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A 4D Basis and Sampling Scheme for the Tensor Encoded Multi-Dimensional Diffusion MRI Signal
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We propose a 4-dimensional (4D) basis and sampling scheme, along with a corresponding reconstruction algorithm, for the measurement and reconstruction of the b-tensor encoded diffusion signal in diffusion magnetic resonance imaging (MRI). This is only the second basis proposed for representing the b-tensor encoded diffusion signal and the first to allow for planar tensor measurements. We design a sampling scheme that attains an efficient number of samples, equal to the degrees of freedom required to represent the diffusion signal in the proposed 4D basis. The properties of the diffusion signal are studied to provide recommendations on how many b-tensor measurements to use. Evaluation of the proposed scheme using Monte Carlo simulations of the diffusion signal is done to show that the proposed scheme gives accurate interpolation of the signal.

I. INTRODUCTION

Diffusion MRI is a non-invasive medical imaging modality where magnetic field gradients are varied over time and space to obtain measurements of molecule (mainly water) diffusion [START_REF] Caruyer | Looking into the functional architecture of the brain with diffusion MRI[END_REF], [START_REF] Sotiropoulos | Advances in diffusion MRI acquisition and processing in the Human Connectome Project[END_REF]. These measurements are typically used to infer microscopic tissue properties reflected by the diffusion characteristics, which has clinical applications in neuroimaging for e.g. stroke patients, tumor surgical planning or to estimate brain connectivity. Traditionally, measurements of the diffusion MRI signal are acquired using vector-valued measurements, in what is known as single diffusion encoding [START_REF] Shemesh | Conventions and nomenclature for double diffusion encoding nmr and mri[END_REF].

The heterogeneous diffusion properties within a voxel can be modeled using the diffusion tensor distribution (DTD), to which the diffusion signal is related via the Laplace transform [START_REF] Jian | A novel tensor distribution model for the diffusion-weighted mr signal[END_REF]. In multi-dimensional diffusion MRI, the Laplace transform is sampled with tensor-valued measurements [START_REF] Topgaard | Chapter 7 NMR methods for studying microscopic diffusion anisotropy[END_REF]- [START_REF] Topgaard | Multidimensional diffusion MRI[END_REF]. Advanced magnetic gradient modulation schemes, resulting in b-tensor encoding, enable separation of isotropic and anisotropic components in the DTD [START_REF]Diffusion tensor distribution imaging[END_REF], [START_REF] Westin | Q-space trajectory imaging for multidimensional diffusion MRI of the human brain[END_REF]. Generally, tensors in the DTD are assumed to be axisymmetric so that the DTD is 4D rather than 6D [START_REF] Topgaard | Chapter 7 NMR methods for studying microscopic diffusion anisotropy[END_REF], [START_REF] Reymbaut | Advanced encoding methods in diffusion MRI[END_REF].

While algorithms have been proposed for recovering the DTD from b-tensor encoded measurements of the diffusion signal [START_REF] Topgaard | Multidimensional diffusion MRI[END_REF]- [START_REF] Reymbaut | The "magic DIAMOND" method: probing brain microstructure by combining b-tensor encoding and advanced diffusion compartment imaging[END_REF], only recently some consideration has been given to designing the b-tensor sampling scheme [START_REF] Coelho | Optimal experimental design for biophysical modelling in multidimensional diffusion mri[END_REF], [START_REF] Afzali | Comparison of different tensor encoding combinations in microstructural parameter estimation[END_REF]. In most cases, b-tensors are empirically chosen, often from uniform sampling of b-tensor parameters [START_REF] Westin | Q-space trajectory imaging for multidimensional diffusion MRI of the human brain[END_REF], [START_REF] Szczepankiewicz | Linear, planar and spherical tensor-valued diffusion MRI data by free waveform encoding in healthy brain, water, oil and liquid crystals[END_REF]. Due to the inverse Laplace transform being ill-conditioned, on the order of 1000 samples are required by existing algorithms to recover marginal distributions of the full DTD [START_REF] De Almeida Martins | Two-dimensional correlation of isotropic and directional diffusion using NMR[END_REF], [START_REF] Eriksson | NMR diffusion-encoding with axial symmetry and variable anisotropy: Distinguishing between prolate and oblate microscopic diffusion tensors with unknown orientation distribution[END_REF]. Such large numbers of samples require long scan times and are unrealistic for use in a clinical setting. Two recent studies [START_REF] Coelho | Optimal experimental design for biophysical modelling in multidimensional diffusion mri[END_REF], [START_REF] Afzali | Comparison of different tensor encoding combinations in microstructural parameter estimation[END_REF] proposed optimized b-tensor sampling schemes for the estimation of the parameters of a multi-tensor model of white matter. In contrast, in this work we propose a versatile method to design an optimal sampling scheme based on the properties of the signal, irrespective of the choice of a particular biophysical model.

In [START_REF] Bates | Multi-dimensional diffusion MRI sampling scheme: B-tensor design and accurate signal reconstruction[END_REF] we presented the first 4D basis for representing the MD-dMRI signal. This basis is well adapted to represent the diffusion signal, in that the signal expansion has only a few non-zero coefficients, concentrated in the lowest orders of the basis: the signal is said to be band-limited in the basis. Besides, we proposed a sampling scheme with an efficient number of samples, equal to the number of non-zero coefficients needed to accurately approximate the signal. However the scheme in [START_REF] Bates | Multi-dimensional diffusion MRI sampling scheme: B-tensor design and accurate signal reconstruction[END_REF] does not allow for planar measurements and only used basic simulations of the diffusion signal for evaluation. Planar measurements give unique characterization of the diffusion signal compared with other b-tensors which can prevent degeneracy and improve precision in DTD estimation [START_REF] Westin | Q-space trajectory imaging for multidimensional diffusion MRI of the human brain[END_REF]- [START_REF] Coelho | Optimal experimental design for biophysical modelling in multidimensional diffusion mri[END_REF], [START_REF] Afzali | Direction-averaged diffusion-weighted MRI signal using different axisymmetric b-tensor encoding schemes[END_REF]- [START_REF] Reisert | A unique analytical solution of the white matter standard model using linear and planar encodings[END_REF].

In this work, we propose a 4D basis for representing the MD-dMRI signal, which allows for planar measurements. We study the properties of the signal in this basis to give recommendations for sampling the space of axisymmetric b-tensors. The proposed method has an efficient number of samples, with the number of samples equal to the degrees of freedom in the proposed basis and significantly less measurements than the empirically chosen sampling schemes [START_REF] De Almeida Martins | Two-dimensional correlation of isotropic and directional diffusion using NMR[END_REF], [START_REF] Eriksson | NMR diffusion-encoding with axial symmetry and variable anisotropy: Distinguishing between prolate and oblate microscopic diffusion tensors with unknown orientation distribution[END_REF] with only 280 measurements. The proposed scheme also has minimal assumptions made on the nature of the diffusion signal, with the only assumption being that the diffusion signal is bandlimited in the basis. We evaluate the reconstruction accuracy using Monte Carlo simulations of the random walk of water molecules [START_REF] Rensonnet | Towards microstructure fingerprinting: Estimation of tissue properties from a dictionary of Monte Carlo diffusion MRI simulations[END_REF], to demonstrate that the proposed scheme allows for accurate reconstruction of the MD-dMRI signal. Thus the MD-dMRI signal can be interpolated accurately which is expected to reduce the number of measurements required by schemes for recovering the DTD.

II. PRELIMINARIES

For each voxel within an image of the brain, the normalized diffusion signal S/S 0 acquired with b-tensor, b, is given by [START_REF] Topgaard | Chapter 7 NMR methods for studying microscopic diffusion anisotropy[END_REF], [START_REF] Reymbaut | Advanced encoding methods in diffusion MRI[END_REF], [START_REF]Diffusion tensor distribution imaging[END_REF], [ 

D i j b ij D ij = trace(bD).
The diffusion encoding tensor, b, is given by the trajectory of the spin-dephasing vector q(t) over diffusion time τ , that is, b = τ 0 q(t)q T (t)dt where q(t) = γ t 0 g(t )dt , γ is the proton gyromagnetic ratio and g(t) is the time varying magnetic field gradient. The b-value is a measure of the size of a b-tensor, where b = trace(b).

For a discrete set of diffusion tensor populations, (1) becomes,

S S 0 (b) = N D d=1 w d exp(-b : D d ), (2) 
where w d is the proportion of the tensor population D d and N D is the number of tensor populations. Diffusion tensor populations are often assumed to be axisymmetric [START_REF] De Almeida Martins | Two-dimensional correlation of isotropic and directional diffusion using NMR[END_REF], [START_REF] Eriksson | NMR diffusion-encoding with axial symmetry and variable anisotropy: Distinguishing between prolate and oblate microscopic diffusion tensors with unknown orientation distribution[END_REF]. The axisymmetric diffusion tensor has four degrees of freedom and can be visualized as a spheroid where the four degrees of freedom give the size, shape and orientation of the spheroid. The diffusion tensor D is commonly parameterized in terms of (D iso , D ∆ , θ, φ) with,

D = R(θ, φ)D iso   1 0 0 0 1 0 0 0 1   +D ∆   -1 0 0 0 -1 0 0 0 2   R(θ, φ) T , (3) 
where (D iso , D ∆ , θ, φ) correspond to the size, shape, colatitude and longitude of the spheroid respectively, and R(θ, φ) is a rotation operator. In this work we focus on axisymmetric diffusion encoding tensor, which is commonly parametrized in terms of (b || , b ⊥ , Θ, Φ) [START_REF] Topgaard | Multidimensional diffusion MRI[END_REF], [START_REF] De Almeida Martins | Two-dimensional correlation of isotropic and directional diffusion using NMR[END_REF], where b || and b ⊥ are the parallel and perpendicular eigenvalues of b, and Θ and Φ give the orientation, with, Expanding S S0 (b), using the above parameterizations (3), (4), gives a separable expression in b || , and b ⊥ [START_REF] Topgaard | Multidimensional diffusion MRI[END_REF]:

b = R(Θ, Φ) b ||   0 0 0 0 0 0 0 0 1   + b ⊥   1 0 0 0 1 0 0 0 0   R(Θ, Φ) T . ( 4 
S S 0 (b) = N D d=1 w d exp(-b || ((D iso ) d + (5) 2(D iso ) d (D ∆ ) d P 2 (cos β d ))) × exp(-b ⊥ (2(D iso ) d -2(D iso ) d (D ∆ ) d P 2 (cos β d ))),
where cos β d = cos Θ cos θ d + sin Θ sin θ d cos(Φ -φ d ). This enables S S0 (b) to be expanded in a separable and orthogonal basis which is the product of a 3D basis for the b || , Θ and Φ dimensions and a 3D basis for the b ⊥ , Θ and Φ dimensions. For an extensive review on the DTD model of the diffusion signal and different b-tensor parameterizations see [START_REF] Topgaard | Chapter 7 NMR methods for studying microscopic diffusion anisotropy[END_REF]- [START_REF] Topgaard | Multidimensional diffusion MRI[END_REF].

III. PROPOSED BASIS AND SAMPLING SCHEME

Here we present the proposed 4D basis for representing the diffusion signal acquired with b-tensor encoding and the corresponding b-tensor sampling scheme which has an efficient number of samples, that is the same number of samples as the number of degrees of freedom in the basis. The proposed basis uses the (b || , b ⊥ , Θ, Φ) parameterization of the b-tensor and therefore allows for planar measurements.

A. Proposed 4D basis

As S S0 (b) is separable and a function of the negative exponential of b || and b ⊥ (5), we use the spherical Laguerre basis [START_REF] Leistedt | Exact wavelets on the ball[END_REF], [START_REF] Fick | Non-parametric graphnet-regularized representation of dMRI in space and time[END_REF], a 3D orthogonal basis with an exponential weighting function in the radial direction, for the b || , Θ and Φ and the b ⊥ , Θ and Φ dimensions, leading to the expansion: As the product of two SHs is an SH expansion, called the Clebsch-Gordan expansion, we can rewrite the expansion as

S S 0 (b) = N n =0 L =0 m =- N n=0 L =0 m=- c n m n m × (6) B n m (b || , Θ, Φ)B n m (b ⊥ , Θ, Φ). B n m (b || , Θ, Φ) = X n (b || )Y m (Θ, Φ) is the spherical La- guerre basis, with X n (b || ) = n ! ζ || 3 (n +2)! exp( -b || 2ζ || )L 2 n ( b || ζ || )
S S 0 (b) = P p=0 N n=0 L =0 m=- c pn m Z pn m (b || , b ⊥ , Θ, Φ), (7) 
where 

Z pn m (b || , b ⊥ , Θ, Φ) = X p (b || )X n (b ⊥ )Y m (Θ, Φ). That is,
= ∞ b || =0 ∞ b ⊥ =0 π Θ=0 2π Φ=0 S S 0 (b) × Z pn m (b || , b ⊥ , Θ, Φ) sin(Θ)dΦdΘb 2 ⊥ db ⊥ b 2 || db || . (8) 

B. Sampling grid and transforms

Due to the separability of the proposed 4D basis in [START_REF] Topgaard | Multidimensional diffusion MRI[END_REF], we can design a separable transform for computing the coefficients c pn m with

c pn m = ∞ b || =0 X p (b || )b 2 || ∞ b ⊥ =0 X n (b ⊥ )b 2 ⊥ × (9) π Θ=0 2π Φ=0 S S 0 (b)Y m (Θ, Φ) sin(Θ)dΦdΘdb ⊥ db || .
1) Directional sampling: The inner integral of ( 9) is the SH transform of S S0 . We use the SH transform and the corresponding sampling grid on the sphere used in [START_REF] Bates | An optimal dimensionality sampling scheme on the sphere with accurate and efficient spherical harmonic transform for diffusion MRI[END_REF] for sampling the angular dimensions (Θ, Φ). For a band-limited signal, this scheme enables exact reconstruction and an efficient number of samples with the number of samples equal to the number of SH coefficients. Examples of this sampling grid for SH band-limits L = 4 and L = 6 are shown in Fig. 1.

2) b || and b ⊥ sampling: The transform for computing the coefficients c pn m (9) can be written as [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF], scheme on the sphere. Note that due to the separability of the basis, different combinations of b || (i) and b ⊥ (j) can have sampling schemes on the sphere with different SH band-limits and therefore different number of samples. An example of this is the tensors in Fig. 2 with directions given by the sampling scheme on the sphere, for example in Fig. 1.

c pn m = I i=0 w i X p (b || (i)) J j=0 w j X n (b ⊥ (j)) × (10) 

IV. ANALYSIS OF PROPOSED SAMPLING AND RECONSTRUCTION SCHEME

In this section, we study the diffusion signal acquired with b-tensor encoding to determine its band-limits P, N and L(b || , b ⊥ ). We also evaluate the reconstruction accuracy of the proposed scheme. Monte Carlo simulations of the random walk of water molecule are used to provide near ground truth for diffusion MRI signals [START_REF] Rensonnet | Towards microstructure fingerprinting: Estimation of tissue properties from a dictionary of Monte Carlo diffusion MRI simulations[END_REF]. Measurements of the simulated diffusion signal are obtained using the sampling grid proposed in Section III-B3. Diffusion signal coefficients c pn m are then calculated using [START_REF] Reymbaut | The "magic DIAMOND" method: probing brain microstructure by combining b-tensor encoding and advanced diffusion compartment imaging[END_REF] and finally the diffusion signal is reconstructed S S0 R at unmeasured locations using [START_REF] Topgaard | Multidimensional diffusion MRI[END_REF]. The reconstructed diffusion signal is compared with the ground truth measurements S S0 GT . The Monte Carlo simulations were carried out for water diffusion in a parallel cylinders packing configuration with cylinder radii of 0.5, 3, 5.5 and 8 µm and packing densities 0.25, 0.5 and 0.85 [START_REF] Rensonnet | Towards microstructure fingerprinting: Estimation of tissue properties from a dictionary of Monte Carlo diffusion MRI simulations[END_REF], similar to white matter microstructure found in the human brain; diffusion coefficient, D 0 , was set to 2.0 × 10 -3 mm 2 /s. In order to obtain b-tensor measurements of this simulated signal, a diffusion gradient trajectory g(t) [START_REF] Sjölund | Constrained optimization of gradient waveforms for generalized diffusion encoding[END_REF] corresponding to an isotropic tensor (a sphere) b = b/3I, where I is the 3 × 3 identity matrix, was first generated1 ; from this, any b-tensor of interest can be obtained by applying a linear transform to the original trajectory [START_REF] Westin | Q-space trajectory imaging for multidimensional diffusion MRI of the human brain[END_REF] (maximum gradient amplitude was set to 80 mT/m, echo time was set to 80 ms). Using a modified version of Camino [START_REF] Hall | Convergence and parameter choice for Monte-Carlo simulations of diffusion MRI[END_REF], [START_REF] Cook | Camino: Open-source diffusion-MRI reconstruction and processing[END_REF], the displacement of 10 6 water molecule spins was simulated and their accumulated phase was saved. The latter was used to generate the signal for each b-tensor of interest, following the method introduced in [START_REF] Rensonnet | Towards microstructure fingerprinting: Estimation of tissue properties from a dictionary of Monte Carlo diffusion MRI simulations[END_REF]. 

A. Band-limit study

Due to the separability of the basis, the band-limits can be studied separately in the different dimensions. We computed the band-limit for single fiber configurations; we recall that under the slow exchange assumption [START_REF] Nilsson | Noninvasive mapping of water diffusional exchange in the human brain using filter-exchange imaging[END_REF], [START_REF] Lampinen | Optimal experimental design for filter exchange imaging: Apparent exchange rate measurements in the healthy brain and in intracranial tumors[END_REF], signal in a crossing fiber configuration can be approximated by the convex weighted contributions of each individual compartment [START_REF] Rensonnet | Assessing the validity of the approximation of diffusion-weighted-mri signals from crossing fascicles by sums of signals from single fascicles[END_REF]. In our framework, the convex linear combination of band-limited signals also is band-limited. The band-limit of the sampling scheme is chosen as the band-limit with the smallest number of samples where the maximum absolute reconstruction error is smaller than 0.1,

max S S 0 R - S S 0 GT < 0.1, (11) 
where |.| is the absolute value. We chose a threshold of 0.1 since it gave a good compromise between the average reconstruction error (see Tab. I) and the number of coefficients (and consequently the number of samples). 1) Spherical harmonic band-limit: We first study the bandlimit in the SH basis, L. The maximum absolute reconstruction difference [START_REF] Coelho | Optimal experimental design for biophysical modelling in multidimensional diffusion mri[END_REF] between the reconstructed signal and the ground truth for different values of b || and b ⊥ as a function of the SH band-limit was calculated on a high-resolution uniform grid with 254 samples [START_REF] Jones | Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging[END_REF]. This was carried out for all the microstructures and it was found that the microstructure with the highest density (0.85) and smallest radius (0.5 µm) had the largest band-limit. These resulting SH band-limits are shown in Fig. 3 where L is a function of b || and b ⊥ .

2) b || and b ⊥ band-limit: We then study the band-limits in the b || and b ⊥ dimensions using Fig. 3 to determine the SH band-limit, L, and therefore the samples on the sphere used for each b || (i) and b ⊥ (j) [START_REF] Reymbaut | The "magic DIAMOND" method: probing brain microstructure by combining b-tensor encoding and advanced diffusion compartment imaging[END_REF]. The reconstruction error was calculated as a function of P and N on a high-resolution grid consisting of 254 samples per shell [START_REF] Jones | Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging[END_REF] sufficient to keep the reconstruction error smaller than 0.1 for all compartments; the microstructure with the lowest density (0.25) and largest radius (8 µm) has the largest band-limits. The resulting sampling scheme, presented in Section III, has band-limits P = 6, N = 3 and L determined by Fig. 3, where the b-tensors for a single orientation are shown in Fig. 2. The number of samples in the proposed scheme is given by, Using ( 12), the proposed sampling scheme has 280 samples, the same order as state-of-the-art schemes in q-space [START_REF] Sotiropoulos | Advances in diffusion MRI acquisition and processing in the Human Connectome Project[END_REF].

B. Evaluation

We now evaluate the proposed scheme in terms of interpolation accuracy for a maximum b || and b ⊥ of 2000 s/mm 2 , corresponding to a maximum b-value of b = 6000 s/mm 2 . We define the mean reconstruction error as

mean S S 0 R - S S 0 GT , (13) 
where the error is evaluated on a Cartesian sampling grid with a step size of 400 s/mm 2 to give on the order of 1000 uniformly placed measurements. Tab. I shows the mean reconstruction error (13) for the different microstructures; it can be seen that the mean reconstruction error increases as the density increases and the radius decreases, but remains below the typical noise level in diffusion MRI.

V. CONCLUSIONS

We have proposed a 4D basis and sampling scheme for measuring, representing and reconstructing the diffusion MRI signal acquired with b-tensor encoding. Monte Carlo simulations are used to study the properties of the diffusion signal to inform how many b-tensors should be used and to demonstrate that the sampling scheme accurately interpolates the diffusion signal. We plan to extend the band-limit study to in vivo signal, and the proposed scheme to include noise removal and to recover the DTD by developing an expression for DTD coefficients from the coefficients of diffusion signal in the proposed 4D basis.

  = P (D) exp(-b : D)dD = exp(-b : D) , (1) where P (D) is the continuous DTD, and D and b are second order symmetric positive-definite tensors which can be represented as symmetric 3 × 3 matrices, with elements D ij and b ij , i, j ∈ [1, 3] respectively, that have six degrees of freedom. The Frobenius inner product is defined as b :

  ) Planar b-tensors, corresponding to oblate spheroids, occur when b ⊥ > b || . In [16], the parametrization (b s , b l , Θ, Φ) was used, where b s = 3b ⊥ and b l = b || -b ⊥ , b l ≥ 0. Although this parameterization allows for planar measurements, the range of admissible values for b l depends on the value of b s , which prevents from proposing a separable basis in (b s , b l ) extended to planar measurements.

where L 2 n

 2 are the n-th generalized Laguerre polynomials of order 2 and ζ || , ζ ⊥ are scale factors. Y m (Θ, Φ) are the real spherical harmonics (SH) of maximum degree, also known as band-limits, L and L , and N , N are the maximum orders for the b || and b ⊥ bases, respectively.

Fig. 1 :

 1 Fig. 1: Examples of the sampling grid on the sphere in [23] for SH band-limits (a) L = 4 and (b) L = 6.

Fig. 2 :

 2 Fig. 2: b-tensors (for a single orientation): proposed sampling scheme with b || band-limit P = 6 and b ⊥ band-limit N = 3.

Fig. 3 :

 3 Fig. 3: Spherical harmonic band-limit, L, of the diffusion signal S S0 (b || , b ⊥ , Θ, Φ) as a function of b || and b ⊥ : we report the highest band-limit across all microstructure configurations.

  and a step size in b || and b ⊥ of 200 s/mm 2 up to maximum b || and b ⊥ of 2000 s/mm 2 . We found that P = 6 and N = 3 were Cylinders radius (µm) ± 0.04 0.38 ± 0.03 0.32 ± 0.02 0.25 ± 0.03 0.50 0.78 ± 0.06 0.75 ± 0.06 0.63 ± 0.07 0.47 ± 0.08 0.85 1.31 ± 0.10 1.26 ± 0.10 1.04 ± 0.13 0.77 ± 0.14

  || (i), b ⊥ (j)) + 1 L(b || (i), b ⊥ (j)) + 2 . (12)

TABLE I :

 I Mean absolute reconstruction error (13) (×10 -2 ) of simulated diffusion signal for microstructures with varying cylinder radii and packing densities; we report the average and standard deviation computed over 6 random rotations of the microstructure.
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