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Abstract

Morphometry characterization is an important procedure in describing neuronal cultures

and identifying phenotypic differences. This task usually requires labor-intensive measure-

ments and the classification of numerous neurites from large numbers of neurons in culture.

To automate these measurements, we wrote AutoNeuriteJ, an imageJ/Fiji plugin that mea-

sures and classifies neurites from a very large number of neurons. We showed that Auto-

NeuriteJ is able to detect variations of neuritic growth induced by several compounds known

to affect the neuronal growth. In these experiments measurement of more than 5000 mouse

neurons per conditions was obtained within a few hours. Moreover, by analyzing mouse

neurons deficient for the microtubule associated protein 6 (MAP6) and wild type neurons we

illustrate that AutoNeuriteJ is capable to detect subtle phenotypic difference in axonal

length. Overall the use of AutoNeuriteJ will provide rapid, unbiased and accurate measure-

ment of neuron morphologies.

Introduction

The study of neurodevelopmental or neurodegenerative diseases necessitates the production

of mouse strains mutated in potentially disease-causing genes. To get a molecular understand-

ing of the disease, it is classical to perform neuron cultures from these strains of mice and fol-

low their development with the goal of revealing specific phenotypes [1]. Alternatively the

effect of drugs or attractive molecules on the development of the neurons can be tested in cul-

ture [2, 3]. The early development of hippocampal neurons in culture undergoes three stages

where a single round cell attaches, produces numerous growing extensions, and polarizes to

differentiate one of its neurite into an axon (Fig 1) [4]. At the end of this early development,

the neuron displays highly branched dendrites and axon. The description of the developmental

timeline and final arborization complexity allows characterization of a morphological

phenotype.
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The morphometric description of cell cultures is tedious when done by hand, confining

analysis to a number of cells that may not be representative of the whole neuronal culture.

Moreover, visual selection of neurons by the investigator may lead to selection bias. The use of

image analysis software should overcome these problems and several plugins have been devel-

oped to help in this task. Some of plugins are neuron-based, allowing for the semi-automatic

tracing of neurite extension (e.g. NeuronJ) [5, 6], or population-based, where whole neuritic

lengths are measured with no neuron individualization or neuritic assignment (axon, dendrite,

order) [7–9], thus losing information of the number and classification of neurites. AutoNeuri-

teJ was created to characterize a neuronal population in culture on a cell-based basis, with

large numbers of neurons analyzed allowing an accurate estimation of the whole distribution

of the population.

Results

AutoNeuriteJ, a plugin set to measure and classify neuritic extensions

AutoNeuriteJ has been designed to describe the neuritic arborescence of isolated neurons in

cultures of different conditions or genotypes. It gives, in a text file for each neuron, the length

and order (primary, secondary; etc. . .) of each neurite. It also gives measurements of the axon

length, number of branches and total axonal tree length, if any. At the end of the text file a

summary indicates the number of neurons that have been measured, the percentage of polari-

zation (neurons with an axon), the mean primary neurite length (neurite that initiate form the

cell body) and mean primary neurite number per neuron.

AutoNeuriteJ can be used to process a single file or multiple large images obtained from

mosaic images recorded from slide scanners (Fig 2A). For a better segmentation of thin cellu-

lar processes, AutoNeuriteJ requires well-contrasted images of fluorescent cells and images of

nuclei stained with DAPI or Hoechst, used to locate cell bodies and remove touching neurons.

Fig 1. Stages of early development of hippocampal neurons in culture. Hippocampal neurons begin to form

lamellipodia right after adhesion to the substrate (Stage 1). Few hours later the neurites sprouting begins (Stage 2).

These protrusions undergo successive elongation and retraction phases with no net outgrowth. Eventually, one neurite

acquires enhanced growth capabilities and becomes an axon (Stage 3).

https://doi.org/10.1371/journal.pone.0234529.g001
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The whole process is divided in three independent sub-macros to allow for a better flexibil-

ity and control of different parameters defined by the users.

Description of AutoNeuriteJ

Part I: Segmentation of neuron and nuclei. The first part of the macro allows the binari-

zation of nuclei and neurons (Fig 2B). Images of neurons and nuclei are pre-processed for

background homogenization and neurites enhancement. For the neuron images, a large

blurred image is substracted from a median-filtered image that removes noise. For the nuclei,

Fig 2. Schematic of AutoNeuriteJ images processing. (A) AutoNeuriteJ needs images of neuron (e.g. tubulin) and nuclei staining. (B) AutoNeuriteJ

Part I segments nuclei and neurons, removes small particles. (C) AutoNeuriteJ part II selects individual neurons (with a single nucleus), creates cell

body images and stacks of neurons. (D) AutoNeuriteJ part III detects neurite extremities, compares, classifies and measures neurites, prints results in a

text file.

https://doi.org/10.1371/journal.pone.0234529.g002
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a difference of Gaussians adapted to the diameter of the nuclei is applied. Parameters to be

defined are the mean diameter for nuclei and the minimal surface for a binarized neuron.

These parameters are used to adapt the detection of nuclei and to remove smaller particles

from the images. The parameters are saved in a text file and defined as default in the subse-

quent use of the macro. The segmentation is supervised by the user and binarized files are

saved.

Part II: Creation of individual neuron images and skeletization. The second part of the

macro allows the creation of single neuron images from the segmented images obtained in

part I (Fig 2C). It selects the cells containing a single nucleus from the binarized neurons

image and produces images of single neurons and their skeleton. A cell body is also created by

limited dilatation of the nucleus into the binarized neuron image. Within the macro, a mini-

mal length for neurite and neuritic tree is set to clean short branches that could be produced

by the skeletonization step and to remove undifferentiated cells without neurites. Finally, the

"Region of interest" set of the selected neurons on the original image is saved. The count of

neurons selected or excluded (connected neurons and undifferentiated cells) is recorded in a

text file.

Note that if different neurites of the same neuron cross, it will create a loop in the skeleton

that prevents measuring their length. This difficulty is overcome in AutoNeuriteJ by cutting

the branch of the loop at the location of the lowest intensity of staining, using the Analyze skel-

eton plugin [10].

Eventually, five different stacks are created: 1) Original neurons, 2) Binarized neurons 3)

Cell Bodies 4) Skeletons of the binarized neurons 5) Skeletons and cell bodies. These different

stacks will be used in the next step of the process.

Part III: Measurement and classification of neurites. The third part of the macro is used

to measure and classify neuritic extensions (Fig 2D). Using the skeleton and body of neurons

generated in Part II, neurite extremities are detected for each neuron using the "binary connec-

tivity" plugin (Gabriel Landini’s Morphology Plugins).

Each neurite is at first set as "primary" and its image is created. Secondly, each neurite is

compared to all other neurites to detect potential overlaps. If an overlap is detected, the order

of the shortest neurite is increased (from primary to secondary etc. . .) and the longest neurite

image is substracted to the shortest so that no overlaps exist. After this classification step, the

length of each neurite is measured and the longest primary identified. The longest neurite will

be considered as an axon if it satisfies to standard criteria [11], i.e. in our study the criteria

were set to: the length of the axon should be twice the size of the second longest neurite and

longer than 100 pixels. These parameters can be set by the user.

Finally, the macro produces an overlay for each neuron with the detected neurites colored

according to their order (Fig 2D). A results text file is created presenting, for each neuron, the

length and order of each neurite, the number of primary neurites, the length and number of

branches of the axonal tree if any (Fig 2E). At the end of the process, a summary is printed giv-

ing the number of neuron measured, the percentage of neuron with an axon, mean and stan-

dard deviation of primary neurite length and of primary neurite number. This text file can be

edited within a spreadsheet to organize the data and allow further statistical processing. Of

note the stack of binarized neurons can be used to perform a classical Sholl analysis using the

Fiji plugin (https://imagej.net/Sholl_Analysis).

AutoNeuriteJ validation

The measurements given by any automatic procedure first need to be validated by a classical

method used in the field of expertise. We first compared the axonal length given by
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AutoNeuriteJ and when measured semi-automatically using NeuronJ. We also compared the

number of primary neurites detected by eye or by Sholl analysis to AutoNeuriteJ values.

Finally, we applied several treatments known to change the morphology of neurons to verify

that AutoNeuriteJ can detect these changes.

Measurement of axonal length. The most popular ImageJ plugin for neurite measure-

ment is NeuronJ [5]. This plugin allows a semi-automatic tracing of neurite and needs a tedious

work to get large numbers of measures. We used NeuronJ to measure the axonal length of mouse

neurons. On the same images of polarized neurons we applied AutoNeuriteJ and compared the

techniques by correlation analysis (Fig 3A). The correlation between values obtained by NeuronJ

or AutoNeuriteJ is very strong (r = 0.98). By inspecting the data corresponding to points far above

the fitted line we observed that they represent cells that have not been segmented correctly (e.g.

Several cells are fused and present a single nucleus). These cells can be easily removed from the

binarized stacks of neurons before the neurite measurement part of AutoNeuriteJ.

Primary neurite number. On the same images, we also compared the primary neurite

number counted by eye and detected by the macro (Fig 3B). The average values are close (2.95

and 2.91 neurite per neuron by eye and using AutoNeuriteJ, respectively) and the correlation

is strong (r = 0.83), with a slight underestimation by AutoNeuriteJ due to filtering minimal

neuritic length. To further validate the accuracy of AutoNeuriteJ, we compared its measure-

ments with those of the “Sholl analysis” plugin [12]. Among the different shape descriptors

proposed by the Sholl analysis plugin, we extracted the number of primary branches inferred

from the count of intersections at the starting radius close to the cell body. When comparing

this number to the number of primary neurites detected by AutoNeuriteJ, we found a strong

correlation (r = 0.91) (Fig 3C).

From these comparisons we concluded that AutoNeuriteJ gives a reliable mean to deter-

mine axonal length and primary neurites number.

Effect of nocodazole treatment on the major neurite length. It has been shown that

nocodazole (a drug that depolymerizes microtubule at high concentration) used at low con-

centration, reduces the number and the length of neurites, specifically [13, 14]. Mouse neuron

cultures were treated at day 1 with 50nM nocodazole, fixed and immunostained at 3 days in

vitro (DIV). After AutoNeuriteJ quantification, we found that nocodazole treatment reduces

the length of the longest neurite of unpolarized cells by 25% (Fig 4A) while the axons were

resistant to nocodazole treatment (non-significant reduction of 4.7% when treated). This may

reflect the fact that stable MT are enriched in axons as described by Witte et al. [15]. We also

found that Nocodazole treatment reduces the number of primary neurites in unpolarized cells

(3.60 ±0.03μm when treated vs 4.50 ±0.03μm when untreated) or polarized cells (2.72

±0.12μm, when treated vs 3.75 ±0.11μm when untreated) (Fig 4B).

From these results we concluded that, thanks to its ability to categorize the neuronal exten-

sions, AutoNeuriteJ is a reliable tool to detect differential effects of a molecule on axons versus

dendrites.

Effect of Semaphorin 3E. Semaphorin 3E (Sema3E) acts as a growth-promoting factor

for axons of mice subicular neurons [16]. Thus we quantified Sema3E effect on subicular neu-

rons. We first noticed the general effect of Sema3E treatment on subicular neurons polarity

(10.6% of cells presenting an axon for control vs 33.9% for Sema3E treated condition). We

then measure the major neuritic length. As expected, AutoNeuriteJ quantification showed an

increased axonal length of polarized cells of 21.5% after 48h of treatment with Sema3E (Fig

5A). This effect is also detected on the longest neurite of unpolarized cells; with a 31.8%

increase in Sema3E treated condition; revealing an early effect of Sema3E on neuritic growth.

This observation at early stage can reflect either an effect on the major neurite whatever the

differentiation stage of the neuron, or a global effect on all neurites of the neurons.
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Fig 3. Validation of axonal length and number of primary neurite measurement. (A) Correlation of the measured

axonal length using NeuronJ tracings or AutoNeuriteJ (r = 0.98 from linear regression) from 108 cells (B) Primary

neurite numbers counted by hand or detected by AutoNeuriteJ (r = 0.83 from linear regression, n = 108). (C)

Correlation of primary neurite number detected by AutoNeuriteJ and number of intersection at first circle detected by

Sholl analysis (r = 0.91 from linear regression, n = 2062).

https://doi.org/10.1371/journal.pone.0234529.g003
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Fig 4. Effects of nocodazole treatment on the length of major neurites and primary neurite number. Mouse

neurons in culture were treated with 50nM nocodazole 4h after plating. After 2DIV the neurons on coverslips were

fixed and stained for tubulin and Hoescht before imaging and AutoNeuriteJ quantifications. (A) Nocodazole treatment

reduce the size of the longest neurite by 25% (n = 3210 for control, n = 2619 for nocodazole treated) but not on axons

of polarized cells (n = 297 for control and n = 175 for treated). (B) Nocodazole treatment reduces the number of

primary neurites of polarized (3.70 ±0.14 vs 2.72 ±0.12 for treated) or unpolarized (4.43 ±0.14 vs 3.51 ±0.13 for treated)

neurons. p values were obtained from Mann-Whitney tests.

https://doi.org/10.1371/journal.pone.0234529.g004
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Fig 5. Effect of Sema3E treatment on the length of major neurites. Three independent mouse neuronal cultures

were treated with Sema3E. At 2DIV, neurons were processed for quantification. (A) Length of the longest neurites for

polarized and unpolarized cells treated or not with Sema3E. (Cells without axon: n = 2211 for control and n = 1512 for

Sema3E treated condition; Cells with axon: n = 126 in control and n = 426 in Sema3E treated). (B) Mean length of

primary neurites of polarized and unpolarized cells (Cells without axon: n = 2073 for control, n = 1473 for Sema3E

treated condition; Cells with axon: n = 102 for control and n = 384 Sema3E treated). p values were obtained from

Mann-Whitney tests.

https://doi.org/10.1371/journal.pone.0234529.g005
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Thus, we tested if the mean length of dendrites of polarized cells and the mean length of pri-

mary neurites without the longest neurite in unpolarized cells were also sensitive to Sema3E

treatment (Fig 5B). As AutoNeuriteJ classify the order of neurites we collected the length of

dendrites from polarized neurons (Fig 1). The length of the dendrites of polarized cells is not

affected by the Sema3E treatment (Fig 5B). On the contrary, the mean length of primary neur-

ites of unpolarized neurons excluding the longest is increased by 16.7% after Sema3E treat-

ment (Fig 5B). We conclude that Sema3E affects all primary neurites outgrowth during early

neuron developmental stages 1 and 2. During subicular neuron polarization, Sema3E induces

axonal outgrowth stimulation with no effect on dendrites revealing a cell growth oriented

toward the axon. The global neuritic outgrowth observed with Sema3E at early stages could be

a shared property for the third class of semaphorins as neuritic outgrowth effects were also

reported for Sema3A and 3C [17–19]. Nevertheless, these observations were based on global

neuritic length assessments but no direct comparison between axonal versus dendritic effects

of semaphorins had been reported until now.

Overall, these results showed that AutoNeuriteJ easily allows a direct comparison of several

parameters of neuronal arborization at different developmental stages.

Morphological analysis of MAP6 knock-out neurons

In our lab, we produced a mouse MAP6 knockout. MAP6 encodes for a protein that stabi-

lized microtubules and is present in their lumen [20]. The MAP6 KO mice present numerous

behavioral defects that were alleviated by neuroleptic treatment. Therefore they are a model

of psychiatric disorders such as schizophrenia or depression [21, 22]. These mice also present

brain anatomy perturbations where white matter tracts are altered as in fornix, corpus callo-

sum or pyramidal tracts [2, 23]. The analysis of neurons in culture from these mice have

shown that they present a defect in the Sema3E response and perturbation of the actin fila-

ment organization in dendritic spines [2, 24]. No detailed morphometric analysis of these

neurons has been done yet. Taking advantages of automatic quantification, we cultivated

hippocampal neurons from MAP6 KO or WT mouse littermates. The coverslips were recov-

ered after 48h in culture, stained with antibody against tubulin and neuronal morphology

analyzed with AutoNeuriteJ (Fig 6). The polarization index was increased in MAP6 KO neu-

ron cultures (from 9.2% for WT neurons to 16.1% for MAP KO). Moreover, we were able to

detect that MAP6 KO neurons produced longer axons than the controls by 23.5% (Fig 6A).

Furthermore, thanks to the ability of AutoNeuriteJ to identify axonal primary and secondary

branches we performed a measurement of the total axonal tree (axon plus its branches) in

both genotypes. We found an increase of 20.2% of the size of MAP6 KO axonal tree as com-

pared to WT neurons (Fig 6B). AutoNeuriteJ also allows determining the mean internode

distance (axonal tree divided by the number of branches) which was also found increased by

19.7% in MAP6 KO neurons as compared to WT (Fig 6C). Thus MAP6 KO neurons increase

all their axonal branches to the same extend after specification of the axon resulting in an

increased internodes length. Overall, MAP6 KO experiments show the capacity of Autoneur-

iteJ to detect variations of both classical and more subtle morphological features of neurons

in culture.

Discussion

We developed a new ImageJ macro able to measure neuron morphology in several neuronal

culture conditions. Existing plugins provide only global measurement of neuronal growth,

while AutoNeuriteJ allows for quantification of individual neurons. AutoNeuriteJ can also give
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Fig 6. MAP6 deletion enhances axonal growth. Neurons from control and MAP6 KO mice from three independent

experiments were processed for quantification. (A) Axon length for WT and MAP6 KO mice (n = 120 for WT, n = 207

for MAP6 KO). (B) Axonal tree length of polarized neurons (n = 120 for WT, n = 207 for MAP6 KO). (C) Internode

distance of polarized neurons (n = 54 for WT, n = 117 for MAP6 KO). p values were obtained from Mann-Whitney

tests.

https://doi.org/10.1371/journal.pone.0234529.g006
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a global analysis of the culture by building a stack of the segmented neurons with specific col-

ors for the neurites order, overlaid on the original image.

The macro produces a neuron-centric analysis with the classification of neurite. This pro-

vides the possibility to analyze crucial steps during neuronal differentiation and maturation.

The classification of neurites gives the percentage of polarization of the culture, an essential

marker of neuronal differentiation. It also allows the distinction of the effect of a molecule on

different types of neurites as demonstrated in this study with the differential effect of nocoda-

zole on axons and dendrites. To our knowledge, without AutoNeuriteJ, this was only achiev-

able by manual tracing.

We performed Sema3E experiment as a validation test of AutoNeuriteJ. We observed, as

expected, an increased length of the major neurites in polarized and unpolarized neurons. In

polarized neuron, we found that the dendrites do not respond anymore to Sema3E treatment.

Interestingly CRMP2, a downstream effectors of semaphorins, is enriched in axons whereas it

is uniformly expressed in all neurites in unpolarized neurons [25]. We can thus speculate that

the relocalization of CRMPs toward axons could limit the dendritic response to Sema3E stimu-

lation after axonal specification.

AutoNeuriteJ also detects various morphologic differences between WT and genetically

modified neurons allowing proposing mechanistic scenarios. The experiments on MAP6 KO

neurons show that, consistent with its role of stabilization of microtubule, the absence of

MAP6 increases the dynamics of microtubule and allows a faster growth of the axon and of the

axonal tree. These results strengthen the previously described role of MAP6 in axonal develop-

ment [26].

In conclusion, AutoNeuriteJ is an accessible tool that facilitates the classification and mea-

surement of neurites. Hopefully it will make easier, for other investigators, the morphometric

analysis of neurons during early differentiation.

Material & methods

Hippocampal and subicular neuron cultures

In accordance with the policy of the Institut des Neurosciences of Grenoble (GIN) and the

French legislation, experiments were done in compliance with the European Community

Council Directive of 24th November 1986 (86/609/EEC). The research involving animals was

authorized by the Direction Départementale de la protection des populations—Préfecture de

l’Isère-France and by the ethics committee of GIN number 004 accredited by the French Min-

istry of Research.

Brains from embryos (E17.5) were dissected and hippocampus or subiculum were removed.

Selected parts were dissociated and plated onto polylysine/laminin-coated as previously

described [2]. The axonal growth of subicular neurons were stimulated by addition of control

AP or Sema3E-AP (6.3nM) in supernatant 2h after cells platting [2]. After 2DIV, cultured cells

were fixed and immunostained. Hippocampal neurons were treated by addition of 50nM

nocodazole in the medium. After 2DIV, cultured cells were fixed and immunostained.

Immunostaining

Cells were fixed at 37˚C in 4% paraformaldehyde, 4% sucrose in phosphate buffered saline

(PBS) and permeabilized using 0.1% Triton X-100 in PBS 1min. Cells were then incubated

with α3A1 mouse primary antibody produced in the laboratory (1:10,000) for 1h at room tem-

perature. Cells were washed thrice in PBS 0.1 tween and incubated with cyanine-3 conjugated

secondary antibody (1:1000) for 1h at room temperature. After three final washes, nuclei were

stained using Hoechst 33258 (1 μg/ml) in the mounting media (Dako).
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Image acquisition

For manual neuron morphometry, images of each neuron were acquired using 20 X N.A 0.5

objective on an Axioskop 50 microscope (Zeiss). All images were combined in a single file for

an easier manipulation. Measure of axonal length was performed using NeuronJ [5].

For automated neuron morphometry, mosaic images of 2 or more ROI per condition were

acquired using a 20x N.A 0.8 objective on an Axioscan Z1 (ZEISS) microscope. Mosaic images

were then processed with AutoNeuriteJ.

Statistical analysis

Statistical analyses were performed using Prism 5 (GraphPad). For the Sema3E and MAP6 KO

experiments, values were normalized for each independent experiment to the value of the

mean axonal length in the corresponding control condition. Weighting of independent experi-

ments was obtained by random draw of equal number of neurons in each experiment before

pooling values for statistical analysis. In box and whiskers figures the whiskers represent 5 to

95% of the values. Percentage of variation indicated in Figs 5 and 6 are calculated from the

median values. For all figures the statistical tests used are indicated in the figure legends.

User recommendations and drawbacks

Culture density and immunofluorescence. Several antibodies can be used for AutoNeur-

iteJ analysis. Our general recommendation here would be to use markers widespread in all

neurons with a strong signal in order to accurately detect smaller neurite structures by setting

low detection thresholds. As tubulin is the major protein of neurons, several anti-tubulin anti-

bodies are useful. In the present study, we used a homemade anti-alpha tubulin antibody

(α3A1) but other anti tubulin can be used as a classical anti-βIII tubulin specific for neuronal

cells or anti-acetylated tubulin antibody that detects only stable microtubules, present in the

shafts of neuritic extensions.

AutoNeuriteJ was developed to analyze the first steps of neuron differentiation. It does not

consider neurons with overlapping neurites, thus creating a bias in the population considered.

This problem also occurs when the measures are done by hand, it is generally circumvented in

the field by using low density culture of neurons. To this end it is very important for users to

verify a low neuronal density before performing immunostaining.

Image resolution. As AutoneuriteJ is dedicated to neurite measurement, it does not need

high resolution images to properly operate (1μm pixel size images are recommended). High

resolution images will increase the duration of image processing as neurite measurement is

based on pixel erosion. To circumvent this issue, AutoNeuriteJ part I performs scaling of

images.

Quantification speed and computer requirements. Time for completion of this macro

depends mostly on the number of counted neurons and neurites. From our experience we rec-

ommend to analyze images with no more than 500 neurons. This number is sufficient for com-

paring several groups of treatment or genotypes. If more neurons are needed, it is possible to

run several occurrences of Fiji in parallel. As an example, we used eight occurrences of Fiji

running at the same time on the same computer to measure 30,000 neurons in less than 12h.

Availability

AutoNeuriteJ and a user guide are available at GitHub (https://github.com/Grenoble-

Institute-Neurosciences/AutoNeuriteJ). First and last authors may also be contacted for details

or future collaborations.
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