
HAL Id: inserm-02942239
https://inserm.hal.science/inserm-02942239v1

Submitted on 17 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detrended fluctuation analysis of gait dynamics when
entraining to music and metronomes at different tempi

in persons with multiple sclerosis
Lousin Moumdjian, Pieter-Jan Maes, Simone Dalla Bella, Leslie M Decker,

Bart Moens, Peter Feys, Marc Leman

To cite this version:
Lousin Moumdjian, Pieter-Jan Maes, Simone Dalla Bella, Leslie M Decker, Bart Moens, et al.. De-
trended fluctuation analysis of gait dynamics when entraining to music and metronomes at different
tempi in persons with multiple sclerosis. Scientific Reports, 2020, 10 (1), pp.12934. �10.1038/s41598-
020-69667-8�. �inserm-02942239�

https://inserm.hal.science/inserm-02942239v1
https://hal.archives-ouvertes.fr


1

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:12934  | https://doi.org/10.1038/s41598-020-69667-8

www.nature.com/scientificreports

Detrended fluctuation analysis 
of gait dynamics when entraining 
to music and metronomes 
at different tempi in persons 
with multiple sclerosis
Lousin Moumdjian 1,2*, Pieter‑Jan Maes1, Simone Dalla Bella3,4,6,7, Leslie M. Decker 5, 
Bart Moens 1, Peter Feys2 & Marc Leman1

In persons with multiple sclerosis (PwMS), synchronizing walking to auditory stimuli such as to music 
and metronomes have been shown to be feasible, and positive clinical effects have been reported 
on step frequency and perception of fatigue. Yet, the dynamic interaction during the process of 
synchronization, such as the coupling of the steps to the beat intervals in music and metronomes, 
and at different tempi remain unknown. Understanding these interactions are clinically relevant, as 
it reflects the pattern of step intervals over time, known as gait dynamics. 28 PwMS and 29 healthy 
controls were instructed to walk to music and metronomes at 6 tempi (0–10% in increments of 2%). 
Detrended fluctuation analysis was applied to calculate the fractal statistical properties of the gait 
time‑series to quantify gait dynamics by the outcome measure alpha. The results showed no group 
differences, but significantly higher alpha when walking to music compared to metronomes, and when 
walking to both stimuli at tempi + 8, + 10% compared to lower tempi. These observations suggest that 
the precision and adaptation gain differ during the coupling of the steps to beats in music compared to 
metronomes (continuous compared to discrete auditory structures) and at different tempi (different 
inter‑beat‑intervals).

The study of temporal correlations in step or stride intervals over time-also known as gait  dynamics1- pro-
vides useful insights on the neural control of locomotion in young  adults2,3, healthy older  adults4, and patients 
with movement disorders such as Parkinson’s  disease5, Huntington’s  disease5,6 or multiple sclerosis (MS)7. Gait 
gives rise to non-stationary inter-step/stride-interval signals, with temporal fluctuations which can be analyzed 
via non-linear  methods1. An example of these methods, capable of capturing the complexity of time-evolving 
behavior in the domain of gait analysis, is detrended fluctuation analysis (DFA). This analysis method can be 
applied to a time series obtained from gait measurements such as inter-step/stride-intervals2,3,8. DFA is robust 
to non-stationaries in the data, often observed in gait interval time series. This method scales the long-term 
auto-correlations of non-stationary signals and quantifies the fluctuations in the time series using its self-similar 
 property8,9 with a value of fractal scaling index ‘alpha’8,9. Alpha provides an estimation of statistical ‘persistence’ 
or ‘anti-persistence’ in a time  series1. A healthy value of alpha in gait is between 0.5 and 1.0 (1 being highly 
persistent), and indicates the presence of statistical persistence within the inter-step-intervals1,10. This means 
that the inter-step-intervals between consecutive steps are non-random and constant at a long range, with small 
deviations still being present across multiple consecutive strides. On the other hand, a value of alpha < 0.5 signifies 
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the presence of statistical anti-persistence in inter-step-intervals, namely that the inter-step-intervals between 
consecutive steps are varied and random at a long  range1,10. In other words, small deviations are immediately 
corrected on subsequent strides.

Notably, persistent gait dynamics has been associated with a healthy gait, while the loss of persistency in 
gait dynamics has been associated with aging and neurological disorders such as in Parkinson’s  Disease1. Loss 
of statistical persistence in these subgroups has also been related to increased risk of  falling1,4. However, while 
these findings may reflect the neural control mechanisms of locomotion, one needs to consider additional 
mechanisms when interpreting the physiological processes underlying these properties, when gait is modulated 
by specific task related factors or  contexts11–13. An important effect of context on the statistical persistence of gait 
dynamics is observed when walking is entrained to an auditory stimulus. Entrainment is a process that governs 
the alignment and coupling of the auditory and motor domains such that the period of the steps align with the 
period or phase of the auditory beat, to reach a state of  synchronization14–16. This alignment can be understood 
in terms of coupled oscillators that achieve synchronization by locking into each other’s period and/or  phase15,17, 
or alternatively, as the effect of minimizing prediction  errors14,15,18. We therefore hypothesized, that the study 
of the structure of fluctuations in gait series specifically during a process when the gait is coupled with auditory 
stimuli would provide a reflection of the underlying predictive processes and timing control engaged during 
auditory-motor coupling and entrainment.

The structure of fluctuations in the gait time series when walking in time to rhythmic auditory cues has 
been studied in healthy individuals and patient with Parkinson’s Disease. These studies reported a change in 
gait dynamics from persistent to anti-persistent behavior when gait was paced by a fixed-tempo metronome as 
compared to walking without auditory  stimuli19–25. We assume that this anti-persistent behavior is a reflection of 
the interaction between the auditory and motor systems during entrainment. Gait dynamics can be modulated 
by the temporal structure of the stimulus. In healthy controls, the fractal temporal structure of gait dynamics 
tends toward the statistical properties of the auditory  signals23. Similar effects were also found in patients with 
Parkinson’s Disease. Stimuli embedding biological variability (i.e., a metronome with variable inter-beat interval 
following a fractal structure) resulted in a more persistent gait dynamics in Parkinson’s Disease compared to the 
isochronous and random-variable (white noise)  metronomes26. Thus, given that music generally embeds some 
degree of long-range correlated temporal  variability27,28 as compared to metronomes, a more persistent gait 
dynamics should be observed when coupling to music.

In terms of clinical application, the use of music is advantageous to implement in a rehabilitation setting 
compared to metronomes, as seen in studies with persons with multiple sclerosis (PwMS)29–31, a disease where 
walking impairments are  prevalent32,33. Additionally, in PwMS, changes in spatiotemporal gait parameters were 
shown to be dependent on walking impairment and speed  instructions34. In previous studies, we have shown 
that PwMS and healthy controls (HC) can sustain auditory-motor  coupling30 and synchronize their walking to 
music and metronomes across different  tempi29. In addition, lower fatigue perception when walking to music 
compared to metronomes in PwMS compared to HC were reported in these studies. However, little is known 
about the gait dynamics as a result of the auditory-motor coupling and entrainment when walking to music 
and metronomes at different tempi. The present study aims to fill this gap in PwMS and HC. That is by apply-
ing DFA to investigate the pattern of gait dynamics in PwMS compared to HC, when subjecting the walking to 
the task-related context of coupling to music and metronomes at different tempi, and in turn understanding 
the processes underlying auditory-motor entrainment. Notably, gait dynamics measured by DFA was shown 
not to differ between mildly and moderately impaired PwMS and healthy  controls7 during walking. Given this 
evidence, as well as the results from our previous studies in regards to PwMS’s ability to synchronize to music 
and  metronomes29, we hypothesize that gait dynamics will not be different between PwMS and HC. We thus 
assume that both groups will use the same underlying processes to engage in auditory-motor coupling. Rather, 
we assume that the differences in coupling would be found when entraining to different stimuli (e.g. music and 
metronomes) and at different tempi.

We hypothesize that walking with music may result in a more persistent gait dynamics compared to walking 
in time to isochronous metronomes. The type of auditory stimulus (e.g. continuous vs discrete) may influence 
gait dynamics due to the underlying temporal mechanisms underpinning auditory-motor coupling. In a continu-
ous stimulus such as a sinusoidal pitch change or the complex temporal structure of music, the perceived beat 
is a property of the stimulus’ energetic  structure35. In contrast, a discrete stimulus includes singular events (e.g., 
sounds of a metronome) indicating discrete moments in time. Thus, entraining to the continuous structures in 
music compared to the discrete structures in a metronome is assumed to affect gait dynamics differently. This 
difference is supported by the theoretical frameworks of emergent and event-based  timing36 based on discrete 
and continuous  movements37, demands on  cognition38 and by models of the neuronal mechanisms in tracking 
acoustic events in time, being the cerebellum and the basal-ganglia39,40. In addition, we also hypothesize that 
walking to different tempi would differently influence the gait dynamics. In other words, we assume that the 
gait dynamics would reflect the process of coupling the footfalls and beats given different inter-beat-intervals 
presented in the experimental conditions (i.e. presented by the different tempi). This difference is supported by 
evidence which report that the processing of inter-beat intervals of different durations engage different temporal 
processing  mechanisms18,36,39,40.

Results
28 PwMS (mean age ± SD: 53.45 ± 10.61) and 29 healthy controls (HC) (mean age ± SD: 51.77 ± 11.40) completed 
the study. PwMS were significantly more impaired than HC on the following motor function tests: the time 25 
foot walk (PwMS 7.81 ± 2.11; HC 5.58 ± 0.80 s) and time up and go test (PwMS, 10.94 ± 4.36, HC 6.70 ± 1.17 s).
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Analysis of co‑variance. The analysis of co-variance showed no significances between the data-points col-
lected (i.e. the inter-step-intervals) and alpha (F(1,0.002) = 0.09, p = 0.7604, error 0.02). The average and standard 
deviation of data points collected per participant when walking to music and metronomes a the different tempi 
are reported in Table 1.

Mixed model analysis of variances (ANOVAs). The experimental results of the below ANOVAs in 
terms of the p and the partial eta squared values are reported in Table 2.

Coefficient of variation (CoV) of inter‑step‑intervals. Significant main effects were found for stim-
uli (F(1,577.8) = 11.5, p = 0.0007) and baseline speed (F(1,52.3) = 10.8, p = 0.0018). The main effect of stimuli 
indicated a significantly higher CoV when walking to music compared to walking to metronomes (t = − 3.39, 
p = 0.0007). A significant interaction effect was found for stimuli*assistive device (F(1,577.8) = 7.8, p = 0.0054) 
as seen in Fig. 1A. The post-hoc test indicated significantly higher CoV in PwMS using assistive devices when 
walking to music compared to walking to metronomes (t = − 3.29, p = 0.0058). A significant negative correla-
tion was found between baseline speed and CoV, indicating the lower the baseline speed, the higher the CoV 
(t = − 0.43, p < 0.0001) as seen in Fig. 1B.

Fractal dynamics in inter‑step‑intervals (DFA scaling exponent (α)). Significant main effects were 
found for stimuli (F(1,563.8) = 23.1, p < 0.0001) indicating a significantly higher α value when walking to music 
compared to metronomes, and tempi (F(5,557.2) = 16.7, p < 0.0001), but no significant effect of group was found as 
shown in Fig. 2A. Significant interactions were found for tempi*baseline speed (F(5,559.2) = 5.4, p < 0.0001)) and 
stimuli*baseline speed (F(1,571.8) = 4.5, p = 0.0350). The post-hoc tests indicated a significantly higher α value: 
when walking (i) at the tempo + 8% compared to the tempi + 0, + 2, and + 4% (t = − 4.84, p < 0.0001; t = − 4.75, 
p < 0.0001; t =  − 4.37, p < 0.0001 respectively), and ii) at the tempo + 10% compared to the tempi + 0, + 2, + 4% 
and + 6% (t =  − 7.05, p < 0.0001; t =  − 6.95, p < 0.0001; t =  − 6.58, p < 0.0001; t =  − 4.55, p = 0.0015 respectively). 

Table 1.  Average (AVG) and standard deviation (SD) values of the number of data points (i.e. inter-step-
intervals), resultant vector length, average baseline speed of participants, and the average speed of the study 
participants when walking to music and metronomes at different tempi. Study participants comprised of 
healthy controls (HC) n = 29, persons with multiple sclerosis (PwMS) n = 28.

Participants

Walking to music at different tempi Walking to metronomes at different tempi

0 2 4 6 8 10 0 2 4 6 8 10

Baseline 
speed 
(m/s)

HC 1.21 ± 0.13

PwMS 0.96 ± 0.23

Average 
speed 
(m/s)

HC 1.16 ± 0.14 1.18 ± 0.15 1.195 ± 0.17 1.19 ± 0.18 1.21 ± 0.15 1.23 ± 0.18 1.18 ± 0.13 1.20 ± 0.15 1.23 ± 0.19 1.26 ± 0.15 1.25 ± 0.18 1.26 ± 0.19

PwMS 0.91 ± 0.26 0.96 ± 0.27 0.95 ± 0.27 0.96 ± 0.27 0.96 ± 0.27 0.96 ± 0.29 0.92 ± 0.23 0.94 ± 0.25 0.95 ± 0.25 0.97 ± 0.26 1.25 ± 0.18 0.96 ± 0.26

Resultant 
vector 
length 
(0–1)

HC 0.90 ± 0.13 0.87 ± 0.18 0.87 ± 0.16 0.83 ± 0.26 0.80 ± 0.26 0.79 ± 0.23 0.94 ± 0.03 0.94 ± 0.02 0.94 ± 0.03 0.93 ± 0.05 0.90 ± 0.12 0.88 ± 0.17

PwMS 0.74 ± 0.31 0.77 ± 0.26 0.73 ± 0.31 0.72 ± 0.27 0.70 ± 0.32 0.64 ± 0.34 0.83 ± 0.21 0.79 ± 0.25 0.78 ± 0.27 0.77 ± 0.27 0.77 ± 0.26 0.72 ± 0.31

Inter-step-
intervals 
(number 
of data-
points)

HC 362 ± 22.42 363 ± 41.85 372 ± 32.40 371 ± 39.83 380 ± 45.80 389 ± 41.19 362 ± 20.79 366 ± 21.77 370 ± 35.53 384 ± 25.91 391 ± 21.08 396 ± 21.70

PwMS 324 ± 74.99 324 ± 67.29 329 ± 66.82 339 ± 69.87 322 ± 78.15 343 ± 75.00 326 ± 55.01 327 ± 64.78 335 ± 66.13 340 ± 62.77 348 ± 60.8 354 ± 62.30

Table 2.  Experimental results of the main and interaction effects of the statistical mixed model analysis of 
variance tests and partial eta squared values when walking to music and metronome at different tempi on 
co-efficient of variation, alpha and resultant vector length.

Outcome measure Statistical results Group Stimuli Tempi Assistive device Baseline speed Interactions

Co-efficient of variation (%)
P value ns 0.0007 ns ns 0.0018 Stimuli*assistive device (p = 0.0054)

Partial eta squared – 0.00907 – – – 0.00575

Alpha (0–1)
P value ns  < .0001  < 0.0001 ns ns Stimuli*baseline speed(p = 0.0350) ; tempi*baseline 

speed (p < .0001)

Partial eta squared – 0.03377 0.11035 – – 0.00684; 0.03770

Resultant vector length (0–1)
P value ns  < .0001  < 0.0001 ns 0.0434 ns

Partial eta squared – 0.02266 0.02217 – – /

Percentage change in speed (%)
P value ns  < .0001  < 0.0001 ns ns Group*stimuli (p < .0001); stimuli*baseline speed 

(p < .0001)

Partial eta squared – 0.014 0.0036 / / 0.0467; 0.0237
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The significant interaction between tempi and baseline speed is shown in Fig. 2B; at higher tempi, persons with 
higher baseline speed are reported to have higher alpha. The significant interaction between stimuli and baseline 
speed is shown in Fig. 2C; persons with higher speed are reported to have a higher alpha when walking to music 
compared to metronomes.

DFA scaling exponent (α): original vs. surrogate time series. The following effects were found:

 (i) A significant effect for time series  X2(1) = 24.25, p < 0.0001, indicating significantly higher alpha values 
for the original time series.

 (ii) A significant effect for stimuli in the original time series  X2(1) = 14.41, p = 0.0001, but no significance for 
stimuli in the surrogate time series  X2(1) = 3.01, p = 0.00827.

 (iii) A significant effect for music in the original time series compared to the surrogate time series 
 X2(1) = 29.41, p < 0.0001, but no significance for metronomes between the original and surrogate time 
series  X2(1) = 2.38, p = 0.1228.

 (iv) No significances for the groups between the original and surrogate time series  X2(1) = 0.40, p = 0.5377.
 (v) A significant effect for tempi in the original time series  X2(5) = 60.88, p < 0.0001, but no significance for 

tempi in the surrogate time series  X2(5) = 1.64, p = 0.8969.
 (vi) Significant effects for tempi 8 and 10% between the original and surrogate time series  X2(1) = 25.23, 

p < 0.0001;  X2(1) = 50.71, p < 0.0001 respectively, but no significance for tempi 0, 2, 4 and 6 between 
the original and surrogate time series  X2(1) = 0.85, p < 0.3562;  X2(1) = 0.75, p < 0.3879;  X2(1) = 0.0005, 
p < 0.9852;  X2(1) = 3.54, p < 0.0599 respectively.

Figure 3 shows graphical representations of these results. Supplementary Fig. 2 additionally provides visu-
alization of the above data in three different perspectives.

Synchronization consistency. Significant main effects were found for stimuli (F(1,579.5) = 27.2, 
p < 0.0001), tempi (F(5,579.1) = 5.8, p < 0.0001), as previously  reported29, and baseline speed (F(1,51.7) = 4.3, 
p = 0.0434), but no significant effect of group was found. Post-hoc comparisons showed more consistent syn-
chronization: (i) at tempi 0 and + 2% compared to + 10% (t = 4.31, p = 0.0003; t = 4.08, p = 0.0007, respectively), 
and (ii) with a metronome rather than with music (t = 5.22, p < 0.0001) as seen in Table 1.

Percentage change in speed. Significant main effects were found for stimuli (F(1,591.1) = 18.9, p < 0.0001) 
and tempi (F(5,591.1) = 13.9, p < 0.0001), as previously  reported29, but no significant effect of group was found. 
Significant interaction effects were found for group*stimuli (F(1,591.0) = 16.3, p < 0.0001) and stimuli*baseline 
speed (F(1,591.1) = 17.1, p < 0.0001). Post-hoc comparisons showed: (i) an increase of speed when walking 

Figure 1.  (A) Coefficient of variation of inter-step-intervals when waking to a metronomes or music at all 
experimental tempi in persons with multiple sclerosis (PwMS), divided by patients walking with assistive 
devices (n = 8) and patients walking without assistive devices (n = 20). Mean and standard errors of mean 
are shown. (B) Co-efficient of variation of inter-step-intervals plotted against baseline speed (m/s) at all 
experimental tempi in all participants (healthy controls and PwMS) when walking to both music and 
metronomes.



5

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:12934  | https://doi.org/10.1038/s41598-020-69667-8

www.nature.com/scientificreports/

to metronomes compared to music (t = 4.35, p < 0.0001), (ii) a lower increase in speed when walking to 0% 
compared to + 4, + 6, + 8 and + 10% (t = − 4.15, p = 0.0005; t = − 5.87, p < 0.0001; t = − 6.72, p < 0.0001; t = − 6.57, 
p < 0.0001, respectively) and 2% compared to + 8 and + 10% (t = − 4.03, p = 0.0009; t = − 3.90, p = 0.0015) and (iii) 
an increase of speed in healthy controls when walking to metronomes compared to walking to music (t = 5.97, 
p < 0.0001), as seen in Fig. 4.

Table 1 reports on the average and standard deviation values of the number of data points (i.e. inter-step-
intervals), resultant vector length, average baseline speed of participants, and the average speed of participants 
when walking to music and metronomes at the six different tempi.

Correlation analysis. No correlations were found between the resultant vector length and the DFA scaling 
exponent (α) when walking to music or metronomes at all tempi in both HC and PwMS.

Discussion
In this study, we aimed to understand the underlying process of entraining steps to beats in music and met-
ronomes and at different tempi in PwMS compared to HC. To reach this end, we applied DFA on inter-step-
intervals to examine the gait dynamics when PwMS and HC were asked to synchronize their steps to metronomes 
and music at their preferred walking cadence up to + 10%, in increments of 2%. The analysis of the original and 
surrogate time series confirmed that the reported statistical persistency measures were not due to chance, but 
were a reflection of participants’ gait dynamics. In addition, the variability of step duration (coefficient of vari-
ation; CoV), synchronization consistency and walking speed were examined.

Studies investigating inter-stride-interval fluctuations reported the presence of anti-persistent gait dynam-
ics as a result of the task-related context. These studies explained that the anti-persistent gait dynamics were 
observed as a result of deviations in the gait time series caused by participants applying fast corrections to their 
gait because of the experimental task-related  context12,13. Similarly, we can interpret our results on gait dynamics 
in function of the imposed experimental task-related context. Our experimental design provided two manipula-
tions, of the type and of the tempi of the auditory stimulus. The task-related contexts therefore were: coupling 

Figure 2.  (A) The DFA exponent (α) of inter-step-intervals when walking to a metronome or music at different 
tempi in healthy controls and persons with multiple sclerosis (PwMS). Mean and standard errors of mean are 
shown. (B) The DFA exponent (α) of inter-step-intervals plotted against baseline speed (m/s) at the different 
experimental tempi in all participants when walking to both music and metronomes. Lines of fit are shown, 
the figures show a linear regression with confidence intervals for the variables on the x and y axis. (C) The 
DFA exponent (α) of inter-step-intervals plotted against baseline speed (m/s) when walking to music and 
metronomes for all participants.
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to music and metronomes (continuous compared to discrete auditory structures) and coupling to six different 
tempi (different inter-beat-intervals).

In this study, we found no differences in gait dynamics between PwMS and HC when walking to the auditory 
stimuli and tempi. To our knowledge, only one study investigated gait dynamics during walking using the DFA 
method in PwMS with mild and moderate impairment and  HC7. Albeit having included a small sample (10 
persons per group), their results revealed no differences in gait dynamics between PwMS and  HC7 during walk-
ing. Although we cannot directly compare the results of our respective studies due to the different task-related 
constraint of our walking tasks, their results assist in the interpretation of our results. In other words, when gait 
dynamics between PwMS and HC are not different at baseline, one can assume that the gait dynamics observed 
in this study in both groups reflects the auditory-motor coupling process. Our first hypothesis therefore can be 
endorsed, that both groups engage in auditory-motor coupling using the same underlying processes (explained 
further in the following paragraphs).

We have however found two patterns of gait dynamics in all participants depending on the auditory stimuli 
and tempi used during the coupling. Given these differences, our second and third hypotheses can be supported; 
the auditory-motor coupling processes differ when entraining to music and metronomes and to the different 
tempi.

First, with metronomes, we found significantly lower alpha values compared to when walking to music, an 
indication of a trend towards an anti-persistent gait dynamics. This pattern of gait dynamics indicated that the 
inter-step-intervals between consecutive steps occurred as a non-structured pattern over time. Second, with 
music, we found significantly higher alpha values compared to when walking to metronomes, indicating a 
transition to a more persistent gait dynamics. This gait dynamics indicated that the inter-step-intervals between 
consecutive steps occurred with some structured pattern over time. In addition, when walking to higher tempi 
to both stimuli, we found a transition to a higher persistent gait dynamics indicated by the significantly higher 
value of alpha at the + 8% and + 10% as compared to the lower percentages. This gait dynamics indicated that the 
inter-step-intervals between consecutive steps occurred with more structure over time.

Our results of the trend towards anti-persistent gait dynamics when walking to metronomes are consistent 
with several studies which reported the same finding when gait was paced by  metronomes19,20,22–25. Two explana-
tions could be given to our results. The first explanation concerns the presence of variability in inter-beat-intervals 
in music versus the absence of variability in isochronous metronomes. Earlier evidence presented in several 

Figure 3.  The DFA exponent (α) of the original and surrogate inter-step-intervals time series when walking 
to a metronome or music at different tempi in healthy controls and persons with multiple sclerosis. Mean and 
standard errors of mean are shown.
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studies on HC and patients with Parkinson’s Disease reported that gait dynamics evolve towards a persistent state 
once participants get paced with cues that have a random  variability23, biological  variability26 and interactive 
biological  variability41,42 compared to isochronous metronomes. The second explanation concerns the discrete 
and continuous energies in the auditory signals. The period of a metronome tick consists of an energy burst 
followed by a time interval without energy, while the period in music consists of a continuous acoustic energy 
 flow35. This energy flow may facilitate the persistence of the gait dynamics through  entrainment43. The timing 
mechanisms underlying the temporal processing of the discrete compared to continuous structures in the audi-
tory stream can be referred to as event-based versus emergent timing  processes44 respectively.

We propose that alpha, as an outcome measure, can explain differences in control mechanisms during the 
auditory-motor coupling. Below, we provide an explanation for this proposal. During the coupling, a dynamical 
process (termed entrainment) is engaged through which steps and beats become aligned. The alignment is made 
possible through prediction error minimization mechanisms. Prediction error here can be seen as the timing 
differences between steps and beats. Thus, prediction error minimization describes the dynamic process in which 
the timing differences between steps and the beats become minimized, to reach an alignment. We propose that 
this dynamic process of prediction error minimization during the coupling is reflected by the gait  dynamics14,15, 
measured by alpha. Our results imply that both PwMS and HC engage in this dynamic process of prediction 
error minimization during the coupling as no group differences were observed in our results.

However, a difference in gait dynamics (alpha) was found between walking to music compared to metro-
nomes. With metronomes, we believe that discrete metronome ticks led to clear-cut attention of errors in step-
to-beat  alignment35 that got instantly corrected in order for alignment to  occur35. This instant response was 
reflected in the gait dynamics, and it corresponded to an anti-persistent structure of inter-step-intervals. As the 
corrections occurred instantly, the intervals had a non-structured (more random) characteristic. This manner 
of step-to-beat alignment can also explain the significantly higher synchronization constancy when coupling to 
metronomes, higher walking speed with a lower variability of the step duration.

With music, however, we believe that errors in step-to-beat alignment were less noticeable due to the con-
tinues inter-beat-interval structure, making the response to errors less immediate, but more structured over 
 time35. This structure was again reflected in the gait dynamics and it corresponded to a persistent structure of 
inter-step-intervals. The explanations above are supported by existing evidence of different control mechanisms 
of  timing40, event based and emergent based control of  timing44 given the discrete and continuous stimulus 
 structures35,37,45. These explanations could also explain our previous behavioral findings showing that walking 
to music was perceived less cognitively fatiguing than walking to a metronome, even when the coupling was 
sustained longer with  music30. This manner of step-to-beat alignment can also explain the significant lower 
synchronization constancy reported when coupling to music as compared to metronomes, the lower gait speed 
and higher variability of step durations. It is noteworthy, that the reported level of synchronization consistency 
when walking to music was adequately high. In addition, the variability of step durations were significantly 
higher for those participants using an assistive device when walking to music. This finding could indicate that 

Figure 4.  Percentage change in walking speed relative to baseline walking speed when walking to a metronome 
or music at different tempi in healthy controls and persons with multiple sclerosis. Mean and standard errors of 
mean are shown.
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PwMS had a less rigid gait, relying less on the assistive device for movement and more on their own walking 
when entraining to music compared to metronomes.

Another finding from this study concerns gait dynamics (alpha) at different tempi. One explanation for the 
differences of alpha observed between the high and low tempi is walking speed, as studies have shown an associa-
tion between gait speed, gait variability and gait  dynamics46. Our results also showed that at higher tempi, those 
participants with higher baseline speeds had higher alpha values. In addition, our results show that the percent-
age change of speed from baseline was significantly different for the conditions 0% compared to + 4, + 6, + 8 
and + 10%, and for condition 2 compared to + 6, + 8 and + 10%. However, it is important to note, that a different 
pattern was observed by alpha (significantly higher persistency observed at 8 and 10% compared to 0–6% tempi). 
Furthermore, if the differences of alpha observed were due to walking speed alone, one would expect finding 
differences in alpha values between those participants with higher baseline speeds and lower baseline speeds 
across all tempi, while this was not the case. We therefore suggest that walking speed, although an important 
factor, does not provide a full explanation of our results. Below, we provide a complementary proposal based on 
the process of prediction error minimization engaged during the coupling.

At higher tempi, we observed a transition to a higher persistent gait dynamics in all participants. At higher 
tempi, perception of beats becomes more variable. This variance could thereby have an impact on the alignment 
of steps-to-beats by affecting the individual adaptation processes that persons engage in to achieve step-to-beat 
alignment. Here, the individual adaptation processes relates to the concepts of precision and adaptation gain in 
predictive  coding47. The adaptation gain determines the degree in which the step-to-beat alignment error drives 
the adaptation towards alignment. The adaptation gain can be defined in terms of a balance between the preci-
sion of predicting and performing the step-to-beat alignment versus the precision of perceiving the beat. The 
adaptation gain could be low if the step-to-beat alignment would have a high precision, while beat perception 
would have a low precision. In this case, there will be less immediate adaptation to the beat because those noisy 
perceptions of the beat will be ignored. Consequently, in this case, we propose that the gait dynamics would 
display a transition towards a more persistent structure, reflecting the fractal structure closer to a natural gait 
 dynamics1, not subjected to a task-related context. On the other hand, the adaptation gain could be high if both 
the step-to-beat alignment and beat perception would have a low precision. In this case the adaptation to the beat 
would be more immediate, which would display a transition towards a lower persistent gait dynamics. We there-
fore propose that at higher tempi, HC and PwMS responded with low adaptation gain due to high precision of 
predicting and performing the step-to-beat alignment, reflected by a transition towards persistent gait dynamics.

With our results, we note that the fractal properties of the inter-step-intervals provided valuable information 
in regards to timing mechanisms employed during auditory-motor coupling. Specifically, it allowed to interpret 
the interactive dynamics of a coupled system, whereas gait dynamics had a trend towards anti-persistence when 
entraining steps to beats metronomes, a trend towards persistence when entraining steps to beats in music, 
and a trend towards higher persistence when entraining steps to beats of both stimuli at the + 8% and + 10% of 
preferred walking cadence tempo.

For clinical practice, we recommend to couple steps to beats in music, as the predictive mechanisms engaged 
when coupling to music resulted in a more persistent and a less rigid gait dynamics when compared to walking 
to metronomes. In addition, the results of this study contributes to fundamental explanations of the process of 
coupling walking to music and metronomes at different tempi in viewpoint of predictive coding and timing 
control. These findings can be used to design, fine-tune, specify and individualize the content of auditory-motor 
coupling interventions.

Some methodological considerations apply for our experimental design, such as our square (4.5 by 6 m) 
walking track. We acknowledge that this path involved an environmental constraint, which could have had an 
effect on  alpha48. Yet, we believe that this did not have an effect on the comparison of our experimental results 
because the walking path was standardized for all experimental conditions (i.e. the effect of the environmental 
constraint was consistent in all experimental conditions). Nevertheless, for future work, we advise over-ground 
walking conditions with avoidance of 90 degree or 180 sharp  turns48. A second methodological consideration in 
this exploratory study is the length of the time series. Obtaining longer time series by increasing the trial dura-
tions are advised in future studies. We also advise future studies investigating walking at different tempi to take 
into account the possible difference in the length of the time series as a function of walking to different tempi 
(especially when persons are instructed to synchronize). We acknowledge this is a methodological consideration 
in this current study, and applied transparency by reporting the averages and standard deviations of the length 
of the time series in our experimental conditions in Table 1. A third methodological consideration is the lack of 
reporting on the expanded disability status scale due to an incomplete dataset because of the recruitment process.

Methods
Participants. 30 Persons with Multiple Sclerosis (PwMS) and 30 healthy controls (HC) were included, of 
which 28 PwMS (mean age ± SD: 53.45 ± 10.61) and 29 HC (mean age ± SD: 51.77 ± 11.40) completed the study. 
Once recruited, the informed consents were signed and participants were tested for the inclusion criteria, which 
were: (a) a diagnosis of MS (> 1 year), (b) no exacerbation in the last month, (c) an average comfortable walk-
ing speed between 0.4 and 1.4 m per second (m/s), and (d) being older than 18 years of age. Participants were 
excluded if they were pregnant, had either hearing or cognitive impairment hindering the understanding of 
instructions. This study is a secondary analysis on a previously reported observational non-blinded case–control 
study, published in Neuro-Rehabilitation and Neural  Repair29. The study was approved by the Medical Ethi-
cal Committees of universities Hasselt and Ghent (Belgium) and multiple sclerosis centers (The national MS 
center,Rehabilitation and MS center Overpelt) on November 23rd, 2016 (B670201629797). The study was regis-
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tered in the clinical trials.gov registry (NCT03281330). All methods were carried out in accordance with relevant 
guidelines and regulations.

Materials and experimental procedure. Participants underwent testing in two sessions: in a clinical 
descriptive testing session, and an experimental testing session, held one week apart. During the descriptive test-
ing session, descriptive demographic and the following clinical motor tests were collected: Time 25 Foot Walk 
 test49 for mobility and Time Up and Go  test50 for balance. During the experimental session, first, participants 
were asked to walk in their comfort tempo in a square of 4.5 by 6 m three times for one minute, to determine 
the average preferred walking cadence of the day. This was followed by a familiarization task, using the song 
‘Sanctum’ by the artist ‘Shades of the Abyss’ to instruct participants to synchronize by stepping to the beat. This 
song was chosen because of its clear beats. A similar familiarization was conducted with metronomes as well. 
Participants then walked three minutes per six tempi to the beat of music and to isochronous metronomes 
blocks. The tempi were: 0%, + 2%, + 4%, + 6%, + 8%, + 10% of their preferred walking cadence. The tempi and 
the stimuli blocks were randomized. The D-jogger  technology51 was used to provide the auditory stimuli at the 
required conditions. This technology consisted of a software, headphones (Sennheiser, Germany) and two wire-
less inertial measurement units strapped at the ankles for measuring cadence and step times (iPod, Apple, USA), 
sampling kinematic gait data at 100 Hz.

Auditory stimuli. Participants were asked to choose one of six available genres to walk to in the music block 
from: disco, instrumental, pop, softpop, poprock and variety. See Buhmann et al.52 for details of the music data-
base generation. Isochronous digital metronomes were used for the metronome block. Supplementary Fig. 1 
illustrates the coefficient of variation and standard deviation of the inter-beat-intervals across time of the used 
stimuli.

Inter‑step‑intervals: data processing. Matlab (MathWorks Inc., USA) was used to process the data. The 
onset of steps logged by the D-jogger system was used to derive step interval time series. The variability of inter-
step-intervals was obtained by calculating the coefficient of variation (CoV; a tempo-independent variable) of 
each time series as a percentage using the following formula: ((standard deviation/mean)*100).

Persistent and anti-persistent structures in step interval time series were examined using Detrended Fluc-
tuation Analysis (DFA). DFA is a method that removes local trends, thus it is less likely to be affected by non-
stationarity in the time  series2. DFA computes the mean square roots of (linearly) detrended residuals, F(n) , of 
the integrated time series over a range of equal, non-overlapping window sizes n . The scaling exponent α is then 
estimated from the slope of the linear relationship between log[F(n)] and log(n) . Restricted range of window 
sizes were used, from n = 4 steps to n = N /4  steps53,54 (N being the total number of steps). An α > 0.5 indicates 
statistical persistence, with fluctuations in one direction followed by fluctuations in the same direction. An α < 0.5 
indicate anti-persistence, with subsequent fluctuations in the opposite direction. An α = 0.5 indicates uncorrelated 
noise, with subsequent fluctuations equally in either direction. In the context of control, gait variables that are 
not tightly regulated exhibit strong persistence, while those that are more tightly regulated exhibit either uncor-
related or anti-persistent fluctuations ( α ≤ ~ 0.5). Details of the methodology are published  elsewhere2,8,12,55–57. 
To determine if relatively simple random processes might account for the statistical properties seen within the 
experimental data, surrogate time series were generated by randomly shuffling each original time series collected 
per participant and per experimental condition one hundred  times58,59. In other words, one hundred surrogate 
time-series were generated per participant and per experimental condition. Thereafter, per participant and 
experimental condition, one mean alpha value was calculated from the distribution of the surrogate time series.

Synchronization with the auditory stimuli. Synchronization to the stimulus beat was measured by cal-
culating the resultant vector length (RVL). The RVL is a measure that indicates the consistency of timing differ-
ences between two periodic signals. Here, these were the timing difference of the individual steps relative to their 
closest beats. These timing differences were calculated and expressed as phase angles. Thereafter, the average of 
the sine and cosine coordinates of all phase angles were calculated, in order to obtain the  RVL60,61. The RVL rep-
resents how well the participants matched their steps to the beats over time. RVL is expressed as a number from 
0 to 1. Higher numbers indicate more consistent synchronization, meaning that the timing differences between 
individual steps and beats become concentrated around a single value. Lower numbers indicate inconsistency of 
synchronization, meaning the timing differences between individual steps and beats become highly variable over 
time. Please refer to a methodological review for  details16.

Spatio‑temporal gait parameters. Participants were equipped with three OPAL wearable sensors 
(Mobility lab, APDM, USA), two strapped on their ankles, and one strapped on the sternum, to measure the 
spatiotemporal gait  parameters62. Spatio-temporal gait measurements, e.g. cadence and speed were obtained 
during the baseline walking conditions (when walking without any auditory stimuli) and the experimental walk-
ing conditions (when walking to the auditory stimuli). Thereafter, percentage change in speed was calculated as 
a percentage change between the average speed of the participant at baseline compared to their average speed 
during the experimental conditions.

Statistical analysis. Four mixed model analysis of variances (ANOVA) were performed, one on the pri-
mary outcome measure (α value) of the original time series and three for secondary outcome measures (RVL, 
CoV, percentage change in speed). The independent variables were: group (HC and PwMS) as between-subjects 
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factor; stimuli (music and metronome) experimental tempi (0, + 2, + 4, + 6, + 8 and + 10% of the preferred walk-
ing cadence) as within-subjects factor. In addition, two co-variates were added to the analysis, these were assis-
tive devices (yes (n = 8) and no (n = 20)) and the baseline walking speed of participants. These co-variates were 
added to the analysis as confounding variables, as assistive devices and walking speed have shown to effect gait 
 variability46,63. Multiple comparisons Tukey’s tests were further performed as post-hoc tests. For the ANOVA’s 
above, assumptions of normality and homoscedasticity have been verified by visually examining each model’s 
residual quantile and predicted plots. In addition, six Kruskal–Wallis tests were conducted to statistically exam-
ine differences in alpha values between the time series (original and surrogate), stimuli (music and metronome), 
group (HC and PwMS) and conditions (0, 2, 4, 6, 8, 10%). Bonferroni’s correction was applied to correct for mul-
tiple comparisons. The following were examined: comparison between the time series; comparison of the time 
series between stimuli; comparison of the stimuli between the time series; comparison of the groups between 
the time series; comparison of the tempi between the time series and; comparison of the time series between 
the tempi. To further examine the relationship between synchronization and α, Spearman’s correlation coef-
ficients were calculated for PwMS and HC when walking to music or metronomes at the six different tempi. All 
analyses were performed using SAS JMP Pro 13.2.0 (copyright SAS Institute Inc., USA). The significance level 
was set at p < 0.05. Given the experimental design (i.e. the fixed time of walking three minutes per tempi) it was 
expected for cadence to be modified across the different tempi, and as a result, the number of steps collected (i.e. 
data points) could differ across tempi. To control correctly for the discrepancy, prior to running the ANOVAs 
described above, an analysis of covariance was applied by fitting a standard least squares to the outcome alpha by 
the total number of data points collected per trial.

Data availability
The datasets generated during and/or analyzed during the current study are not publicly available due to privacy 
regulations but are available from the corresponding author on reasonable request until 2022.
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