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ARTICLE

Comprehensive characterization of claudin-low
breast tumors reflects the impact of the cell-of-
origin on cancer evolution
Roxane M. Pommier 1,2,3, Amélien Sanlaville 1,2, Laurie Tonon3, Janice Kielbassa3, Emilie Thomas3,

Anthony Ferrari3, Anne-Sophie Sertier3, Frédéric Hollande 4, Pierre Martinez1,2, Agnès Tissier 1,2,

Anne-Pierre Morel1,2, Maria Ouzounova 1,2 & Alain Puisieux 1,2,5✉

Claudin-low breast cancers are aggressive tumors defined by the low expression of key

components of cellular junctions, associated with mesenchymal and stemness features.

Although they are generally considered as the most primitive breast malignancies, their

histogenesis remains elusive. Here we show that this molecular subtype of breast cancers

exhibits a significant diversity, comprising three main subgroups that emerge from unique

evolutionary processes. Genetic, gene methylation and gene expression analyses reveal that

two of the subgroups relate, respectively, to luminal breast cancers and basal-like breast

cancers through the activation of an EMT process over the course of tumor progression. The

third subgroup is closely related to normal human mammary stem cells. This unique sub-

group of breast cancers shows a paucity of genomic aberrations and a low frequency of TP53

mutations, supporting the emerging notion that the intrinsic properties of the cell-of-origin

constitute a major determinant of the genetic history of tumorigenesis.
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Breast cancer is a highly heterogeneous group of diseases
with variable biological and clinical behaviors. Providing
early insights into this diversity, gene-expression profiling

analyses initially resulted in the identification of four clinically
relevant molecular subtypes, known as intrinsic subtypes (luminal
A, luminal B, HER2-enriched and basal-like, according to the
PAM50 classification) mostly corresponding to hormone receptor
and HER2 status, and a normal breast-like group1–4. Among
these intrinsic subtypes, the basal-like subtype appears to be the
most distinct, as it is characterized by the unique expression of
cytokeratins typically expressed by the basal layer of the skin and
a very low level of expression of luminal-related genes2,5. This
observation led to the hypothesis that breast cancers may arise
from the transformation of two distinct cell types of origin or
developmental stages of mammary epithelial cell development,
one generating basal-like tumors and the other non-basal-like
malignancies5. Although appealing in its simplicity, this model
overlooks the potential reprogramming of lineage-restricted
populations initiated by an oncogenic event or a microenviron-
mental signal over the course of tumor development6–8. More-
over, it does not account for the intrinsic diversity of each breast
cancer subtype, notably basal-like tumors known for their great
heterogeneity9–11. An additional intrinsic subtype of breast can-
cers, known as claudin-low, has recently been identified in human
and mouse tumors and in breast cancer cell lines, showing several
common features with basal-like tumors and reflecting the
diversity of tumors with a low luminal differentiation status4,12.
Basal-like and claudin-low tumors form the majority of triple-
negative breast cancers (TNBCs), an aggressive subgroup of
breast malignancies defined as tumors lacking expression of the
estrogen receptor (ER), progesterone receptor (PR), and HER2. A
hallmark of the claudin-low subtype is the low expression level of
critical cell–cell adhesion molecules, including claudins 3, 4, and
7, occludin, and E-cadherin. Tumors of this subtype are highly
enriched in mesenchymal traits and stem cell features and are
therefore considered as the most primitive breast cancers13.
Although in vivo preclinical data suggested that basal-like tumors
arise from the transformation of a luminal progenitor (LP)14, the
putative cell-of-origin of claudin-low tumors remains unknown.
The prevailing hypothesis is that, over the course of tumor pro-
gression, basal cancer cells undergo an epithelial-mesenchymal
transition (EMT) in response to acquired oncogenic events and/
or microenvironmental signals, thereby gaining mesenchymal
and stemness features15–17. An alternative hypothesis is that
claudin-low tumors originate from an early epithelial precursor
with inherent stemness features4,13. To gain further insight into
the developmental origin of claudin-low tumors, we first sought
to analyze their genomic architecture. Indeed, we have recently
demonstrated that, whereas the oncogene-driven transformation
of mature luminal (mL) cells and progenitor luminal cells triggers
massive oncogene-induced DNA damage and an early onset of
chromosomal instability (CIN), normal human mammary stem
cells (MaSCs) can withstand an aberrant mitogenic activity18. The
endogenous expression of the ZEB1 EMT-inducing transcription
factor prevents replication and oxidative stress, leading to a
process of malignant transformation in the absence of exacer-
bated genomic instability18. As basal-like breast cancers generally
exhibit numerous genomic aberrations, we thus speculated that
the extent of genomic aberrations might be used as a molecular
indicator of the developmental origin of claudin-low breast
cancers.

To comprehensively characterize the claudin-low breast tumor
subtype, we used a multi-omics approach that reveal the existence
of three distinct subgroups with specific transcriptomic, epige-
netic, and genetic characteristics, strongly supporting the
hypothesis of different cells-of-origin.

Results
Selection of claudin-low tumors. Claudin-low tumors exhibit
marked immune and stromal cell infiltration, when compared
with all other breast cancer subtypes4,19. As gene expression
analyses do not allow to accurately discriminate mesenchymal
cancer cells from normal stromal cells, we used the allele-specific
copy number analysis of tumors (ASCAT) copy number-based
tumor purity estimation method to assess tumor cell fraction20

(Supplementary Fig. 1a). To avoid any substantial bias due to
non-tumor cell contamination, a stringent purity threshold was
determined by applying Wilcoxon test, for which the degree of
contamination of claudin-low tumors was not statistically dif-
ferent from that of non-claudin-low tumors, thus enabling a
comparable distribution of tumors (Supplementary Fig. 1b).
Using this stringent threshold, 45 out of 152 tumors classified as
claudin-low from Molecular Taxonomy of Breast Cancer Inter-
national Consortium (METABRIC) were selected for further
studies. Demonstrating an unexpected degree of diversity, only
35.6% of these tumors were classified as TNBCs (Supplementary
Fig. 1d). This result was not due to the purity selection, as the
percentage of TNBCs within all claudin-low tumors was similar
before applying the purity threshold (Supplementary Fig. 1c). Of
note, only four normal-like tumors were estimated as pure. Due
to the lack of statistical power, they were excluded from sub-
sequent analyses.

Identification of CNA-devoid claudin-low tumors. We next
analyzed claudin-low tumors using the stratification based on
gene expression and copy number alterations (CNAs), previously
defined by Curtis et al.21,22 (Fig. 1a). As expected for aggressive
neoplasms, basal-like tumors mostly belonged to the integrative
cluster 10, characterized by multiple CNAs affecting most chro-
mosomes. Luminal A and B tumors were distributed across
clusters 1, 2, 3, 6, 7, 8, and 9, whereas HER2-positive tumors were
mainly found in cluster 5. Interestingly, claudin-low tumors were
stratified into three main clusters, again demonstrating a sig-
nificant heterogeneity. Only 17.8% were found in cluster 10,
whereas 48.8% and 17.8% were found in integrative clusters 4 and
3, respectively, regardless of tumor purity when compared with
non-claudin-low tumors (Supplementary Fig. 2). Both integrative
clusters 3 and 4 are marked by a paucity of copy number and cis-
acting alterations. Integrative cluster 3 displays a simplex pattern
of rearrangements, dominated by whole arm gain of chromosome
1q and 16p and loss of 16q11,21,22. It was initially described as
essentially composed of luminal breast tumors. Integrative cluster
4 includes both ER-positive and ER-negative cases. It was defined
as a CNA-devoid subgroup, with an expression profile dominated
by immune-related genes, leading to the hypothesis that it may be
essentially composed of samples with a high infiltration of normal
cells11. As the method used in the present study to select tumors
with a high index of purity does not rely on gene expression
patterns, it argues against this hypothesis. Nevertheless, to for-
mally demonstrate the existence of claudin-low tumors with a flat
genomic landscape, we analyzed the genomic architecture of
tumor samples exhibiting a very low level of aberrations (fraction
of genome altered, FGA < 1%). After having previously removed
germline copy number variations (CNVs), we analyzed B allele
frequency (BAF) and log R ratio (LRR) profiles of single-
nucleotide polymorphisms (SNPs) localized in genomic regions
of deletion (LRR segment mean cutoff value <−0.4) (Fig. 1b and
Supplementary Fig. 3a, c). This analysis led to the identification of
regions of single-copy allelic loss displaying a clear separation
between BAF values (<0.8 and >0.2). As previously demonstrated,
this observation is incompatible with a massive contamination of
the tumor tissue by normal cells23. Consistent with these data, the
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analysis of somatic mutations highlighted the presence of several
point mutations with a variant allele frequency higher than 0.4
(Fig. 1c and Supplementary Fig. 3b). These two results unequi-
vocally demonstrate the existence of claudin-low tumors that
develop in the absence of gross CIN.

Genomic diversity of claudin-low tumors. Although most
claudin-low tumors are diploid (Fig. 2a), the extent of FGA was
highly variable across tumors (Fig. 2b), confirming their intrinsic
diversity24,25. The use of Gaussian finite mixture models revealed
a trimodal distribution, reflecting the existence of three subgroups
of claudin-low tumors relative to their level of FGA (Fig. 2c, d).
The subgroup 1 of claudin-low tumors (CL1), defined by a low
FGA (<10%), was mostly composed of ER-negative tumors that
were all stratified into integrative cluster 4 (Fig. 2d–f). The sub-
group 2 (CL2) showed an intermediate level of FGA (>10% and
<30%), similar to that of luminal A breast tumors. Consistent
with this finding, CL2 was mostly composed of ER-positive
tumors mainly stratified in two luminal-related clusters, whereas
35% of CL2 tumors belonged to cluster 4. The subgroup 3 (CL3)
displayed a high FGA (>30%), similar to the one found in basal-
like breast cancers. Consistent with this notion, 33% of CL3
tumors were classified into the genomically unstable cluster 10.
However, this subgroup was heterogeneous, with both ER-
negative or ER-positive tumors, and a significant fraction of CL3
tumors were found in luminal-related clusters and in cluster 4. Of

note, although these analyses were performed on tumors selected
for their high tumor purity, similar data were obtained when
studying the whole cohort of claudin-low tumors (Supplementary
Fig. 4), further strengthening the characterization of the three
claudin-low subgroups.

Distinct gene expression signatures of claudin-low subgroups.
Gene-set enrichment analysis (GSEA) was next used to identify
pathways differentially regulated among the three claudin-low
subgroups, by comparing one with the other two (CL1 vs. CL2/3,
CL2 vs. CL1/3, and CL3 vs. CL1/2). More than 15,000 pathways,
available in H (Hallmarks), C2 (encompassing curated gene sets
from literature and canonical pathways such as KEGG, REAC-
TOME, or BIOCARTA), and C5 (comprising GO pathways) gene
sets from Molecular Signature Database (MSigDB), were tested.
These analyses highlighted as follows: (i) an enrichment in stem
cell-related signatures in CL1, (ii) an enrichment in luminal-
related signatures in CL2, and (iii) an enrichment in cell cycle-
related pathways in CL3 tumors (Fig. 3a). Of note, global gene
expression signatures demonstrated that the CL2 and
CL3 subgroups showed lower luminal- and basal-related sig-
nature scores, respectively, compared with luminal- and basal-like
breast tumors, while exhibiting a significant enrichment in
invasiveness-related signatures (Supplementary Fig. 5a, b). We
then performed single-sample GSEA (ssGSEA) analyses to
determine the differentiation profile of the three claudin-low
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subgroups. Gene expression signatures for MaSCs, LPs, and mL
cells were generated based on the transcription profiles of sub-
populations of normal human mammary epithelial cells isolated
from reduction mammoplasty tissues, as shown in Morel et al.18

(Supplementary Data 1). Consistent with previous GSEA analysis,
CL1 tumors showed a strong enrichment in the MaSC signature,
whereas CL2 tumors exhibited a mL signature (Fig. 3b). Again,
CL3 tumors showed a significant heterogeneity with a trend
toward the LP signature. Notably, very similar data were obtained
when using an alternative set of MaSC, LP, and mL signatures14

(Fig. 3c).

Identification of a gene expression-based classifier. We next
generated a gene expression-based classifier by using the nearest
shrunken centroid method26, with the objective of discriminating
claudin-low subgroups. A claudin-low gene list of 137 genes
discriminating the 3 claudin-low subgroups was thus created
(Supplementary Fig. 6a, b). This expression-based classifier
showed an accuracy of 91% when compared with the FGA-based
classification using Gaussian finite mixture models (Supplemen-
tary Fig. 5c, d). The classifier was then applied to claudin-low
samples from The Cancer Genome Atlas Network (TCGA;
https://www.cancer.gov/about-nci/organization/ccg/research/
structural-genomics/tcga) and the Cancer Cell Line Encyclopedia
(CCLE27), and the level of FGA was used as a readout to verify
the characteristics of each claudin-low subgroup. Validating the
accuracy of our classifier, CL1, CL2, and CL3 tumors and cell

lines showed low, moderate, and elevated FGA levels, respectively
(Supplementary Fig. 6e, f). Of note, we performed a pathway
analysis of CL1 discriminant genes that revealed an enrichment in
stem cell and pediatric cancer markers (Supplementary Fig. 6g).

Distinct gene methylation profiles of claudin-low subgroups.
Differentially methylated gene analysis was next performed in
claudin-low subgroups followed by pathway-enrichment analysis,
using over 15,000 pathways available in MSigDB (HALLMARKS,
C2, and C5 gene sets) (Supplementary Fig. 7). When compared
with CL2 and CL3, the CL1 subgroup presented 40 differentially
methylated genes, and among them 75% were hypomethylated
and enriched in stemness and EMT markers (Fig. 4a). The
CL2 subgroup encompassed 68 differentially methylated genes
compared with CL1 and CL3, and among them 88% were
hypermethylated and enriched in basal-like and EMT pathways
(Fig. 4b). Finally, the CL3 subgroup was characterized by 219
differentially methylated genes compared with CL1 and CL2;
among them, 58% were hypermethylated and related to luminal
pathways and 42% presented a hypomethylation profile and were
associated with basal-like pathways (Fig. 4c). To correlate these
distinct gene methylation profiles with gene expression, we per-
formed a gene expression analysis of stemness and EMT gene
markers in all three claudin-low subgroups and in the intrinsic
subtypes of breast cancers from METABRIC, TCGA, and CCLE
cohorts. The CL1 subgroup had the highest score for stemness-
(ALDH1A1, PROCR) and EMT- (mesenchymal markers: ZEB1,
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VIM, CDH2; epithelial markers: EPCAM, CDH1) related genes,
whereas CL2 and CL3 displayed an intermediate score compared
with CL1 tumors and with their relative luminal/basal counter-
parts (Supplementary Fig. 8).

Distinct oncogenic pathways in claudin-low subgroups. To
characterize the biological pathways driving the development of
the three subgroups of claudin-low tumors, we determined, for
each breast tumor sample from METABRIC and TCGA cohorts,
ssGSEA scores for all MSigDB hallmark gene-set signatures. We
then conducted an unsupervised clustering based on the median
score of each of the 48 biological processes computed per breast
molecular subtype (Fig. 5). Interestingly, in both datasets, the
three claudin-low subgroups clustered together in a specific
branch of the dendogram, which further discriminated CL1 from
the CL2/CL3 tumors, highlighting the specific biological processes
distinguishing claudin-low from non-claudin-low and CL1 from
the CL2/CL3 tumors. Furthermore, unsupervised pathway clus-
tering identified specific biological functions differentially enri-
ched in claudin-low, basal, and luminal breast tumors. Among
the pathways specifically enriched in all claudin-low subgroups,
some of them were linked to immunity function, supporting the
hypothesis of privileged infiltration by immune cells within the
microenvironment of claudin-low tumors4,19. Additional gene
expression analyses performed on METABRIC and TCGA

cohorts using two different cellular signature deconvolution
algorithms confirmed that these tumors were highly infiltrated by
immune cells (Supplementary Fig. 9a–d). Nevertheless, unsu-
pervised clustering of microenvironment signatures (immune and
non-immune cell subsets) did not allow to discriminate the dif-
ferent claudin-low subgroups (Supplementary Fig. 9e–h). The
additional pathways specifically enriched in all claudin-low sub-
groups included the TP53-dependent pathway, the mitogen-
activated protein kinase (RASMAPK) signaling pathway and a
differentiation/EMT-related pathway (Fig. 5). CL1 presented the
highest enrichment in claudin-low-related pathways, when
compared with all other subtypes. Of note, the CL2 subgroup
displayed a concomitant enrichment in claudin-low and luminal
pathways, whereas the CL3 subgroup was enriched in claudin-low
and basal pathways (Fig. 5).

To validate these observations, we generated ssGSEA scores for
the pathways previously identified in Fig. 5 (EMT, RAS/MAPK,
proliferation, estrogen, and DNA damage response (DDR)), using
MSigDB C2 curated gene sets (KEGG, GO, REACTOME…). The
same pathways were also analyzed at the protein level using
reverse-phase protein array (RPPA) data from TCGA28. Support-
ing our previous results, CL2 and CL3 showed, among the three
claudin-low subgroups, the highest score for luminal- (estrogen-
related response) and basal-related (proliferation and DDR)
signatures, respectively (Supplementary Fig. 10). Nevertheless,
statistical analyses revealed a significantly attenuated phenotype
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Fig. 3 Claudin-low subgroups show distinct gene expression signatures relative to their differentiation status. a GSEA comparing global gene
expression of each claudin-low subgroup from the METABRIC cohort to the two others. The three pathways with the highest and lowest enrichment scores
are represented (>15,000 tested pathways—NES ranking). b, c Gene expression analysis for each molecular subtype of (b) MaSC1/2/3, LP, and mL1/2
transcriptomic signatures (generated from Morel et al.18 data) and (c) previously published MaSC, LP, and mL transcriptomic signatures (from Lim et al.14

publication). The CL1 subgroup displays strong stemness features, whereas CL2 and CL3 present luminal- and basal-like transcriptomic characteristics,
respectively. Wilcoxon tests. Boxplot: center line, median; box limits, upper and lower quartiles; whiskers, minimum to maximum; all data points are shown.
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compared with their related molecular subtype. Furthermore,
both CL2 and CL3 showed an activation of the EMT process
(Fig. 6a, b, g), coherent with the downregulation of hormone (in
CL2) and proliferation/DDR (in CL3) signatures, compared with
luminal and basal tumors, respectively (Supplementary Fig. 10
and Fig. 6g). Moreover, CL1 displayed a low proliferation activity
and a low DDR (Supplementary Fig. 10a, b, e, f), as well as a
strong TP53 signaling pathway signature associated with a low
frequency of TP53mutations (Fig. 6c, d, g). Finally, CL1 exhibited
a high activation of the RAS-MAPK signaling pathway, a feature
also found in CL2 and CL3, although at a lower level (Fig. 6e–g).

Consistent with these findings, claudin-low cell lines were
significantly more sensitive to MEK inhibitors (MEKi) than
non-claudin-low cell lines (Fig. 6h).

Altogether, our data strongly support the notion that the
CL1 subgroup of claudin-low tumors was related to normal
MaSCs, CL2 to normal mL cells and to luminal breast cancers,
and CL3 to basal-like breast cancers. Unstratified claudin-low
tumors have been previously associated with poor prognosis4,29.
When stratified by CL subgroups, variations in survival outcome
were found, consistent with their presumed origin (Supplemen-
tary Fig. 11). Indeed, the basal-like-related CL3 subgroup of
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claudin-low tumors was associated with low overall and disease-
free survivals, as compared with the luminal-related
CL2 subgroup. In line with their low proliferation index and
their low frequency of TP53 mutations, tumors of the
CL1 subgroup were associated with a favorable prognosis.

Discussion
Here we have characterized the intrinsic diversity within the
claudin-low breast cancers by demonstrating the existence of
three main molecular subgroups. Consistent with the data from a
recent study30, published during the revision process of our
manuscript, we have shown that these subgroups are associated
with distinct survival outcomes. Moreover, our study has delved
into the underlying reasons of the observed heterogeneity,
revealing that claudin-low tumors exhibit different developmental
origins.

Supporting the prevailing hypothesis that some of these tumors
are generated from basal-like breast cancers, the comprehensive
characterization of METABRIC and TCGA databases have
revealed the existence of claudin-low breast cancers
(CL3 subgroup) with characteristics of basal mammary epithelial
cells and of basal-like breast cancers. These traits include the
hypomethylation of genes related to basal-related pathways, the
hypermethylation of genes related to luminal-related pathways, a
high level of expression of proliferation-related genes and a
strongly disturbed genomic landscape. Several experimental data
substantiate the hypothesis of the basal origin of claudin-low
breast cancers, including the demonstration that the oncogenic
transformation of basal mammary epithelial cells and of LPs can
generate malignant cells with mesenchymal characteristics
through the activation of an EMT process17,31. However, high-
lighting a first degree of heterogeneity, a significant fraction of
claudin-low tumors (CL2 subgroup) displays a gene expression
signature of mL cells and shares common genetic, epigenetic and

transcriptomic features with the luminal A intrinsic subtype.
Although unexpected, this finding is reminiscent of the experi-
mental observation that EMT induction in luminal breast cancer
cell lines confers them with a claudin-low expression pattern32. A
second degree of heterogeneity is shown by the CL1 subgroup of
claudin-low breast cancers. Among the three subgroups of
claudin-low tumors, CL1 appears as the most distinct, with dif-
ferential transcriptomic, epigenetic, and genetic traits that com-
prise a prominent stemness signature and a paucity of genomic
aberrations. Although TNBCs with negligible CNAs were pre-
viously reported21,22, their existence was questioned due to the
marked immune and stromal cell infiltration attributed to
claudin-low tumors11. Here, the identification of focal genetic
alterations in tumors selected for their purity unequivocally
demonstrates the existence of CNA-devoid claudin-low tumors.
Beyond their stemness characteristics and their low CIN, CL1
tumors have additional characteristic features when compared to
all other breast cancers. These traits include (i) a high expression
of the ZEB1 EMT-inducing transcription factor and of its target,
the methionine sulfoxide reductase MSRB3; (ii) a frequent acti-
vation of the RAS-MAPK signaling pathway; (iii) a low activation
of the DDR; and (iv) a low frequency of TP53 mutations (Sup-
plementary Figs. 8 and 10, and Fig. 6). These findings are highly
consistent with the stemness features of CL1 tumors. Indeed, we
demonstrated recently that normal human MaSCs exhibit a pre-
emptive antioxidant program driven by ZEB1 and MSRB3, pro-
viding them with the unique capacity to readily adapt to an
aberrant activation of the RAS-MAPK pathway18. As a con-
sequence, RAS-driven malignant transformation of MaSCs occurs
in the absence of DNA damage, thereby alleviating the selective
pressure on the inactivation of the TP53-dependent failsafe
program8,18. Altogether, these findings led us to propose a model
with two alternative paths leading to the development of claudin-
low tumors (Fig. 7). A direct path relies upon the malignant
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transformation of a normal MaSC, leading to undifferentiated
tumors with a low genomic instability and a low frequency of
TP53 mutations. An indirect path relies upon the activation of an
EMT process, over the course of tumor progression. Beyond a
certain extent of transdifferentiation, the gain of mesenchymal
features triggers the conversion into a gene expression signature
of claudin-low tumor subtype. When it occurs in a basal-like
tumor, EMT promotes the evolution toward a claudin-low tumor
with extensive genomic aberrations as the reflect of previous
periods of exacerbated CIN. When this process occurs in a
luminal breast cancer, it leads gradually to a claudin-low tumor
with a moderate level of genomic aberrations.

Overall, this model illustrates the emerging concept of cellular
pliancy8. The level of pliancy is defined by the intrinsic suscept-
ibility of a discrete cell state to undergo malignant transformation
or degeneration after sustaining a particular oncogenic insult8,33.
In this regard, the low genomic instability of CL1 tumors might

thus reflect the high pliancy of human MaSCs for RAS activation.
Interestingly, although CL1 tumors show the most frequent
activation of the RAS-MAPK pathway, it is noteworthy that the
activation of this mitogenic pathway is also a common event in
CL2 and CL3 tumors, compared with other breast cancer sub-
types. This latter finding may reflect the capacity of the RAS
signaling pathway to induce EMT in permissive conditions34–36.
Implicit in this notion is that the activation of the RAS-MAPK
pathway may be a primary oncogenic event in the tumorigenic
process leading to CL1 tumors and a secondary event in the
course of tumor progression in a fraction of basal-like and
luminal breast cancers, eventually leading to CL2 and CL3
tumors.

Although this hypothesis remains to be tested, our data may
have significant clinical implications in light of the previously
described resistance of EMT-related tumors to a variety of anti-
cancer therapies37–39. Indeed, the identification of the recurrent
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activation of the RAS-MAPK pathway in claudin-low breast
cancers may lead to new therapeutic opportunities that need to be
tested in preclinical models.

Methods
Samples. Breast tumor samples used in this study were from METABRIC21 and
TCGA Research Network (https://www.cancer.gov/tcga) cohorts, and breast cancer
cell lines were from CCLE database27.

Statistics. All analyses and statistical tests were carried out with the R software
(version 3.6.1)40. Heatmaps were generated with ComplexeHeatmap, principal
component analysis was completed with ade4, Gaussian finite models were per-
formed with mclust and Rmixmod, and survival analyses were conducted with
survival R packages25,41–43. All statistical tests were two-tailed. Figures were created
using either the R software or GraphPad Prism 8.0 (GraphPad Software, Inc., San
Diego, USA).

Expression data processing. METABRIC microarray expression data from dis-
covery and validation sets were extracted from the EMBL–EBI archive (EGA,
http://www.ebi.ac.uk/ega/; accession number: EGAS00000000083) (Normalized
expression data files)21. Normalized expression data per probe of the discovery set
and the validation set were combined after normalization of each set independently
with a median Z-score calculation for each probe. The expression levels of different
probes associated with the same Entrez Gene ID were averaged for each sample in
order to obtain a single expression value by gene.

The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA BRCA) RNA
sequencing (RNASeq) expression data were extracted as FPKM (fragments per
kilobase of transcript per million mapped reads) values from the Genomic Data
Commons (GDC) data portal (https://portal.gdc.cancer.gov/). FPKM data by gene
were converted to transcripts per kilobase million (TPM) as follows: for each gene

g∈ G and each sample s∈ S,

TPM g; sð Þ ¼ FPKMðg; sÞ
PG

i¼1
FPKMði; sÞ
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B
B
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C
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RNASeq expression data from the CCLE breast cell lines were extracted as
RPKM values from the CCLE data portal (https://portals.broadinstitute.org/ccle).
RPKM data by gene were converted to TPM as follows: for each gene g∈ G and
each sample s ∈ S,

TPM g; sð Þ ¼ RPKMðg; sÞ
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RPKMði; sÞ
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Molecular breast cancer subtype assignment. Triple-negative (TN) status was
determined from clinical data obtained through the Synapse platform (https://
www.synapse.org/) (syn1757053) for METABRIC dataset and the GDC data portal
(https://portal.gdc.cancer.gov/) for TCGA dataset. Expression value for estrogen
and progesterone receptors were combined with the SNP6 state for ERBB2 gene, to
define the TN status of each available tumor.

Integrative cluster and breast cancer molecular subtype attribution were
performed using the R package genefu44. Basal-like, luminal A, luminal B, Her2,
and normal-like subtype assignments were computed from five different
algorithms (PAM50, AIMS, SCMGENE, SSP2006, and SCMOD2)45–49. An
assignment was considered final if defined by at least three different algorithms. In
case of divergence between classifiers, PAM50 subtype attribution was used.

The claudin-low subtype classification was defined by the nearest centroid
method. For that, the Euclidean distance between each tumor sample (from
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METABRIC and TCGA cohorts) and the previously described claudin-low and
non-claudin-low centroids for tumor samples were determined, using the 1667
genes defined by Prat et al.4 as significantly differentially expressed between
claudin-low tumors and all other molecular subtypes. The tumor-related centroids
(differentially expressed genes between claudin-low and non-claudin-low tumors
using significance analysis of microarrays) were used rather than the cell-line-
related centroids (nine cell lines), as cell culture dramatically changes tumor
phenotype and thus transcriptomic signature of primary samples. The use of a
high-purity threshold for tumor selection allowed to circumvent the contamination
bias related to the tumor-related centroid (Supplementary Fig. 1). For CCLE breast
cancer cell lines, claudin-low status assignment was performed using the nine-cell-
line predictor via the R package genefu44.

Pathway enrichment analysis. All pathway-enrichment analyses were conducted
using MSigDB gene sets H, C2, and C5 from msigdbr R package50. GSEAs were
carried out using fgsea R package51. Gene lists were pre-ranked using Signal2Noise
metric. ssGSEA scores were computed through gsva R package52. Pan-cancer
transcriptomic EMT signature, defined by Tan et al.53, was used to compute EMT
score for each sample.

Normal mammary cell transcriptomic signatures. Previously published micro-
array expression data were used to generate lists of differentially expressed genes
along the mammary epithelial cell hierarchy (MaSC1/2/3, LP, and mL1/2)18.
Microarray data were robust multiarray average-normalized through oligo R
package and differential expression analysis was performed using limma R
package54,55. The top 500 false discovery rate (FDR) p-value ranked genes differ-
entially expressed between one subpopulation (MaSC or LP, or mL cells) vs. the
two others (FDR p-value < 0.05) were used as transcriptomic signature for each of
the three cell subpopulations (Supplementary Data 1).

Claudin-low subgroups classifier. Expression-based classifier for the three
claudin-low subgroups was identified using shrunken nearest centroid method
through pamr R package26. A 1.87 threshold for centroid shrinkage was defined
after examination of training errors and the cross-validation results. Finally, the
nearest shrunken centroid classifier encompassed 137 genes whose expression
discriminate the three FGA-related claudin-low subgroups in METABRIC cohort
(Supplementary Fig. 6).

Microenvironment analysis. Estimation of immune and non-immune cell frac-
tions from tumor microenvironment were determined through gene expression
analysis using Immunedeconv R package56 together with Xcell and MCPCounter
deconvolution methods57,58.

Copy number data processing. METABRIC segmented copy number data from
discovery and validation sets were extracted from the EGA (http://www.ebi.ac.uk/
ega/; accession number: EGAS00000000083) (Segmented (CBS) copy number
aberrations (CNA) files)21. TCGA BRCA segmented copy number data were
extracted from the GDC data portal repository (files corresponding to alignments
on the hg19 version of the human genome without germline CNV were chosen).
FGAs was evaluated from TCGA and METABRIC segmented copy number data
(both generated from Affymetrix SNP6.0 arrays) as follows:

FGA ¼

P

CNi>WMþT
L ið Þ

P
L ið Þð Þ þ

P

CNi<WM�T
L ið Þ

P
L ið Þð Þ

For each segment i, CNi is the mean LRR along segment i, L(i) is the length of
segment i, WM is the weighted median of CNi by L(i) for each sample I, and T is
the threshold value of the CNi above which the segments are considered to be
altered. In other words, FGA is the ratio of the sum of the lengths of all segments
with signal above the threshold to the sum of all segment lengths. For CCLE cell
lines analysis, T was set as 0.2, whereas for METABRIC and TCGA tumors ana-
lysis, T was set as 0.1.

ASCAT ploidy and purity estimates were extracted from COSMIC data
repository (https://cancer.sanger.ac.uk/cosmic/)20. To avoid any substantial bias
due to non-tumor cell contamination, tumors without available estimation of
ASCAT aberrant tumor cell fraction were removed from the whole cohort.
Furthermore, a stringent purity threshold (ASCAT purity > 0.38) was determined,
by applying Wilcoxon test, to select purest tumor samples from TCGA and
METABRIC databases when applicable.

Methylation data processing. Normalized methylation β-values per gene were
extracted from cBioPortal (http://www.cbioportal.org/)59,60. As previously descri-
bed for genome-wide expression–methylation quantitative trait loci analysis61,
genes for which methylation β-values were negatively correlated with expression
values (Spearman’s ρ < 0 and FDR p-value < 0.05) were selected for differential
methylation analysis (Supplementary Fig. 7).

RPPA data processing. RPPA level 4 data were extracted from the cancer pro-
teome atlas portal (https://tcpaportal.org/tcpa/download.html)62. RPPA pathway
lists, defined by Akbani et al.28, were used to compute protein pathway scores for
each sample.

Somatic mutation data. METABRIC somatic mutation data from targeted
sequencing were obtained from Pereira et al.63 (https://github.com/cclab-brca/
mutationalProfiles/tree/master/Data) and TCGA somatic mutation data from
whole-exome sequencing were obtained from Ellrott et al.64. Only somatic muta-
tions annotated as exonic, in-frame, and non-silent were used for mutation
analysis.

Drug response data. Predicted IC50 data for MEKi (Trametinib, Selumetinib,
Refametinib) were download from Genomics of Drug Sensitivity in Can-
cer (GDSC) database (https://www.cancerrxgene.org/)65.

Clinicopathological analysis. Complete clinical data were obtained through the
Synapse platform (https://www.synapse.org/) (syn1757053) for METABRIC
dataset.

For TCGA dataset, survival data were extracted from cBioPortal (TCGA
BRCA, PanCancer Atlas) (http://www.cbioportal.org/) and other clinical data were
obtained from the GDC data portal (https://portal.gdc.cancer.gov/)59,60.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The complete set of CEL files from Morel et al.18 is available in the GEO database under
accession number GSE56031 and the ArrayExpress database under accession number E-
MTAB-4145. METABRIC data are available in the EMBL–EBI archive (accession
number: EGAS00000000083) and from Supplementary Information in Curtis et al.21 and
Pereira et al.63. TCGA BRCA RNAseq expression data were extracted as FPKM values
from the GDC data portal (https://portal.gdc.cancer.gov/). RNAseq expression data from
the CCLE breast cell lines were extracted as RPKM values from the CCLE data portal
(https://portals.broadinstitute.org/ccle). Triple-negative (TN) status was determined
from clinical data obtained through the Synapse platform (https://www.synapse.org/)
(syn1757053) for METABRIC dataset and through the GDC data portal (https://portal.
gdc.cancer.gov/) for TCGA dataset. METABRIC segmented copy number data from
discovery and validation sets were extracted from the EGA (http://www.ebi.ac.uk/ega/;
accession number: EGAS00000000083) (Segmented-CBS copy number aberration (CNA)
files). TCGA BRCA segmented copy number data were extracted from the GDC data
portal (https://portal.gdc.cancer.gov/). ASCAT ploidy and purity estimates were
extracted from COSMIC data repository (https://cancer.sanger.ac.uk/ cosmic/).
Normalized methylation β-values per gene were extracted from cBioPortal (http://www.
cbioportal.org/). RPPA level 4 data were extracted from The Cancer Proteome Atlas
(TCPA) portal (https://tcpaportal.org/tcpa/download.html). METABRIC somatic
mutation data from targeted sequencing were obtained from Pereira et al.63 (https://
github.com/cclab-brca/mutationalProfiles/tree/master/Data) and TCGA somatic
mutation data from whole-exome sequencing were obtained from Ellrott et al.64.
Predicted IC50 data for MEKi (Trametinib, Selumetinib, Refametinib) were download
from Genomics of Drug Sensitivity in Cancer (GDSC) database (https://www.
cancerrxgene.org/). Complete clinical data were obtained through the Synapse platform
(https://www.synapse.org/) (syn1757053) for METABRIC dataset. For TCGA dataset,
survival data were extracted from cBioPortal (Breast Invasive Carcinoma, TCGA,
PanCancer Atlas) (http://www.cbioportal.org/) and other clinical data were obtained
from the GDC data portal (https://portal.gdc.cancer.gov/).
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