Supplemental Material

Table S1: Interactions between enzyme residues and carbohydrate

Interactions										
Substrate	Enzyme	Substrate Contacts	H-Bonds (Donor Sugar)	H-Bonds (Donor Enzyme)						
Sucrose	B. subtilis	D86, S164, L109, Y429, R343, D247, Y411, R360, R246, W163	Y429, D86	S164						
Sucrose	B. amyloliquefaciens	R213, E307, R327, R400, E309	E307, E309	R327						
Sucrose	B. indica	D98, F421, T361, R445 P409 H359 Y410, D439, D371, H101	D439, D371, D98	H101, R445						
Sucrose	G. oxydans	H80, T365, D313, W79, R82, W346, D364, H301	D364, D313	R82, W79						
Sucrose	P. graminis	R101, R434, H102, P398, P350, D99, Y399, H348	D99	R101						
Sucrose	V. natriegens	R234, H345, Y230, E327, N232, Q325	E327, Q325, N232	H345, Q325						
Fructose	B. subtilis	D247, Y411, S412, A342, D86, R246, E262, R343	D86, E262, D247	S412, R246						
Fructose	B. amyloliquefaciens	R213, E307, R327, R400, E309	E309, D53	Y52						
Fructose	B. indica	F244, S246, R248, D338, Q339	ASP338, GLN339	ARG248						
Fructose	G. oxydans	S120, W41, N83, R194, W119, D195, E283	D195, E283	R194, N83, S120						
Fructose	P. graminis	H102, D99, R434, F98, D428, R101	D99	H102, R101						
Fructose	V. natriegens	R175, Y230, G179, N180, D181	D181	N180, Y230, D181, R175						
Glucose	B. subtilis	D247, S164 D86, R246, L109, W163	D247, D86, S164	-						
Glucose	B. amyloliquefaciens	W130, E309, R213, D214, L76, W52, S131	-	W52, S131						
Glucose	B. indica	D98, R100, H101, P409, Y410, D439, R445	D98, R100, R445	H101						
Glucose	G. oxydans	S120, R194, L65, W41, D195, W119	D195	S120, R194						
Glucose	P. graminis	R434, H102, R101, F98, D428, D99	D99	H102, R101						
Glucose	V. natriegens	R435, H100, D425, D97, P395, R99	D425, D97	R99						

Figure S1: Models of LS from a) B. subtilis, (b) B. amyloliquefaciens, (c) B. indica subsp. indica, (d) G. oxydans, (e) P. graminis and (f) V. natriegens with sucrose docked within the active site. Sucrose is docked in a position representing the least binding energy state. Colouring represents electrostatic surface potential. The surface charge was calcuated using AutoDock v 4.2 and the PDBqt file was uploaded to OPAL webserver for PQR map and visualization was done using PyMol APBS plugin.

Figure S2: Models of LS from a) B. subtilis, (b) B. amyloliquefaciens, (c) B. indica subsp. indica, (d) G. oxydans, (e) P. graminis and (f) V. natriegens with glucose docked within the active site. Glucose is docked in a position representing the least binding energy state. Colouring represents electrostatic surface potential. The surface charge was calculated using AutoDock v 4.2 and the PDBqt file was uploaded to OPAL webserver for PQR map and visualization was done using PyMol APBS plugin.

Figure S3: Models of LS from a) B. subtilis, (b) B. amyloliquefaciens, (c) B. indica subsp. indica, (d) G. oxydans, (e) P. graminis and (f) V. natriegens with fructose docked within the active site. Fructose is docked in a position representing the least binding energy state. Colouring represents electrostatic surface potential. The surface charge was calculated using AutoDock v 4.2 and the PDBqt file was uploaded to OPAL webserver for PQR map and visualization was done using PyMol APBS plugin.

Figure S4: Comparison of the fructose docked in a position representing the least binding energy state generated by docking simulations using the unliganed (3VSR) LS homology model for V. natriegens. It was developed using Microbacterium saccharophilum K-1 beta-fructofuranosidase. The image shows 3VSR (unliganged), 3VSS (bound Frc).

Figure S5: Overlay of the homology models developed for the LSs in this study.

		Vibrio natriegens	Gluconobacter	Novosphingobium	Burkholderia	Berjinckia indica
			oxydans	aromaticivorans	graminis	subsp. indica
	Reaction	Average	Average	Average	Average	Average
	time (h)	conversion (%)	conversion (%)	conversion (%)	conversion (%)	conversion (%)
0.9 M Sucrose	2	34.1 ± 11.9	33.9 ± 3.4	20.5 ± 7.3	16.9 ± 0.2	23.4 ± 0.7
	24	54.7 ± 6.4	61.5 ± 3.3	23.0 ± 6.0	61.0 ± 1.4	51.0 ± 1.0
	50	59.7 ± 6.1	77.9 ± 0.5	52.9 ± 3.8	62.5 ± 6.7	72.2 ± 2.1
	2	37.1 ± 2.9	92.7 ± 0.8	$32.4 \pm$	54.9 ± 20.1	$80.9 \pm$
0.9 M Raffinose	24	61.1 ± 2.1	$48.4 \pm$	64.6 ± 6.0	$30.4 \pm$	-
	50	73.0 ± 2.7	58.3 ± 5.4	64.0 ± 2.9	68.2 ± 5.5	66.5 ± 7.8
0 45 M D affer and /	2	52.2 ± 14.1	$27.2 \pm$	$26.4 \pm 3.$	11.7 ± 4.9	$7.7 \pm$
0.45 M Kajjinose /	24	52.2 ± 3.2	20.5 ± 5.0	27.6 ± 2.6	$36.7 \pm$	$15.9 \pm$
0.9 M Sucrose	50	69.7 ± 12.4	71.0 ± 6.0	56.9 ± 2.8	69.7 ± 3.4	66.3 ± 7.9
0.45 M Calastons /	2	73.3 ± 4.9	52.3 ± 5.7	$12.9 \pm$	48.0 ± 3.0	58.8 ± 1.8
0.45 M Galactose /	24	76.2 ± 1.2	50.4 ± 3.1	41.7 ± 19.7	48.9 ± 7.3	66.6 ± 0.3
0.9 M Sucrose	50	34.2 ± 2.9	45.9 ± 2.4	46.9 ± 0.7	58.2 ± 2.5	46.2 ± 4.3
0.45 M Maltana / 0.0	2	38.3 ± 15.3	$34.4 \pm$	$55.2 \pm$	$59.8 \pm$	62.2 ± 0.2
0.45 M Mattose / 0.9	24	$38.0 \pm$	41.7 ± 11.9	68.8 ± 3.2	$58.6 \pm$	73.8 ± 0.1
M Sucrose	50	72.0 ± 5.4	52.5 ± 6.4	38.6 ± 0.2	56.1 ± 11.3	51.3 ± 1.1
0.45 M Lastage / 0.0	2	68.7 ± 4.2	46.2 ± 8.6	67.9 ± 12.0	$53.07\pm.02$	54.9 ± 3.2
0.45 M Lactose / 0.9	24	67.1 ± 28.4	65.8 ± 8.2	18.9 ± 13.2	53.5 ± 7.5	78.1 ± 1.5
M Sucrose	50	60.4 ± 17.0	44.1 ± 1.8	67.2 ± 4.0	78.7 ± 2.6	71.1 ± 1.0
0.45 M Valena / 0.0	2	84.3 ± 1.8	60.6 ± 4.0	84.0 ± 4.0	62.1 ± 11.4	60.2 ± 13.4
0.45 M Aylose / 0.9	24	$79.3 \pm$	66.8 ± 7.1	73.6 ± 2.0	62.3 ± 10.2	73.3 ± 2.4
M Sucrose	50	70.0 ± 8.5	62.8 ± 6.1	73.1 ± 4.3	67.2 ± 5.0	73.1 ± 0.3
0 45 M Saukital / 0.0	2	59.3 ± 2.8	39.0 ± 25.0	29.8 ± 17.2	25.9 ± 4.3	49.6 ± 3.9
0.45 M Sorbitol / 0.9	24	59.4 ± 1.3	45.0 ± 0.9	$43.4 \pm$	-	55.7 ± 1.2
M Sucrose	50	50.1 ± 2.0	45.4 ± 5.1	43.8 ± 2.4	42.0 ± 6.1	36.1 ± 2.8
0 45 M Criteshall	2	-	$6.8 \pm$	29.8 ± 17.2	-	50.3 ± 4.1
0.45 M Catecnol /	24	$20.1 \pm$	-	$17.3 \pm$	-	-
0.9 M SUCrose	50	45.2 ± 16.5	-	38.8 ± 0.6	36.4 ± 18.3	61.1 ± 5.1

Table S2: Percent bioconversion of various monosaccharides, disaccharides, and trisaccharides as acceptor/donor molecules by various LSs as a function of time