.  Comparative table of statistical metrics of each model for the training set (Table S2). RMSE and MAE 
are in nmol·min−1. a For these models, (cv)RMSE and (cv)R2 are calculated.

R2 RMSE MAE AIC

PGAM ENO PPDK

R2 RMSE R2 RMSE R2 RMSE

Model 0 0.85 4.33 3.17 584.74 0.98 2.42 1 2.41 0.71 6.75

Model 1 0.88 3.39 2.48 494.39 0.98 2.02 0.98 1.78 0.8 5.27

Model  2a 0.71 4.23 2.78 99.5 0.94 2.19 0.78 4.02 0.41 5.71

Model  3a 1 0.52 0.37 124.21 1 0.62 1 0.62 1 0.22

Model 4 0.94 2.43 2.1 396.72 0.98 2.96 0.97 2.3 0.94 1.94

Model 5 0.95 2.06 1.7 336.05 0.98 2.59 0.98 1.89 0.96 1.6

Model 6 0.98 1.71 1.47 244.71 0.98 2.02 0.98 1.78 0.99 1.22

Table 7.  Comparative table of statistical metrics of each model for the test set (Table S3).

R2 RMSE MAE AIC

PGAM ENO PPDK

R2 RMSE R2 RMSE R2 RMSE

Model 0 0.86 3.71 2.15 527.32 1 0.88 0.99 1.42 0.59 6.26

Model 1 0.89 2.78 1.06 421.76 1 0.02 1 0.11 0.72 4.87

Model 2 0.52 5.54 3.89 642.46 0.99 4.04 1 5.71 0.99 4.17

Model 3 0.98 1.61 1.37 539.06 0.98 2.12 0.99 1.32 0.98 1.26

Model 4 0.96 2.73 2.51 439.52 1 2.68 1 2.89 0.93 2.63

Model 5 0.97 2.19 2 357.26 1 2.17 1 2.3 0.95 2.08

Model 6 1 0.23 0.13 -486.7 1 0.02 1 0.11 1 0.39
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cients are calculated at a pseudo steady-state flux to Lac (Table 8) or at physiological metabolite concentrations 
(Table S5) at the reference or basal level of enzyme activity of 75 mU PGAM, 328.5 mU ENO and 196.5 mU 
PPDK. Each CJ

E provides a quantitative measurement of the enzyme effect on the pathway flux. The closer the 
coefficient is to 1, the higher the enzyme impact on the flux. Thus, this coefficient differs from the concept of 
rate-limiting enzyme, which is commonly defined as the enzyme which catalyzes the slowest step in the pathway 
and corresponds to a qualitative evaluation of the enzyme impact on the pathway  flux15–17.

As we can see, at a pseudo steady-state flux to Lac, the enzyme that exerted the greatest control on the final 
flux is PGAM (0.65 ± 0.2), then ENO (0.18 ± 0.04) and PPDK (0.07 ± 0.1) which showed the least control on the 
flux (Table 8). The predicted values by the different models are within the same interval as those experimentally 
determined by pathway  reconstitution8. Similar results were obtained with all models at physiological metabolite 

Table 8.  Flux control coefficient determination. a For these models, CJ
E are determined manually.

Model PGAM ENO PPDK

Experimentally  determined8 0.72 0.11 0.13

Model 0 0.79 0.21 0.0025

Model 1 0.75 0.21 0.04

Model 2a 0.4 0.33 0.22

Model 3a 0.61 0.12 0.25

Model 4 0.70 0.2 0.1

Model 5 0.71 0.2 0.09

Model 6 0.75 0.21 0.002

Figure 8.  Effect of enzyme variation on the pathway flux. Pathway flux predicted with the model with the 
added adjustment term, when PGAM activity (A), ENO activity (B) or PPDK activity (C) is varied. Dotted 
curves: fluxes obtained at the quasi steady-state to Lac. Vf of PGAM, ENO and PPDK are in mU.
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concentrations (Table S5). From these findings, we can conclude that the main controlling enzymes of the second 
part of glycolysis in E. histolytica are PGAM and, to a lesser extent, ENO and PPDK exert low or no control over 
the pathway flux.

In addition, we varied the enzyme activity from 0 to 400 mU and observed the final flux during the first hour 
of simulation using the COPASI model with the adjustment term (Fig. 8). When PGAM was varied, the flux 
went from 0 to 90.93 nmol·min−1 (Fig. 8A) and when ENO was varied, the flux went to 26.26 nmol·min−1. By 
contrast, PPDK activity variation did not affect the final pathway flux very much, which went to 24.13 nmol·min−1 
at 400 mU of PPDK. These results were consistent with previous CJ

E calculations showing that PGAM and ENO 
are indeed the two main controlling enzymes of the pathway.

Discussion
Relevance of the white‑ grey‑ and black‑box approach for the modeling of metabolic path‑
ways. In this work, we model the second part of the glycolysis pathway of E. histolytica using three approaches: 
the white-, grey- and black-box approach, and we highlight their ability to predict the final flux. Many compara-
tive studies are made in other fields to evaluate the relevance of using either of the three methods, and point out 
that the method depends on the problems  encountered37–39. In the case of energy model building, Li and Wen 
showed that simplified grey-box models are better as practical building models, compared to white-box models 
that require numerous  parameters38. In another study, the black-box models outperformed the other two models 
for the modeling of thermal simulation in a particular  environment39.

Here, the first approach is based on the use of kinetic parameters and equations and is related to the widely 
used method known as kinetics-based (or dynamic) modeling for industrial applications such as the produc-
tion of molecules of interest, development of de novo synthesis pathways or understanding of microorganism 
 metabolism40–42. This method can provide accurate predictions; however, it requires numerous parameters and 
good knowledge of mechanistic rate laws; hence the need to develop new strategies of modeling when we do 
not have access to this  information43,44.

Despite the use of a more complex kinetic equation in the kinetic models, the results were not satisfactory; 
consequently, we used a simplified kinetic equation with an adjustment term in the grey-box approach. This is 
the first time this method is applied to enhance performance of a metabolic pathway kinetic model. In other 
studies found in the literature, the unknown kinetic constants are parameterized or the kinetic equations can 
be  approximated36,45–47. The present approach has some major advantages as it needs less parameters than the 
white-box approach, and it uses simplified kinetic equations that are biochemically plausible.

Finally, we used a novel black-box approach and built an ANN model with experimental data. As previously 
mentioned, ANN is generally used in biology to solve classification problems, for example, to classify lung 
 carcinomas48, but it has rarely been used to model a metabolic  pathway49–52. A recent study applied a similar 
technique to model the first part of glycolysis, and showed the success of this technique for predicting the  flux53. 
This last approach is characterized by its rapidity; however, it requires a large number of experimental data to 
be sufficiently effective.

Together, the approaches we describe here may be beneficial for modeling other metabolic pathways, depend-
ing on background information including “raw” experimental data, kinetic parameters and kinetic equations.

Factors impacting model performance. During this study, we relied on three main statistical metrics 
(RMSE, MAE and AIC) to evaluate model performance. The results revealed that different criteria are important 
and impact the value of these metrics and thus the model performance itself. Among these criteria, we identi-
fied the size of the dataset, but also the choice of the activation function (log or tanh) and the number of HU 
in our ANN models. Indeed, having a large number of high-quality datasets is essential to obtain a good ANN, 
and one challenge here would be to avoid over-fitting54,55. Other studies bring out the importance of the size of 
the input sequence during the analysis of the DNA sequence, to increase model  performance56. Also, they reveal 
the relevance of neural network architecture, proposing the design of multi-task neural networks with multiple 
output  variables57. These factors raise new questions about the use of ANN to model metabolic pathways, and 
can be subjected to further investigation concerning the number of inputs and outputs to include in our model, 
to make it more efficient.

As we said earlier, to predict accurate results COPASI models need extensive data, such as kinetic parameters 
and equations. Our results reveal the impact of the kinetic equation on the final flux prediction. The impact of 
the kinetic equation on the model predictions depends on the complexity of the model and on the flux control 
coefficient of the enzyme. When the enzyme has high CJ

E , variations of its rate equation or small variations in the 
kinetic constants or Vmax greatly impact the predicted pathway flux (e.g. PGAM in Fig. 8). In contrast, rate equa-
tion variations of a low controlling enzyme (such as PPDK) have less impact on the flux. It would be interesting 
to test in the models the influence of the lack of regulatory feedback on the enzyme that has the highest control, 
as was done in the Moreno-Sanchez et al.  study8 focusing on PGAM. As was described in that paper, the lack 
of those regulatory effects renders the predictive power of the model ineffective. Therefore, regulatory proper-
ties on high controlling enzymes can drastically modify the model predictions. Furthermore, the question of 
which kinetic equation to use in the pathway remains a real topic in research today. Kim et al. review all kinetic 
rate expressions used in the kinetic model, from mechanistic expressions (Michaelis–Menten and Hill rate laws 
equations) to approximate kinetic equations (lin-log kinetics, modular rate laws…)58. These approximate kinetic 
equations have the advantage of simplifying the modeling, but they cannot help with estimating the parameters. 
Moreover, particular attention is given to the kinetic parameters that need to be as close as possible to in vivo 
kinetics. This can be done during enzyme analysis by bringing the in vitro conditions closer to the in vivo 
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 conditions58. Therefore, the consideration of these different factors may impact the process of model design but 
also the upstream research that is done to study metabolic pathways in a particular organism.

Possible model optimizations. Although we have almost accurate prediction results, we can consider 
additional improvements of the different models. Actually, as this analysis is only made on the second part of gly-
colysis, it could be envisioned to merge it with the first part of this metabolic pathway to investigate the changes 
in terms of CJ

E and pathway flux control, and then compare the results to the previous ones, where the parts were 
modeled  separately8. It would be interesting to have a detailed kinetic model of glycolysis in E. histolytica com-
bined with other major metabolic pathways (glycogen metabolism, pentose phosphate pathway)7, to highlight 
the need to inhibit or not the main controlling enzymes identified here, as was done for cancer  cells59. Also, the 
addition of genetic-level regulations could help to better understand parasite metabolism, as is done for E. coli60. 
However, in order to do this, we still need experimental data on gene expression and regulation in the parasite 
under conditions of infection.

Also, another way to optimize the models could be by parameter estimation of the unknown kinetic param-
eters in the UUBB equation. Here, we tried to estimate these parameters, defined first arbitrarily, but the param-
eter estimation results in very little improvement of the flux prediction with the use of the new estimated values. 
Actually, parameterization of kinetic constants can provide a mathematical solution to the problem with unre-
alistic values likely to be physiologically unlikely. Hence, the importance of performing parameter estimation 
with constraints, within intervals that may be possible in enzymes and may have physiological meaning (e.g. 
Km or Ki values not surpassing the lower mM interval). This emphasizes again the need for more experimental 
data concerning the PPDK mechanism in in vivo conditions. Additionally, in kinetic models, parameters can 
be determined in two ways, as we have done, either one at a time or collectively; the only difference being that 
some parameters are often set to measured  values43,58. We can also consider the use of different parameter 
estimation techniques. As demonstrated in a previous work, kinetic parameters can be estimated with the flux 
balance analysis constraint-based modeling approach, by integrating multi-omics data in the model (fluxomic, 
proteomic and metabolomics data)61. Consequently, additional work needs to be done involving this part of the 
modeling, to improve our white-box model using a UUBB equation; it would also be interesting to integrate the 
data from the grey-box approach into the next parameter estimation procedure.

Biological insights. With the MCA method ( CJ
E ) and with all models, we identified PGAM as the main 

controlling enzymes of the second part of glycolysis in this parasite, with a slight contribution of ENO. These 
results are supported by other studies conducted on this particular  pathway7,8. Furthermore, it has been found 
by elasticity analysis, another experimental approach of MCA, that the group of enzymes from PPi-dependent 
phosphofructokinase to PPDK controls about 0.2–0.28 of the pathway flux of amoebal  glycolysis62. Within this 
pathway section, PGAM is the enzyme with the lowest activity in the  cell7, which may contribute to the better 
control observed. Additionally, novel enzyme inhibitors were recently identified and tested in vitro63,64. There-
fore, these models may be an interesting subject of future research in which the inhibitor effect on the flux can 
be assessed.

Conclusion
Be it for the purpose of designing new valuable enzymatic pathways for industrial-scale production of molecules 
of interest or designing new efficient drugs, metabolic pathway modeling remains a great challenge  today65–67. 
Different techniques of modeling exist, including kinetic modeling, based on the use of kinetic parameters and 
equations that are not necessarily known or experimentally measured. Moreover, several machine learning-based 
methods are emerging for analysis of metabolic pathway  modeling68,69.

In this study, our objective was to compare three different modeling approaches to model metabolic pathways 
and identify the main controlling enzymes of the pathway. To this end, we used an application example (lower 
part of glycolysis of a parasite) and obtained:

• The white-box approach, with the use of all known kinetic information about PGAM, ENO and PPDK. This 
method gave better results after the modification of the PPDK kinetic equation from ter-reactant reversible 
equation to UUBB equation (Training:  R2 = 0.95, RMSE = 2.06 nmol·min−1 and MAE = 1.7 nmol·min−1 and 
AIC = 336.05 and Test:  R2 = 0.97, RMSE = 2.19 nmol·min−1 and MAE = 2 nmol·min−1).

• The grey-box approach, with the kinetic equation with an added adjustment term for PPDK; this model 
was the best of our models (Training:  R2 = 0.98, RMSE = 1.71 nmol·min−1, MAE = 1.47 nmol·min−1 and 
AIC = 244.71 and Test:  R2 = 1, RMSE = 0.23 nmol·min−1 and MAE = 0.13 nmol·min−1).

• The black-box method, using the ANN method to predict the pathway flux. This model presents a low capac-
ity of generalization since its low AIC (124.21) makes it one of the least preferred models here. Nonetheless, 
the speed and the low cost of this method make it interesting to develop. The model had a good predictive 
ability with Training:  cvR2 = 1, cvRMSE = 0.52 nmol·min−1, cvMAE = 0.37 nmol·min−1 and AIC = 124.21 and 
Test:  R2 = 0.98, RMSE = 1.61 nmol·min−1 and MAE = 1.37 nmol·min−1.

Also, all these models identified the same enzymes as the main controlling enzymes of the pathway: PGAM and 
ENO, PPDK not having much influence on the flux in E. histolytica.

Despite the need for further improvement, these models showed the relevance of the different methods for 
their future application in the field of metabolic pathway modeling and drug design, for in silico design starting 
from various backgrounds.
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Data availability
The datasets used in this study are fully included and described in the Additional file. The ANN and COPASI 
models built during the present study are available in the Github repository, https ://githu b.com/ophel ielt/Lo-
Thong _et_al._White -box_grey-box_and_black -box_pathw ay_model ing.git. All data generated or analyzed dur-
ing this study are included in this published article (and its Supplementary Information files).
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