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A 4D Basis and Sampling Scheme for the Tensor
Encoded Multi-Dimensional Diffusion MRI Signal

Alice P. Bates, Member, IEEE, Alessandro Daducci, Parastoo Sadeghi, Senior Member, IEEE, and Emmanuel
Caruyer, Member, IEEE

Abstract—We propose a 4-dimensional (4D) basis and sampling
scheme, along with a corresponding reconstruction algorithm,
for the measurement and reconstruction of the b-tensor encoded
diffusion signal in diffusion magnetic resonance imaging (MRI).
This is only the second basis proposed for representing the
b-tensor encoded diffusion signal and the first to allow for
planar tensor measurements. We design a sampling scheme that
attains an efficient number of samples, equal to the degrees of
freedom required to represent the diffusion signal in the proposed
4D basis. The properties of the diffusion signal are studied to
provide recommendations on how many b-tensor measurements
to use. Evaluation of the proposed scheme using Monte Carlo
simulations of the diffusion signal is done to show that the
proposed scheme gives accurate interpolation of the signal.

Index Terms—diffusion MRI, multi-dimensional diffusion
MRI, tensor encoding, spherical harmonics, spherical Laguerre.

I. INTRODUCTION

Diffusion MRI is a non-invasive medical imaging modality
where magnetic field gradients are varied over time and
space to obtain measurements of molecule (mainly water)
diffusion [1], [2]. These measurements are typically used to
infer microscopic tissue properties reflected by the diffusion
characteristics, which has clinical applications in neuroimag-
ing for e.g. stroke patients, tumor surgical planning or to
estimate brain connectivity. Traditionally, measurements of
the diffusion MRI signal are acquired using vector-valued
measurements, in what is known as single diffusion encoding
[3].

The heterogeneous diffusion properties within a voxel can
be modeled using the diffusion tensor distribution (DTD), to
which the diffusion signal is related via the Laplace trans-
form [4]. In multi-dimensional diffusion MRI, the Laplace
transform is sampled with tensor-valued measurements [5]-
[7]. Advanced magnetic gradient modulation schemes, result-
ing in b-tensor encoding, enable separation of isotropic and
anisotropic components in the DTD [8], [9]. Generally, tensors
in the DTD are assumed to be axisymmetric so that the DTD
is 4D rather than 6D [5], [6].
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While algorithms have been proposed for recovering the
DTD from b-tensor encoded measurements of the diffusion
signal [7]-[10], only recently some consideration has been
given to designing the b-tensor sampling scheme [11], [12].
In most cases, b-tensors are empirically chosen, often from
uniform sampling of b-tensor parameters [9], [13]. Due to
the inverse Laplace transform being ill-conditioned, on the
order of 1000 samples are required by existing algorithms
to recover marginal distributions of the full DTD [14], [15].
Such large numbers of samples require long scan times and
are unrealistic for use in a clinical setting. Two recent studies
[11], [12] proposed optimized b-tensor sampling schemes for
the estimation of the parameters of a multi-tensor model of
white matter. In contrast, in this work we propose a versatile
method to design an optimal sampling scheme based on
the properties of the signal, irrespective of the choice of a
particular biophysical model.

In [16] we presented the first 4D basis for representing the
MD-dMRI signal. This basis is well adapted to represent the
diffusion signal, in that the signal expansion has only a few
non-zero coefficients, concentrated in the lowest orders of the
basis: the signal is said to be band-limited in the basis. Besides,
we proposed a sampling scheme with an efficient number of
samples, equal to the number of non-zero coefficients needed
to accurately approximate the signal. However the scheme
in [16] does not allow for planar measurements and only used
basic simulations of the diffusion signal for evaluation. Planar
measurements give unique characterization of the diffusion
signal compared with other b-tensors which can prevent
degeneracy and improve precision in DTD estimation [9]-[11],
[17]-[19].

In this work, we propose a 4D basis for representing the
MD-dMRI signal, which allows for planar measurements. We
study the properties of the signal in this basis to give recom-
mendations for sampling the space of axisymmetric b-tensors.
The proposed method has an efficient number of samples, with
the number of samples equal to the degrees of freedom in
the proposed basis and significantly less measurements than
the empirically chosen sampling schemes [14], [15] with only
280 measurements. The proposed scheme also has minimal
assumptions made on the nature of the diffusion signal, with
the only assumption being that the diffusion signal is band-
limited in the basis. We evaluate the reconstruction accuracy
using Monte Carlo simulations of the random walk of water
molecules [20], to demonstrate that the proposed scheme
allows for accurate reconstruction of the MD-dMRI signal.
Thus the MD-dMRI signal can be interpolated accurately



which is expected to reduce the number of measurements
required by schemes for recovering the DTD.

II. PRELIMINARIES

For each voxel within an image of the brain, the normalized
diffusion signal S/Sy acquired with b-tensor, b, is given
by [51, 6], [8], [9]
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where P(D) is the continuous DTD, and D and b are
second order symmetric positive-definite tensors which can be
represented as symmetric 3 x 3 matrices, with elements D;;
and b;;, 4,7 € [1,3] respectively, that have six degrees of
freedom. The Frobenius inner product is defined as b : D £
>_i 2 bijDij = trace(bD). The diffusion encoding tensor,
b, is given by the trajectory of the spin- dephasing vector q(t)
over diffusion time 7, that is, b = fo t)dt where

= fo t')dt' , v is the proton gyromagnetlc ratio and
g( ) is the time varylng magnetic field gradient. The b-value
is a measure of the size of a b-tensor, where b = trace(b).

For a discrete set of diffusion tensor populations, (1) be-
comes,

(b) = /P(D) exp(—b : D)dD = (exp(—b : D)), (1)
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where wy is the proportion of the tensor population D, and
Np is the number of tensor populations.

Diffusion tensor populations are often assumed to be ax-
isymmetric [14], [15]. The axisymmetric diffusion tensor has
four degrees of freedom and can be visualized as a spheroid
where the four degrees of freedom give the size, shape
and orientation of the spheroid. The diffusion tensor D is
commonly parameterized in terms of (D;s,, Da, 0, ¢) with,
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where (D;s0, Da, 0, ¢) correspond to the size, shape, colat-
itude and longitude of the spheroid respectively, and R(6, ¢)
is a rotation operator. In this work we focus on axisymmetric
diffusion encoding tensor, which is commonly parametrized
in terms of (b||,bL,®, @) [7], [14], where b)| and b are the
parallel and perpendicular eigenvalues of b, and © and ® give
the orientation, with,
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Planar b-tensors, corresponding to oblate spheroids, occur
when by > b)|. In [16], the parametrization (bs,b;, ©, ®) was
used, where b; = 3b1 and b; = b;|—bL, b > 0. Although this
parameterization allows for planar measurements, the range of
admissible values for b; depends on the value of bs, which
prevents from proposing a separable basis in (bs, b;) extended
to planar measurements.

Expanding S%(b), using the above parameterizations (3),
(4), gives a separable expression in b)|, and b [7]:

de exp(—b}|((Diso)a + (5)
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where cos g = cos © cos 8y + sin O sin 0, cos(P — ¢g). This
enables —(b) to be expanded in a separable and orthogonal
basis which is the product of a 3D basis for the b, © and ®
dimensions and a 3D basis for the b, ,0 and ® dimensions.
For an extensive review on the DTD model of the diffusion
signal and different b-tensor parameterizations see [5]-[7].

III. PROPOSED BASIS AND SAMPLING SCHEME

Here we present the proposed 4D basis for representing
the diffusion signal acquired with b-tensor encoding and
the corresponding b-tensor sampling scheme which has an
efficient number of samples, that is the same number of
samples as the number of degrees of freedom in the basis.
The proposed basis uses the (b||,b 1,0, D) parameterization
of the b-tensor and therefore allows for planar measurements.

A. Proposed 4D basis

As S%(b) is separable and a function of the negative
exponential of by and by (5), we use the spherical Laguerre
basis [21], [22], a 3D orthogonal basis with an exponential
weighting function in the radial direction, for the b, © and ®
and the b, ,© and ® dimensions, leading to the expansion:
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Borermr (b, ©,®) = X, (b)) Y (0, @) is the spherical La-
guerre basis, with X, (b)) = /7oty XP(ZQT)Ln(%ﬁ)
where L2 are the n-th generalized Laguerre polynomials of
order 2 and ()|,(L are scale factors. Y;"(©,®) are the real
spherical harmonics (SH) of maximum degree, also known as
band-limits, L and L/, and N’, N are the maximum orders for
the b)| and b, bases, respectively.

As the product of two SHs is an SH expansion, called the
Clebsch-Gordan expansion we can rewrite the expansion as
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where angm(bn, bl, @, (I’) = Xp(bH)Xn(bL)YZm(@, (I)).
That is, we propose a 4D basis, Z,nem(b)|,b1, 0, ®), which
is the spherical Laguerre basis with two radial functions, one
for the b\l and the other for the b, dimension, where P and
N are the maximum orders, also known as band-limits, for
the b)| and b, dimensions respectively. In other words, the
proposed basis Zy,,em (b)), b1, ©, @) is the cross product of two
exponentially weighted Laguerre polynomial functions with
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Fig. 1: Examples of the sampling grid on the sphere in [23]
for SH band-limits (a) L = 4 and (b) L = 6.

spherical harmonics. The coefficients c,,¢,, are defined by
the inner product
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B. Sampling grid and transforms

Due to the separability of the proposed 4D basis in (7), we
can design a separable transform for computing the coefficients
Cpnem With

Cpnem / X bll)bll

b =0 bi=

feohze

1) Directional sampling: The inner integral of (9) is the
SH transform of S% We use the SH transform and the corre-
sponding sampling grid on the sphere used in [23] for sampling
the angular dimensions (©, ®). For a band-limited signal, this
scheme enables exact reconstruction and an efficient number
of samples with the number of samples equal to the number
of SH coefficients. Examples of this sampling grid for SH
band-limits L = 4 and L = 6 are shown in Fig. 1.

2) b and by sampling: The transform for computing the

coefficients cppnem (9) can be written as [24],
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where Gauss-Laguerre quadrature is used to choose the
weights w;,w;, and the I+ 1 (resp. J + 1) sample locations
by (i) (resp. b1 (7)) for the by and b, dimensions. The resulting
b-tensors for a single orientation, formed using (4), are shown
in Fig.2 for P = 6, N = 3 and maximum b and b, of
2000 s/mm?.

3) Proposed sampling grid: As the proposed basis is a
cross-product of different basis functions for the (b, 01,0, ®)
dimensions, the proposed sampling grid is a cross product of
the samples in the b\l and b, dimensions, and the directional
samples. Another way of viewing the sampling grid is that
for each combination of b)|(7) and b, (j), there is a sampling
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Fig. 2: b-tensors (for a single orientation): proposed sampling
scheme with b)| band-limit P = 6 and b, band-limit N = 3.

scheme on the sphere. Note that due to the separability of
the basis, different combinations of b (i) and b, (j) can have
sampling schemes on the sphere with different SH band-limits
and therefore different number of samples. An example of this
is the tensors in Fig.2 with directions given by the sampling
scheme on the sphere, for example in Fig. 1.

IV. ANALYSIS OF PROPOSED SAMPLING AND
RECONSTRUCTION SCHEME

In this section, we study the diffusion signal acquired
with b-tensor encoding to determine its band-limits P, N and
L(b,b1). We also evaluate the reconstruction accuracy of
the proposed scheme. Monte Carlo simulations of the random
walk of water molecule are used to provide near ground
truth for diffusion MRI signals [20]. Measurements of the
simulated diffusion signal are obtained using the sampling grid
proposed in Section III-B3. Diffusion signal coefficients cppem
are then calculated using (10) and finally the diffusion signal is
reconstructed (S%) r at unmeasured locations using (7). The
reconstructed diffusion signal is compared with the ground

truth measurements (5 S ) ar

The Monte Carlo s1mu1at10ns were carried out for water
diffusion in a parallel cylinders packing configuration with
cylinder radii of 0.5, 3, 5.5 and 8 um and packing densities
0.25, 0.5 and 0.85 [20], similar to white matter microstructure
found in the human brain; diffusion coefficient, Dy, was set
to 2.0 x 107> mm?/s. In order to obtain b-tensor measure-
ments of this simulated signal, a diffusion gradient trajectory
g(t) [25] corresponding to an isotropic tensor (a sphere)
b = b/3I, where I is the 3 x 3 identity matrix, was first
generated'; from this, any b-tensor of interest can be obtained
by applying a linear transform to the original trajectory [9]
(maximum gradient amplitude was set to 80 mT /m, echo time
was set to 80 ms). Using a modified version of Camino [26],
[27], the displacement of 10% water molecule spins was
simulated and their accumulated phase was saved. The latter
was used to generate the signal for each b-tensor of interest,
following the method introduced in [20].

Uhttps://github.com/jsjol/NOW
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Fig. 3: Spherical harmonic band-limit, L, of the diffusion
signal S%(b”,bL7 ©, ®) as a function of by and b, : we report
the highest band-limit across all microstructure configurations.

A. Band-limit study

Due to the separability of the basis, the band-limits can be
studied separately in the different dimensions. We computed
the band-limit for single fiber configurations; we recall that
under the slow exchange assumption [28], [29], signal in
a crossing fiber configuration can be approximated by the
convex weighted contributions of each individual compartment
[30]. In our framework, the convex linear combination of
band-limited signals also is band-limited. The band-limit of
the sampling scheme is chosen as the band-limit with the
smallest number of samples where the maximum absolute
reconstruction error is smaller than 0.1,

b<on

{(8), ()

where |.| is the absolute value. We chose a threshold of
0.1 since it gave a good compromise between the average
reconstruction error (see Tab. I) and the number of coefficients
(and consequently the number of samples).

1) Spherical harmonic band-limit: We first study the band-
limit in the SH basis, L. The maximum absolute reconstruc-
tion difference (11) between the reconstructed signal and the
ground truth for different values of b and b, as a function of
the SH band-limit was calculated on a high-resolution uniform
grid with 254 samples [31]. This was carried out for all the
microstructures and it was found that the microstructure with
the highest density (0.85) and smallest radius (0.5 um) had the
largest band-limit. These resulting SH band-limits are shown
in Fig. 3 where L is a function of by and b, .

2) bH and by band-limit: We then study the band-limits
in the b and b, dimensions using Fig.3 to determine the
SH band-limit, L, and therefore the samples on the sphere
used for each b)(4) and b (j) (10). The reconstruction error
was calculated as a function of P and N on a high-resolution
grid consisting of 254 samples per shell [31] and a step size
in b|| and b, of 20()s/mm2 up to maximum bH and b
of 2000s/mm?. We found that P = 6 and N = 3 were

Y

Cylinders radius (um)

0.5 3.0 5.5 8.0
Density
0.25 039 £0.04 038 £0.03 0324002 0254 0.03
0.50 0.78 £ 0.06 0.75 £0.06 0.63 £+ 0.07 0.47 £ 0.08
0.85 1.31 £ 0.10 126+ 0.10 1.04 +0.13 0.77 £ 0.14

TABLE I: Mean absolute reconstruction error (13) (x1072)
of simulated diffusion signal for microstructures with varying
cylinder radii and packing densities; we report the average and
standard deviation computed over 6 random rotations of the
microstructure.

sufficient to keep the reconstruction error smaller than 0.1 for
all compartments; the microstructure with the lowest density
(0.25) and largest radius (8 um) has the largest band-limits.
The resulting sampling scheme, presented in Section III, has
band-limits P = 6, N = 3 and L determined by Fig. 3, where
the b-tensors for a single orientation are shown in Fig.2. The
number of samples in the proposed scheme is given by,

J

I
53 S (b (0.5 (G) + 1) (LB ). ba () +2). (12)
=0 j

=0

Using (12), the proposed sampling scheme has 280 samples,
the same order as state-of-the-art schemes in g-space [2].

B. Evaluation

We now evaluate the proposed scheme in terms of inter-
polation accuracy for a maximum b and b, of 2000s/ mm?,
corresponding to a maximum b-value of b = 6000 s/mm?. We
define the mean reconstruction error as

}, 13)

wend| (), ()

where the error is evaluated on a Cartesian sampling grid
with a step size of 400s/mm? to give on the order of
1000 uniformly placed measurements. Tab. I shows the mean
reconstruction error (13) for the different microstructures; it
can be seen that the mean reconstruction error increases as
the density increases and the radius decreases, but remains
below the typical noise level in diffusion MRI.

V. CONCLUSIONS

We have proposed a 4D basis and sampling scheme for
measuring, representing and reconstructing the diffusion MRI
signal acquired with b-tensor encoding. Monte Carlo simula-
tions are used to study the properties of the diffusion signal to
inform how many b-tensors should be used and to demonstrate
that the sampling scheme accurately interpolates the diffusion
signal. We plan to extend the band-limit study to in vivo
signal, and the proposed scheme to include noise removal and
to recover the DTD by developing an expression for DTD
coefficients from the coefficients of diffusion signal in the
proposed 4D basis.
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