
HAL Id: inserm-02912259
https://inserm.hal.science/inserm-02912259v1

Submitted on 5 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Family-based genome-wide association study of leprosy
in Vietnam

Chaima Gzara, Monica Dallmann-Sauer, Marianna Orlova, Nguyen van Thuc,
Vu Hong Thai, Vinicius M Fava, Marie-Thérèse Bihoreau, Anne Boland,

Laurent Abel, Alexandre Alcaïs, et al.

To cite this version:
Chaima Gzara, Monica Dallmann-Sauer, Marianna Orlova, Nguyen van Thuc, Vu Hong Thai, et al..
Family-based genome-wide association study of leprosy in Vietnam. PLoS Pathogens, 2020, 16 (5),
pp.e1008565. �10.1371/journal.ppat.1008565�. �inserm-02912259�

https://inserm.hal.science/inserm-02912259v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


RESEARCH ARTICLE

Family-based genome-wide association study

of leprosy in Vietnam

Chaima GzaraID
1,2, Monica Dallmann-SauerID

3,4,5☯, Marianna Orlova3,4,5☯, Nguyen Van

Thuc6, Vu Hong Thai6, Vinicius M. FavaID
3,4, Marie-Thérèse Bihoreau7, Anne BolandID

7,

Laurent Abel1,2,8, Alexandre Alcaïs1,2‡, Erwin Schurr3,4,5‡, Aurélie CobatID
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2 Université de Paris, Imagine Institute, Paris, France, 3 McGill International TB Centre, Montreal, QC,

Canada, 4 Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the

McGill University Health Centre, Montreal, QC, Canada, 5 Department of Medicine and Human Genetics,

Faculty of Medicine, McGill University, Montreal, QC, Canada, 6 Hospital for Dermato-Venereology, District,
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Abstract

Leprosy is a chronic infectious disease of the skin and peripheral nerves with a strong

genetic predisposition. Recent genome-wide approaches have identified numerous com-

mon variants associated with leprosy, almost all in the Chinese population. We conducted

the first family-based genome-wide association study of leprosy in 622 affected offspring

from Vietnam, followed by replication in an independent sample of 1181 leprosy cases and

668 controls of the same ethnic origin. The most significant results were observed within the

HLA region, in which six SNPs displayed genome-wide significant associations, all of which

were replicated in the independent case/control sample. We investigated the signal in the

HLA region in more detail, by conducting a multivariate analysis on the case/control sample

of 319 GWAS-suggestive HLA hits for which evidence for replication was obtained. We iden-

tified three independently associated SNPs, two located in the HLA class I region

(rs1265048: OR = 0.69 [0.58–0.80], combined p-value = 5.53x10-11; and rs114598080: OR

= 1.47 [1.46–1.48], combined p-value = 8.77x10-13), and one located in the HLA class II

region (rs3187964 (OR = 1.67 [1.55–1.80], combined p-value = 8.35x10-16). We also vali-

dated two previously identified risk factors for leprosy: the missense variant rs3764147 in

the LACC1 gene (OR = 1.52 [1.41–1.63], combined p-value = 5.06x10-14), and the inter-

genic variant rs6871626 located close to the IL12B gene (OR = 0.73 [0.61–0.84], combined

p-value = 6.44x10-8). These results shed new light on the genetic control of leprosy, by dis-

secting the influence of HLA SNPs, and validating the independent role of two additional var-

iants in a large Vietnamese sample.
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Author summary

Due to its extreme reductive evolution Mycobacterium leprae is a rare example of an

essentially clonal bacterial pathogen that affects humans. However, exposed individuals

display a wide diversity of symptoms reflecting the interactions between the host immune

response and the bacterium. There is now accumulating evidence, in particular from

genome-wide association study (GWAS), that common genetic variants play a role

explaining this variability. Previous GWAS were based on case control design and almost

all of them were conducted in the Chinese population. We conducted the first family-

based GWAS of leprosy in the Vietnamese population and identified several genome-

wide significant association signals within the HLA region. By performing a multivariate

analysis in an independent case-control sample of the same ethnic origin we were able to

decipher the HLA association signal and to reduce it to three independent SNPs, two in

the class I and one in the class II region. We also validated two previously identified risk

factors for leprosy, a missense variant in the LACC1 gene, and an intergenic variant

located close to the IL12B gene. These results shed new light on the genetic control of lep-

rosy and, in particular, on the influence of HLA SNPs in a large Vietnamese sample.

Introduction

Leprosy is a chronic infectious disease caused by either Mycobacterium leprae or Mycobacte-
rium lepromatosis. It primarily affects the skin and peripheral nerves, and can cause an irre-

versible impairment of nerve function, often leading to severe disabilities and social stigma.

Despite a decrease in its prevalence over the last two decades, leprosy remains a major public

health problem in regions of endemic countries, with over 200,000 new cases detected in 2018

(https://www.who.int/gho/neglected_diseases/leprosy/en/). However, this number of cases is

probably a severe underestimate of the true incidence [1]. The clinical disease develops in a

minority of exposed individuals, manifesting as a spectrum of disease symptoms reflecting the

interactions between the host immune response and the bacterium [2]. Tuberculoid and lepro-

matous leprosy are at opposite ends of the clinical spectrum and are associated with a relatively

stable host immune status while borderline categories of the disease are associated with an

unstable immune response to the bacilli.

Only a subset of individuals develops clinical leprosy after sustained exposure to M. leprae.
Due to the extreme reductive evolution of the M. leprae genome [3], it is highly unlikely that

differences in susceptibility or clinical manifestations are governed by the M. leprae strain or

by intrastrain variation [4]. From the early observations of familial clusters of leprosy cases to

recent whole-exome sequencing studies identifying genetic variants associated with leprosy,

there is strong evidence to suggest that the development of this disease is under tight human

genetic control [2, 5]. Genetic studies, including positional cloning analyses [6–8], genome-

wide association studies [9–15], and, more recently, whole-exome sequencing [16] have identi-

fied several susceptibility loci for leprosy (reviewed in [17] and [5]), and have demonstrated

the involvement of both innate and adaptive immune responses in this disease [18]. Almost all

the susceptibility loci identified in genome-wide studies to date were found in the Chinese

population. The association with leprosy has been replicated in the Vietnamese population for

some of these loci [19, 20], but others were found to be associated with type-1 reactions

(T1Rs), a pathological inflammatory response afflicting a subgroup of leprosy patients and

resulting in peripheral nerve damage [21–23], rather than with leprosy itself. We previously

investigated susceptibility factors for T1Rs in Vietnamese families by GWAS and identified an
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eQTL (rs1875147) for a lncRNA gene as a global risk-factor for T1R but not for leprosy [24].

Here, we performed a two-stage family-based genome-wide association study on leprosy per
se, i.e. leprosy independent of its clinical subtype, in a large collection of Vietnamese families

including 622 affected offspring, followed by a replication study in an independent sample of

1181 leprosy cases and 668 controls.

Materials and methods

Ethics statement

The study was conducted in accordance with the Declaration of Helsinki. Written informed

consent was obtained from all adult subjects participating in the study. All minors agreed to

take part, and a parent or guardian provided informed consent on their behalf. The study was

approved by the Research Ethics Board at the Research Institute at McGill University Health

Centre in Montreal (REC98-041) and the regulatory authorities and ethics committees of Ho

Chi Minh City in Vietnam (So3813/UB-VX and 4933/UBND-VX).

Samples and study design

Over twenty-five years (1990–2015), we have, in close collaboration with the Dermatology and

Venereal Diseases Hospital of Ho-Chi-Minh City (Vietnam), recruited a large sample of

nuclear families with at least one child diagnosed with leprosy and including either both

parents or unaffected sibling(s) if one of the parents was unavailable. Leprosy was diagnosed

based on a committee decision involving at least two independent and experienced physicians

and was classified into multibacillary (MB) or paucibacillary (PB) subtype according to the

operational WHO-96 definition based solely on the number of lesions [2]. All patients

responded to therapy which was a strong argument in favor of the leprosy diagnosis. For repli-

cation purposes, we collected an independent case/control sample of Vietnamese origin. The

same criteria were used for leprosy diagnosis as in the family-based discovery study. The con-

trols had no personal or family (among first-, second- or third-degree relatives) history of lep-

rosy or tuberculosis.

GWAS genotyping and imputation

The genotypes of all children and parents (or siblings) were determined with the Illumina

Human 660w Quad v1 bead chip containing 592,633 single-nucleotide polymorphisms (SNPs)

during the discovery phase. Genotypes were called with the Illuminus algorithm [25]. Quality

control (QC) was performed on genotype data with PLINK software [26] and the “GASTON”

package in R (https://CRAN.R-project.org/package=gaston). SNPs with a call-rate < 0.95,

more than 10 Mendelian errors, a minor allele frequency (MAF) < 0.05 or displaying signifi-

cant departure from Hardy-Weinberg equilibrium (p< 10−5) were removed from the analyses,

resulting in a final set of of 422,546 high-quality SNPs, including 9,907 SNPs on the X chromo-

some. Individuals with a call-rate < 0.95, more than 10 Mendelian errors and a heterozygosity

rate more than three standard deviations on either side of the mean were excluded. In total,

1850 individuals were genotyped and 1749 fulfilled the quality control criteria, including 622

leprosy-affected offspring, from 481 informative families (S1 Table).

Before imputation in the discovery sample, A/T or G/C SNPs were removed to prevent

strand mismatches between the study sample and the reference sample used for imputation.

The remaining high-quality SNPs were pre-phased with SHAPEIT [27] v2 software using to

the duoHMM method, to incorporate the known pedigree information and improve phasing

[28], except for the X chromosome for which duoHMM is not applicable. Genotypes from the
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1000 Genomes Project phase 3 haplotype reference panel released in October 2014 were fur-

ther imputed with IMPUTE2 software [29]. An information imputation threshold (Info) > 0.9

was applied to capture most of the common variants (MAF > 5%) with reasonable confidence,

leading to the retention of ~5 million additional variants (SNPs and INDELs).

Replication strategy

We used three different strategies to select SNPs for genotyping in the replication sample,

according to the type of variant. First, for genome-wide suggestive (p-value < 10−5) hits

located outside the HLA region (non-HLA SNPs), we used a linkage disequilibrium (LD)-

based clumping procedure, implemented in PLINK 1.9 [26, 30], to identify independent loci.

This procedure considers all SNPs with p-values for association below 10−5, and forms clumps

of these ‘index’ SNPs, together with all other SNPs in LD with them at an r2 threshold of 0.5

and in close physical proximity (less than 5 Mb away from the index SNPs). Only SNPs with a

p-value below a secondary significance threshold of 10−4 are clumped. As input for the clump-

ing procedure, we used association p-values from the discovery GWAS and LD patterns esti-

mated from the Kinh in Ho Chi Minh City, Vietnam (KHV) population of the 1000 Genomes

phase 3 reference set. We selected one SNP from each clump for genotyping in the replication

sample, based on technical considerations. We applied a second strategy specifically to the

non-HLA SNPs previously associated with leprosy at a genome-wide level of significance (S2

Table). For these SNPs, we used a 10−2 p-value threshold to select the SNPs for the replication

study. Finally, for SNPs located within the HLA region, we used a third strategy, because there

were large numbers of SNPs displaying suggestive evidence of association, including genome-

wide significant (p-value < 5x10-8) results, and complex LD patterns. We selected a set of 88

SNPs located at positions from 30 Mb to 33 Mb on chromosome 6, on the basis of preliminary

association results, LD structure and technical considerations for genotyping, and we geno-

typed these SNPs in the replication sample. We then used these SNPs to impute, in the replica-

tion sample, all the variants for which there was genome-wide suggestive evidence of

association.

For the replication sample, genotypes were determined by FLUIDIGM targeted sequencing

or with SEQUENOM technology. For FLUIDIGM data, we used the Genome Analysis Toolkit

[31] (GATK v3.3) to process the bam files. Individual genomic variant call files (gVCF) were

generated with GATK HaplotypeCaller, and joint genotyping was performed with GATK Gen-

otypeGVCFs. SNPs with a call-rate < 0.95 or significant departure from Hardy-Weinberg

equilibrium (p< 0.001) were removed from the analyses. Individuals with a call-rate < 0.95

were excluded. Imputation in the MHC region was performed with SHAPEIT v2 [27] and

IMPUTE2 [29] software and the 1000 Genomes Project phase 3 haplotype reference panel.

Statistical methods

In the discovery phase, a family-based association test was used to estimate the non-random

transmission of alleles from heterozygous parents to leprosy-affected offspring. For autosomal

SNPs the analysis was carried out under the additive model, with FBATdosage v2.6 to account

for the post-imputation genotype uncertainty [19]. For SNPs on the X chromosome, the asso-

ciation with leprosy was carried out under the additive model with FBAT v2.0.4 [32]. Prior to

association testing with FBAT, the imputed genotype probabilities for the X chromosomal

SNPs were converted into best-guess genotypes using a probability threshold of 0.9. Imputed

SNPs with call-rate below 99% or showing departure from Hardy Weinberg equilibrium

(p< 10−3) after best-guess transformation were excluded. Alleles for which some evidence of

association was obtained were also analyzed by conditional logistic regression, as previously

PLOS PATHOGENS Family-based GWAS of leprosy in Vietnam
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described [33–35]. Briefly, for each affected child, up to three matched unaffected pseudosibs

were formed by all other possible combinations of parental alleles. The real affected offspring

were compared with the pseudosibs in a matched case-control design. This approach gener-

ated odds ratio estimates and made it possible to perform multivariate stepwise regression.

Conditional logistic regression was also used for a combined analysis of the discovery family

and replication case-control samples. In this combined analysis, all cases and controls from the

case-control study were grouped together in a stratum for analysis, in combination with the

strata consisting of the affected offspring and their pseudosibs, as previously described [34,

35]. Conditional logistic analysis was performed with the LOGISTIC procedure implemented

in SAS software v. 9.3 (SAS Institute, Cary, North Carolina, USA).

Case/control association analyses of genotyped and imputed SNPs in the replication sample

were performed by logistic regression analysis, under the additive model, with SNPTEST soft-

ware [29, 36]. A one-tailed test was performed with the alternative hypothesis that the leprosy

susceptibility alleles of the discovery sample were also susceptibility factors in the replication

sample, and a p-value threshold of 0.01 was used in this one-tailed test for the detection of sig-

nificant replication. We also performed a multivariable analysis of the HLA SNPs replicated in

the case/control replication sample, using the best subset selection method of the SAS 9.3 logis-

tic regression procedure.

Results

Genome-Wide Analyses in the Primary Cohort

We carried out a family-based GWAS on leprosy per se in 481 informative families consisting

of 1749 individuals, including 622 offspring with leprosy (S1 Table). For the discovery phase,

5,607,170 high-quality genotyped and imputed autosomal variants were analyzed. Principal

component analysis of our samples with data for individuals from the 1000 Genomes database

revealed clustering with the 1000 Genomes KHV population (S1 Fig). A Manhattan plot of the

association with leprosy per se is shown in Fig 1. The most significant results were obtained for

the HLA region, in which genome-wide significant association with leprosy was detected for

six SNPs (p-value < 5x10-8) (Table 1), and genome-wide suggestive association with leprosy

was detected for 358 SNPs (p-value < 10−5). Outside the HLA region, there was no significant

deviation from expectations on the quantile-quantile plot of the GWAS results (S2 Fig). In

total, 21 SNPs from eight independent clusters (S2 Table) on chromosomes 4, 5, 9, 10, 11, 14

and 21 (2 clusters) displayed genome-wide suggestive association with leprosy (p-value< 10−5).

Finally, among the 33 genome-wide significant previously published non-HLA hits, evidence

of association (p< 10−2) with the same risk allele as in the original study was found for five of

these SNPs in the Vietnamese discovery sample (S3 Table).

Replication study

Outside the MHC region. Within each of the 8 loci for which suggestive association with

leprosy was detected, we genotyped one SNP in an independent replication cohort of 1189 lep-

rosy cases and 674 controls. We also genotyped the 5 previously published non-HLA hits repli-

cated in the discovery cohort with a p-value threshold of 10−2. In total, 10 of the 13 SNPs

satisfying the quality control filters in the replication cohort were tested for association in the

1181 leprosy cases and 668 controls. No evidence of replication was obtained for any of the

suggestive GWAS hits that could be tested in the replication sample (S2 Table). For two sug-

gestive GWAS hits, on chromosomal region 4q26 and 9q31.1, the genotyping failed in the rep-

lication sample. Replication was observed for two previously published hits fulfilling the

genotyping quality criteria (Table 1 and S3 Table). The first, rs3764147, located on
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chromosome 13, is a missense variant (p.Ile254Val) of the LACC1 gene with a highly signifi-

cant genome-wide p-value in the combined analysis of the discovery family and the replication

case/control samples (p = 5.1x10−14). The odds ratio (OR) for developing leprosy for AG sub-

jects vs. GG subjects (or AA vs. AG) was 1.52 [95% confidence interval: 1.41–1.63] (Table 2).

This SNP belongs to a bin of 10 SNPs in strong LD (r2 > 0.8) in the 1000 Genomes KHV popu-

lation that are located either within or just downstream of the LACC1 gene (S4 Table). The

Fig 1. Manhattan plot of the results for association with leprosy per se in the family-based GWAS. Manhattan plot

showing results of the family-based genome-wide association study of leprosy per se in 622 affected offspring, for

5,607,170 variants. The–log10(p-value) for each variant (y-axis) is plotted according to its chromosomal position (x-
axis, build hg19). The red and blue lines indicate the genome-wide significance (5.0x10-8) and suggestive (10−5)

thresholds, respectively.

https://doi.org/10.1371/journal.ppat.1008565.g001

Table 1. Association statistics in the discovery and replication samples for the six genome-wide significant HLA SNPs and the five previously published non-HLA

SNPs replicated in the discovery GWAS.

Discovery Replication

SNP Chr Position$ m/M Type MAF OR� [95% CI] P MAF P# OR*# [95% CI]

Significant HLA hits
rs3095309 6 31091475 T/C imputed 0.476 1.6 [1.43–1.77] 8.2x10-09 0.44 9.46x10-05 1.30 [1.16 –Inf]

rs3094194 6 31136240 G/A imputed 0.46 1.71 [1.53–1.88] 1.4x10-08 0.44 5.03x10-06 1.36 [1.21 –Inf]

rs2844633 6 31096189 T/C imputed 0.269 0.56 [0.38–0.75] 1.7x10-08 0.30 4.20x10-04 0.79] 0–0.89]

rs2844634 6 31096184 C/G imputed 0.269 0.56 [0.38–0.75] 1.7x10-08 0.30 4.65x10-04 0.79] 0–0.89]

rs2394945 6 31220971 G/C imputed 0.353 1.73 [1.54–1.93] 4.2x10-08 0.35 9.20x10-07 1.42 [1.25 –Inf]

rs3094196 6 31093947 G/A imputed 0.269 0.57 [0.38–0.75] 4.9x10-08 0.30 4.70x10-04 0.79 [0–0.89]

Previously published non-HLA hits replicated in the discovery GWAS
rs3762318 1 67597119 G/A genotyped 0.05 0.52 [0.12–0.93] 4.41x10-03 0.06 1.57x10-01 0.86 [0–1.10]

rs2221593 1 212873431 T/C genotyped 0.229 1.33 [1.13–1.53] 1.94x10-04 Failed call rate< 95%
rs2058660 2 103054449 G/A imputed 0.414 0.75 [0.57–0.92] 5.66x10-03 0.40 6.46x10-02 0.90 [0–1.01]

rs6871626 5 158826792 A/C imputed£ 0.324 0.71 [0.58–0.86] 5.12x10-04 0.32 1.37x10-05 0.74 [0–0.83]

rs3764147 13 44457925 G/A genotyped 0.396 1.41 [1.18–1.67] 6.56x10-05 0.39 2.36x10-11 1.61 [1.43 –Inf]

m/M = minor/Major alleles; MAF = minor allele frequency; OR = odds ratio; CI = confidence interval
$ positions are given according to the hg19 genome build

� with respect to the minor allele
# one-tailed test
£ imputed using the 1000 Genomes phase 1 reference panel

Bold typeface indicates SNPs significant in the replication sample

https://doi.org/10.1371/journal.ppat.1008565.t001
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second replicated hit, rs6871626, is located on chromosome 5, 69 kb 5’ to IL12B. A borderline

non-significant genome-wide p-value of 6.4x10-8 was obtained for this SNP, with an OR of

developing leprosy for AC vs. AA (or CC vs. AC) of 0.73 [0.61–0.84]. This SNP is not part of

the 1000 Genomes phase 3 reference panel and no LD information was available for the KHV

population, but it was successfully sequenced in the genome part of The Genome Aggregation

Database (gnomAD) [37].

Within the MHC region. We genotyped 88 SNPs within the MHC region, and used them

to impute the 364 SNPs with a discovery p-value < 10−5. More than 98% of these SNPs (358/

364) were imputed with an information score> 0.8. The six HLA SNPs with genome-wide sig-

nificance were replicated, all with a one-tailed p-value < 5x10-4 (Table 1). In addition, 319 of

the 358 genome-wide suggestive HLA SNPs were replicated, with a one-tailed p-value thresh-

old of 0.01. They clustered in two intervals, from 31 Mb to 31.5 Mb and from 32.5 Mb to 32.7

Mb (Fig 2, S5 Table). We further investigated the number of SNPs in the HLA region required

to capture the full association signal, by performing a multivariable analysis. This analysis was

conducted in the replication sample, which provided the most reliable set of SNPs and facili-

tated the analysis because of its case/control nature. Before performing this multivariable anal-

ysis, we clumped the SNPs, as described in the methods section, on the basis of their

genotyping status in the replication sample (genotyped SNPs were favored over imputed

ones), their one-tailed replication p-value and a LD r2 threshold of 0.5.

The clumping procedure identified 18 index SNPs with one-tailed p-value< 0.01, which

were then tested in the multivariable model with the best subset method (SCORE) imple-

mented in the logistic regression procedure of the SAS software (S6 Table). We found that

three SNPs (rs3187964, rs114598080 and rs1265048) were required to capture the full associa-

tion signal in the HLA region (S7 Table). The addition of a fourth SNP did not significantly

improve the multivariable model (p-value = 0.23). The most significant SNP in the multivari-

able model was rs3187964 (multivariable p-value = 7.8x10-8). The strength of association was

much lower for rs114598080 (multivariable p-value = 3.75x10-5), and even lower for

rs1265048, (multivariable p-value = 0.011). These three SNPs were sufficient to account for the

HLA association signal found in our GWAS.

We then investigated in more detail the location, LD in the 1000 Genome KHV population

and univariate results in the combined sample of these three HLA SNPs (Table 2). The

Table 2. Association statistics in the discovery GWAS, the case/control replication and the combined GWAS and replication samples for the five independent SNPs

identified by multivariate analysis.

SNP (chr:position$) m/M Gene MAF@ Discovery GWAS Replication Combined GWAS and

replication sample

P value OR� [95% CI] P value# OR�# [95% CI] P value OR� [95% CI]

rs1265048 (6:31081409) C/T C6orf15 0.49 8.72x10-06 0.63 [0.52–0.63] 1.58x10-06 0.72 [0–0.81] 5.53x10-11 0.69 [0.58–0.80]

rs114598080 (6:31255442) A/G HLA-C 0.10 3.90x10-06 1.85 [1.39–2.44] 4.39x10-11 2.06 [1.7 –Inf] 8.77x10-13 1.47 [1.46–1.48]

rs3187964 (6:32605207) C/G HLA-DQA1 0.41 1.28x10-06 1.52 [1.25–1.85] 5.28x10-13 1.72 [1.51 –Inf] 8.35x10-16 1.67 [1.55–1.80]

rs3764147 (13:44457925) G/A LACC1 0.35 6.56x10-05 1.41 [1.18–1.67] 2.36x10-11 1.61 [1.49-Inf] 5.06x10-14 1.52 [1.41–1.63]

rs6871626£ (5:158826792) A/C IL12B 0.35 5.12x10-04 0.71 [0.58–0.86] 1.37x10-05 0.74 [0–0.86] 6.44x10-08 0.73 [0.61–0.84]

m/M = minor/Major alleles; MAF = minor allele frequency; OR = odds ratio; CI = confidence interval
$ positions are given according to the hg19 genome build
@ MAF was estimated from the 939 leprosy unaffected parents of the discovery GWAS and 668 controls of the replication sample

� with respect to the minor allele
# one-tailed test
£ imputed using the 1000 Genomes phase 1 reference panel

https://doi.org/10.1371/journal.ppat.1008565.t002
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rs3187964 SNP belongs to the HLA interval corresponding to the HLA class II region (Fig 2B).

In the combined analysis of the discovery and replication samples, it gave a univariate p-value

of 8.3x10-16 with an OR for developing leprosy for CG vs. GG (or CC vs. CG) of 1.67 [1.55–

1.80]. This SNP is located in the 5’ untranslated region of the HLA-DQA1 gene and was not in

strong LD (r2 > 0.8) with other SNPs in the 1000 Genomes KHV population in an LDproxy

analysis [38]. The other two SNPs are in the first HLA interval, which includes HLA class I

genes, together with many other genes (Fig 2A). The rs114598080 SNP, located in a CTCF

binding site (ENSR00000262841) 15.6 kb upstream of the HLA-C gene, gave a univariate p-

value of 8.8x10-13 in the combined analysis, with an OR for developing leprosy for AG vs. GG

(or AA vs. AG) of 1.47 [1.46–1.48]. This SNP belongs to a bin of 245 SNPs in strong LD that

span almost 200 kb (S8 Table). The third SNP, rs1265048, is located near the C6orf15 (1.07

kb), PSORS1C1 (1.12 kb), and CDSN (1.2 kb) genes and it gave a univariate p-value of 5.5x10-

11 in the combined analysis, with an OR for developing leprosy for CT vs. TT (or CC vs. CT) of

0.69 [0.58–0.80]. It was not in strong LD with other SNPs in the 1000 Genomes KHV popula-

tion in LDproxy analysis.

Discussion

We performed the first family-based GWAS for leprosy in a Vietnamese population. The main

susceptibility loci identified were in the HLA region. The most significant SNP, rs3187964, is

located in the MHC class II region, in the 5’ untranslated region of HLA-DQA1 and did not

display strong LD (r2 > 0.8) with other SNPs in the region in the 1000 Genomes KHV

Fig 2. Regional association plot for HLA class I (A) and class II (B) SNPs in the case/control replication sample. Locus zoom plot showing one-tailed p-values for

association within the HLA region. The three independent SNPs identified by multivariate analysis, rs1265048 (A), rs114598080 (A) and rs3187964 (B), are represented

as blue, red and purple diamonds, respectively. The colors indicate the pairwise linkage disequilibrium (r2) with the three independent SNPs, as calculated in the 1000

Genomes KHV population. SNPs not found in the reference populations are shown in gray.

https://doi.org/10.1371/journal.ppat.1008565.g002
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population. Several studies have consistently reported the involvement of HLA class II alleles,

mostly HLA-DRB1 alleles, as key genetic factors controlling susceptibility to various forms of

leprosy [11, 18, 39–41]. A recent HLA imputation-based meta-analysis in the Chinese popula-

tion identified HLA-DRB1 and HLA-DQA1 alleles and specific amino acids of HLA-DRβ1 as

independent protective factors for leprosy [39]. Interestingly, in the GTex project V7 (https://

gtexportal.org/home/), rs3187964 was identified as a strong eQTL for several HLA class II

genes with p-values below 10−50 for HLA-DQB1, HLA-DQB2, HLA-DQA1 and HLA-DQA2 in

multiple tissues, including skin and nerves (S9 Table). It was also found to be a splice QTL for

HLA-DQA1 (nominal p-value = 3.3x10-7, FDR = 0.000155). HLA-DQ genes have been impli-

cated in several autoimmune and inflammatory diseases [42] and, recently, in susceptibility to

streptococcal disease [43]. Leprosy patients are prone to develop acute inflammatory reaction,

T1R, and we have recently shown a striking overlap between T1R and inflammatory bowel dis-

ease (IBD) risk alleles [24]. However, SNPs of the HLA region were not major risk loci for T1R

suggesting an effect of HLA SNPs on leprosy per se susceptibility and not on T1R. Interest-

ingly, there are several examples of loci with mirror genetic effects between infectious diseases

and inflammatory disorders, where the allele protective against infection is deleterious for

inflammatory disorders, consistent with the view that the current high frequency of inflamma-

tory/autoimmune diseases may reflect past selection for strong immune responses to combat

infection [44, 45]. Additional studies are needed to precise the role of HLA-DQ genes in lep-

rosy susceptibility with respect to T1R and inflammatory diseases.

The other two independent SNPs associated with leprosy in the HLA region are located in

the class I region. The most significant, rs114598080, belongs to a large bin of SNPs in strong

LD spanning the HLA class I genes HLA-C and HLA-B and the non-HLA genes CCHCR1,

TCF19, POU5F1, PSORS1C3, and HCG27. The complex LD structure makes it difficult to

identify the gene related to this association hit. Nevertheless, one SNP of the bin, rs2394885,

was shown to tag the HLA-C�15:05 allele in the Vietnamese population [46]. This SNP was

also validated as a leprosy susceptibility locus in an Indian population [46]. In the Chinese

HLA imputation-based meta-analysis, HLA-C�08:01 and specific HLA-C amino acids were

found to be independent protective and risk factors for leprosy [39]. The rs114598080 SNP is

also in strong LD with a possibly damaging missense variant of the CCHCR1 gene. CCHCR1 is

a protein of unknown function that was recently found to have properties typical of P body-

resident proteins [47]. P bodies are evolutionary conserved cytoplasmic components that con-

tain proteins involved in mRNA degradation, translation repression, and mRNA storage [48].

Interestingly, P body core components were recently shown to positively regulate plant pat-

tern-triggered innate immunity [49]. In addition, rs114598080 is a strong eQTL in sun-

exposed skin and tibial artery for POU5F1 (p< 10−10), also known as OCT4, which encodes a

master transcription factor for pluripotent cell self-renewal [50] (S10 Table). The second SNP

of the HLA class I region, rs1265048, is located 1.1 kb upstream of C6orf15, 1.1 kb upstream of

PSORS1C1 and 1.2 kb upstream of CDSN. Interestingly, the SNP correlates with the expression

of several genes, including HLA-C (minimum p-value = 1.3x10-5), and POU5F1 (minimum p-

value = 2.8x10-5) in particular, sporadically in some tissues (S11 Table).

In addition to the HLA locus, we were able to consistently replicate the LACC1 and IL12B
loci previously associated with leprosy in the Chinese population both in the discovery GWAS

and the replication sample. The LACC1 leprosy susceptibility SNP rs3764147 is a missense var-

iant (p.Ile254Val) first identified by a leprosy GWAS in the Han Chinese population [9] and

then replicated in Indian, African [51], Vietnamese [20], Yi [52], Wenshan and Yuxi [16] Chi-

nese populations. The leprosy susceptibility allele was also shown to be associated with an

increased susceptibility to Crohn’s [53, 54] and inflammatory bowel diseases [55, 56]. SNP

rs3764147 has a PHRED-scaled CADD score [57, 58] of 16, placing it in the top 2.5% of
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deleterious variants relative to all possible reference genome single-nucleotide variants. Inter-

estingly, recent functional studies have shown that LACC1 encodes a central regulator of the

metabolic function and bioenergetic state of macrophages [59]. Furthermore, the rs3764147 G

risk allele is associated with lower levels of innate receptor-induced activity in primary human

monocyte-derived macrophages [60], potentially accounting for the higher susceptibility to

intestinal inflammatory diseases and leprosy.

SNP rs6871626 is located in an intergenic region on chromosome 5. In a previous genome-

wide meta-analysis study of ulcerative colitis, the most likely candidate gene assigned to this

SNP by Gene Relationship Across Implicated Loci (GRAIL) pathway analysis was IL12B [61].

GRAIL is a statistical tool that assesses the degree of relatedness of a list of disease regions by

text mining PubMed abstracts, for the annotation of candidate genes for disease risk [62].

IL12B encodes IL-12p40, which is common to two interleukins, IL-12 and IL-23. Both IL-12-

and IL-23-dependent signaling pathways play critical roles in human antimycobacterial

immunity, through the induction of IFN-γ [63, 64]. Autosomal recessive complete IL12B defi-

ciency is a genetic etiology of Mendelian susceptibility to mycobacterial diseases (MSMD), a

rare condition characterized by predisposition to clinical disease caused by weakly virulent

mycobacteria, such as BCG vaccines and environmental mycobacteria, in otherwise healthy

individuals [65]. The rs6871626 C allele is associated with a risk of leprosy, but has been shown

to be protective against ulcerative colitis [61], ankylosing spondylitis and Crohn’s disease [66],

inflammatory bowel disease [55] and Takayasu arteritis [67]. Interestingly, in patients with

Takayasu arteritis, the rs6871626 C allele, which confers susceptibility to leprosy, was associ-

ated with abnormally low levels of IL-12 (composed of IL-12p40 and IL-12p35) in plasma and

low levels of both IL-12p40 and IL12 in the culture supernatants of patient monocytes/macro-

phages stimulated with LPS [68].

Our study had some limitations. First, our sample size was limited with 622 affected off-

spring. Assuming 622 trios, the power of the transmission disequilibrium test was below 80%

for SNPs with a MAF of 0.05 with a relative risk below 2 or for SNPs with a MAF of 0.3 with a

relative risk below 1.5, and we may have missed novel associations and failed to replicate some

of the previously identified loci with modest genetic effect size. Second, as in all leprosy studies,

the case definition was purely clinical. Although leprosy was diagnosed by two independent and

experienced physicians, we cannot exclude some misdiagnosis which may affect the power of

the study. Third, two out of eight of the non-HLA suggestive hits and one out of five of the pre-

viously published non-HLA hits could not be tested for association in the replication sample

because of genotyping failure. Finally, the investigation of the identified loci was based solely on

in silico analysis using publicly available resources and not on functional studies. In conclusion,

we performed the first family-based GWAS of leprosy per se in the Vietnamese population. The

strongest association signals were observed for SNPs within the HLA region. We also validated

the independent impact of two additional variants, one in LACC1 and the second close to

IL12B, recently reported to play functional roles. We further broke down the association signal

within the HLA region into three independent signals, two mapping to the HLA class I region,

and one, the leading signal, located in the class II region close to HLA-DQA1. More refined

analyses based on direct HLA typing, which is lacking so far, are required to characterize further

the precise contribution of HLA class I and class II alleles to leprosy susceptibility.
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