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ARTICLE

Interpreting molecular similarity between patients
as a determinant of disease comorbidity
relationships
Jon Sánchez-Valle 1, Héctor Tejero2, José María Fernández 1,3, David Juan 4, Beatriz Urda-García1,

Salvador Capella-Gutiérrez 1,3, Fátima Al-Shahrour 2, Rafael Tabarés-Seisdedos5, Anaïs Baudot 1,6,7,

Vera Pancaldi 1,8,9✉ & Alfonso Valencia1,3,10✉

Comorbidity is a medical condition attracting increasing attention in healthcare and biome-

dical research. Little is known about the involvement of potential molecular factors leading to

the emergence of a specific disease in patients affected by other conditions. We present here

a disease interaction network inferred from similarities between patients’ molecular profiles,

which significantly recapitulates epidemiologically documented comorbidities. Furthermore,

we identify disease patient-subgroups that present different molecular similarities with other

diseases, some of them opposing the general tendencies observed at the disease level.

Analyzing the generated patient-subgroup network, we identify genes involved in such

relations, together with drugs whose effects are potentially associated with the observed

comorbidities. All the obtained associations are available at the disease PERCEPTION portal

(http://disease-perception.bsc.es).
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Comorbidity is the altered risk for patients to develop a
second disease when they are already suffering from a
specific one. Comorbidity incidence increases with age and

has a high impact on life expectancy, which decreases con-
siderably in the presence of simultaneous diseases1, as is com-
monly observed in ageing populations2. Additionally, the
presence of comorbid conditions in patients has a high economic
impact as shown, for example, by the 150% increase in the cost
associated with diabetes for people who are also affected by heart
diseases3. Thus, controlling patient-specific risks of future
comorbidities could increase life expectancy and reduce public
health expenditure4.

Previous observations on schizophrenic patients regarding the
risk of developing lung cancer (decreased in both schizophrenic
patients and their relatives5) suggested to us that there might be a
potential molecular basis of comorbidity relations. Supporting
this hypothesis, tens of disease−disease interaction networks have
been published since 20076, using a variety of data, such as gene
expression profiles7, combinations of disease genes and protein
−protein interaction networks8, miRNA expression9, the micro-
biome10, medical claims11, medical records12, human symp-
toms13, insurance claims14, or mixed information15. Importantly,
several studies pointed out that known comorbid diseases, despite
not sharing a single disease-gene, fell into the same neighborhood
of the interactome, providing insights into the molecular bases of
their comorbidity relation8,16,17.

Regarding the analysis of electronic health records, Beck
et al.12 consider that patients with the same disease might
present different risks of developing secondary diseases based
on their temporally resolved medical records. We hypothesize
that this can be a consequence of the existence of different
clinical phenotypes within heterogeneous medical conditions,
which can lead to specific comorbidity risks. The existence of
disease subtypes is well recognized in cancer, but it has also
been observed for instance for chronic obstructive pulmonary
disease, where four different phenotypes with clinical relevance
and therapeutic repercussion have been identified18. Tradi-
tionally, gene expression data have been widely used to identify
disease subtypes, like in the case of breast cancer19 and Crohn’s
disease20.

Here, we make use of this well-accepted gene-expression-based
disease classification to explore the molecular bases of comor-
bidity, subdividing diseases based on patient-similarities, and to
define personalized comorbidity risks. We develop a patient
similarity network of more than 6000 patients affected by 132
diseases, including 15 of the top 20 leading causes of death
worldwide in 2015 21.

We calculate differential expression profiles for patients
affected with different diseases, and consider how similarities
between these patients’ profiles could be related to comorbidity
relations between diseases (Fig. 1a). Interestingly, many of the
recovered relations significantly match disease co-occurrences
previously characterized in large populations by
epidemiology11,22 (Fig. 1b). Indeed, this network confirms our
previous observations of the existence of molecular mechan-
isms potentially underlying comorbidity relationships in the
specific case of central nervous system disorders and
cancers23,24. Additionally, we identify distinct patient-
subgroups with specific relative molecular similarities within
diseases (Fig. 1c), sometimes even opposing the relations
observed at the global disease level (Fig. 1e), i.e. two different
subgroups of patients with the same disease have different
potential relations (risks) with two different diseases. Finally,
we calculate relative molecular similarities between each single
patient and the analyzed diseases, obtaining a ranked list of the
most molecularly similar diseases (Fig. 1g).

Results
Transcriptomics-based Disease Molecular Similarity Network.
To establish patient similarity networks, we collected gene
expression data from microarray assays for 6284 patients (and
3887 controls) suffering from 132 diseases and 3 lifestyle con-
ditions (smoking, aging, and exercise) with relative controls. It is
worth mentioning that each of the used freely available dataset
was conceived for the analysis of a single disease, and so, we
cannot know if the patients are suffering from additional dis-
eases. We identified differentially expressed genes (DEGs) by
comparing each case sample (from now on patient) to all the
control samples from the same study (Fig. 2). We then looked for
molecular similarities among patients, based on the significant
overlap between the top 500 up- and downregulated genes in
each of them23 (the procedure was repeated selecting different
numbers of DEGs showing this to be the optimal choice; see
“Methods”). Studying the molecular similarities between patients
based on the expression changes observed in them compared to
the controls from the same tissue reduces the tissue of origin
effect, as described in our previous study detailing comorbidity
relations between Alzheimer’s disease (AD) and non-small-cell
lung cancer (NSCLC)24. Patients with a significant number of
genes deregulated in the same direction (both up- and down-
regulated, FDR < 0.0001, Fisher’s exact test) were connected by a
positive interaction, whereas patients showing overlaps between
genes deregulated in opposite directions (upregulated in one
patient and downregulated in the other one, and vice versa) were
assigned a negative interaction, generating a patient similarity
network.

We then generated a Disease Molecular Similarity Network
(DMSN) connecting disease-pairs based on the similarities
between patients composing them, compared to the similarities
with all the other patients (see “Methods”, Fig. 2). We calculated
positive and negative Relative Molecular Similarities (pRMS and
nRMS) between diseases, hypothesizing that we could interpret
them as positive and negative relative risk relations between
diseases, using the same approach used in epidemiological studies
to calculate relative risks (see “Methods”): a pRMS between
diseases A and B could suggest that patients with disease A are
potentially at a higher risk of developing disease B compared to
all the other patients, while an nRMS interaction could suggest
that patients with disease A are at a potentially significantly lower
risk of developing disease B than the rest of the patients under
study. The resulting DMSN is composed of 135 nodes (all
diseases and lifestyle conditions considered in this study), and
4750 edges (Fig. 3a). Most of the interactions were pRMS (56%),
which could be interpreted as a potential evidence of direct
comorbidity, of which 24% involved diseases from the same
International Code of Diseases (ICD9) disease category. Both
results were expected, as the presence of the first disease will
deteriorate the general state of health of the patient, more likely
leading to increased rather than lowered risks for other diseases.
Additionally, diseases from the same disease category might share
common disease drivers, resulting in a higher co-occurrence
probability. This is observed in our study regarding neoplasms,
the most connected category, indicating that most cancers
showed higher density of molecular similarity relations compared
to any other disease categories, in this case as a consequence of
the deregulation of cell-cycle-related processes (the complete
network can be visualized in the disease PERCEPTION portal,
http://disease-perception.bsc.es/index.html). These results are
supported by Zhou et al.25, who generated a new classification
of diseases from disease phenotypes and molecular profiles. In
their analysis, they connected diseases based on molecular
information (i.e., a combination of GWAS, OMIM and
differential expression evidence together with protein−protein
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interaction networks), detecting that the top ten disease-pairs
with the largest number of shared genes are all neoplasms.

According to our hypothesis, our measure of relative molecular
similarity should be a reflection of the general comorbidities in
populations detected by epidemiological studies. To test this
possibility, we first compared our pRMS with an undirected
epidemiological network, the Phenotypic Disease Network,
generated by Hidalgo et al.11 using the disease history of more
than 30 million patients (see “Methods”). This network contains
relative risks between diseases identified on medical claims
regarding hospitalizations for 1990−1993. As in our DMSN,
neoplasms were the most connected category (Supplementary
Data 1). Interestingly, our DMSN significantly recovers 16% of
the Phenotypic Disease Network interactions (541 interactions,
empirical p value= 0.0088 estimated by randomization (see
“Methods”)), a high percentage if we take into account that
comorbidity relations could be driven by a variety of factors other
than transcriptomics26. Our similarity interactions showed higher

overlap with the comorbidities involving diseases of the digestive
system, diseases of the genitourinary system and diseases of the
skin and subcutaneous tissue categories, as well as comorbidities
involving neoplasms (Supplementary Fig. 1). On the other hand,
it showed a lower overlap with comorbidity interactions involving
the diseases of the blood and blood-forming organs. This may be
due to a higher variability in cell composition in blood samples,
which presents, among other, seasonal and even diurnal
variations27. Since the relative molecular similarity calculation
takes into account the size of the universe of analyzed diseases,
larger datasets would be needed to better test the matching of our
molecular similarity interactions with epidemiological comorbid-
ity datasets.

We then investigated whether our positive interactions (pRMS)
overlapped interactions from a directed disease network, namely
the disease-pairs underlying temporal disease trajectories,
obtained by Jensen et al.22 mining clinical data on 6.2 million
patients over 14.9 years. As in the two other networks, neoplasms
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are still the most connected category. Interestingly, since the
temporal disease trajectory network is directed, we can evince
that, among our analyzed diseases, the diseases of the genitour-
inary system are the most common secondary conditions (27% of
the disease comorbidity interactions, Supplementary Data 2). Our
pRMS pairs overlap 25% of Jensen et al.22 disease-pairs (24
interactions, p value= 0.0083 estimated by randomization, Fig. 4).
Interestingly, 87.5% of the pRMS interactions overlapping
Jensen’s network22 involve diseases from different ICD categories,
suggesting that our measure might reflect more than similarities
between diseases. We hypothesize that the overlap between our
results and epidemiological studies might be affected, at least
partly, by technical issues. Indeed, we have to transform/map
disease codes between studies, often losing information. For
instance, the very specific disease Campylobacter jejuni infection
is transformed into very general ICD10 codes (A04, other
bacterial intestinal infections). Possibly as a consequence of this
transformation, we are not able to detect nine interactions
involving A04 code described at an epidemiological level in
Jensen et al.22 network. When interpreting the significance of this
overlap with epidemiological comorbidities, we must consider
that gene expression is just one source of information that can be
used to reconstruct the comorbidity map. Indeed, compared to
other papers that have generated disease−disease interaction
networks based on expression data (Hu and Agarwal7 and
Suthram et al.28), we obtain a higher percentage overlap with
comorbidity interactions (25% vs. 19% and 10% respectively in
the other two studies).

To check whether the number of epidemiological comorbidity
interactions overlapping our transcriptomic similarity-based ones

can be improved by using other omics data, we downloaded
disease−disease interaction networks based on microbiome and
miRNA information (see “Methods”). The microbiome-based
disease network10 recovered six interactions involving our
diseases of interest, four of them not detected by our approach
(E11-J45, A04-E10, A04-E11, and A04-J44) (Supplementary
Fig. 2). In the case of the miRNA-based network9, 16 of their
interactions overlapped epidemiological comorbidities (not sig-
nificant, Supplementary Table 1), 9 of them being newly detected
interactions. Interestingly, diabetes (either type 1 or 2) was
involved in five of those newly detected interactions. The low
percentage of overlapping interactions involving diabetes (E10
and E11) and Campylobacter jejuni infection (A04) can be a
consequence, among others, of the presence of subgroups in the
diabetes or mapping problems in the A04 category (regarding the
specific global term association mentioned before).

In addition to the pRMS, we also obtain nRMS interactions
between diseases, which can be considered as potential evidence
of inverse comorbidity relations23. These negative relations
constitute a new layer of knowledge that cannot be extracted
from hospital claims, since a low co-occurrence of two diseases
can be a consequence of misdiagnosis or a limited observation
window11. Indeed, only those studies aimed at specifically
evaluating the co-occurrence of a pair of diseases, like the one
conducted by Musicco et al.29 on the incidence of cancer in
patients with Alzheimer’s disease, are able to describe inverse
comorbidity relationships. Regarding such comorbidity relations,
evidence of the previously described inverse comorbidity relation
between AD and NSCLC is also found in our expression-based
DMSN29,30. Overall, these results suggest that the DMSN network

Relative molecular similarity estimate of
suffering disease A when already affected

by disease B

Disease B — Disease A:
Interactions 11
No interactions 5

Disease B — Other diseases:
Interactions 4
No interactions 36

95% of confidence = exp (log(6.875)±(1.96 x +5/11 36/4
5+11 36+4

))

RMS=6.875 ; 95% CI = (2.56 , 18.44)

RMSBA = = 6.87511/16
4/40

Disease A

Disease B

•
•

•
•

Other diseases

11
16

4
40

Compare each case against controls

Lung
cancer

Fisher test

Patient similarity network

Disease molecular similarity
network (DMSN)

Associate drugs
to patients using

LINCS

Stratified comorbidity network
(SCN)

Compare to epidemiological
networks

Disease PERCEPTION portal

a

b

D1

D2

D3

D4

D5
D6

D7

D8

D9

D10

D11

D12

C
as

e
C

on
tr

ol

disease
Alzheimer’s Connect patients

Fig. 2 Summary of the steps followed for the comorbidity analyses conducted using transcriptomic data. a Generate differential gene expression profiles
for each patient (comparing their expression with the expression detected in the control samples), selecting the top 500 up- and downregulated genes for
the Fisher’s exact test analysis. Then, use the similarity of these profiles to generate the patient similarity network. Drugs are then associated to patients
based on the similarities between patients’ differential expression profiles and the alterations of gene expression generated by a large collection of drugs on
cell lines as recorded in the LINCS database (see “Methods”). b The number of observed patient−patient interactions connecting different diseases is used
to calculate relative molecular similarities as shown, leading to the construction of the Disease Molecular Similarity Network (DMSN) and of the Stratified
Comorbidity Networks (SCN). The obtained DMSN is compared to published epidemiological networks and all results are available in the Disease
PERCEPTION portal.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16540-x

4 NATURE COMMUNICATIONS |         (2020) 11:2854 | https://doi.org/10.1038/s41467-020-16540-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Disease molecular similarity network Stratified comorbidity network

b

c

a

d

Patient subgroups with more than 4 patients

Alzh
ei

m
er

’s 
di

se
as

e

Alzheimer’s disease

NSCLC

Alzheimer’s disease

NSCLC

Alzheimer’s disease

NSCLC

NSCLC

Alzh
ei

m
er

’s 
di

se
as

e

NSCLC

Alzh
ei

m
er

’s 
di

se
as

e

NSCLC

Shared genes

Shared drugs

Color scale:

–400

Unclassified diseases and risk factors
Infectious and parasitic diseases

Endocrine, nutritional and metabolic diseases, and immunity disorders
Neoplasms

Diseases of the musculoskeletal system and connective tissue
Mental disorders

Diseases of the circulatory system

Diseases of the respiratory system

Diseases of the genitourinary system
Diseases of the skin and subcutaneous tissue

Diseases of the digestive system
Diseases of the blood and blood-forming organs

Symptoms, signs, and ill-defined conditions
Congenital anomalies

Diseases of the nervous system and sense organs

400

Fig. 3 Heatmap representation of the Disease Molecular Similarity Network and the Stratified Comorbidity Network. Blue and red squares represent
positive and negative Relative Molecular Similarities (pRMS and nRMS) respectively. a Heatmap representation of the Disease Molecular Similarity
Network (DMSN). Intensity of the interactions denotes the relative molecular similarity values, interpreted as relative risk interactions, which go from rows
to columns. Diseases are colored based on the disease category they belong to (International Code of Diseases, ICD-9-CM). b Heatmap of the interactions
between NSCLC and Alzheimer’s disease patient-subgroups with at least four patients. c Heatmap of the interactions between NSCLC and Alzheimer’s
disease patient-subgroups with at least four patients and at least one gene differentially expressed in the same direction in all the patients within the same
subgroup. Blue and red squares represent respectively pRMS and nRMS with shared genes in the correct direction (at least one gene differentially
expressed in the same direction in all the patients within the two subgroups in the case of positive interactions, and in opposite directions in the case of
negative interactions). d The same as (c) but with drugs instead of genes.

K58

M47 I63
M19 Smoking

F17

F33
A63

C90

C91

D45

D46

C92

A04
Campylobacter jenuni

infection

C82

J44 J84

G71

I42

C50

C41
10000

Fr
eq

ue
nc

y

0

0 5 10 15 20 25 30

Shared interactions

2000

4000

6000

8000

Disease trajectory pairs – pRMS intersection
vs. random expectation

C61

C53

C56
D69

I48

Bladder
carcinoma

Atrial
fibrillationSpina bifida

Colorectal cancer

HepatoblastomaAcute myeloid
leukemia

Myelodysplastic
syndrome

Ischemic heart

Psoriasis

G20C67
G35

G31

N30
E11

E34C25

K70C22
K51

E10

I25

L40

C18

Cystitis
Type II

diabetes

Alcoholic
hepatitis

Type I
diabetes

Hutchinson
Gilford

progerias
Q05

C34

N19

I21I73

M35

Uremia
Behcet’s
disease

Peripheral
arterial disease

Prostate cancer

Lung cancer

Cervical cancer

Parkinson’s
disease

M32
Systemic lupus
erythematosus

Acute
myocardial
infarction

J45 K50

Idiopathic pulmonary
fibrosisCOPD

Unclassified diseases and risk factors
Infectious and parasitic diseases

Endocrine, nutritional and metabolic diseases, and immunity disorders
Neoplasms

Diseases of the musculoskeletal system and connective tissue
Mental disorders

Diseases of the circulatory system

Diseases of the respiratory system

Diseases of the genitourinary system
Diseases of the skin and subcutaneous tissue

Diseases of the digestive system
Diseases of the blood and blood-forming organs

Symptoms, signs, and ill-defined conditions
Congenital anomalies

Diseases of the nervous system and sense organs

Fig. 4 Epidemiologically described disease comorbidities present in the Disease Molecular Similarity Network. Disease-pairs extracted from the
Temporal disease trajectories (gray edges) showing which pairs are also detected in the transcriptomic-based comorbidity relations identified by our
approach (blue edges). Since the ICD10 codes might involve several diseases, we indicate the specific names of the diseases we are analyzing using
transcriptomic data involved in pRMS interactions. Inset: The overlap is statistically higher than what would be expected from randomized datasets (see
“Methods”).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16540-x ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:2854 | https://doi.org/10.1038/s41467-020-16540-x | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


derived from expression data could recapitulate previous
epidemiological results, at least in part, potentially being useful
in the discovery of the molecular bases of direct and inverse
comorbidity relations between diseases. The DMSN represents
just molecular similarities between diseases, but exploring the
genes involved could shed light onto epidemiologically docu-
mented comorbidities.

Finally, we evaluated the association between the pRMS and
relative risk measures. To this end, we calculated the Pearsonʼs
correlation between our pRMS and the relative risks described by
Jensen et al.22 in the overlapping interactions. Interestingly, we
obtained a significantly positive correlation between the two
measures (0.492, p value= 0.0146, Supplementary Fig. 3), denot-
ing that the pRMS might be a good estimator of the relative risk
of co-occurrence between the two diseases.

Transcriptome-based patient-subgroups. The general tenden-
cies observed at population level in epidemiological studies (and
corroborated by our DMSN) do not necessarily indicate that all
patients affected with a disease have higher risks of developing a
second one. It is rather possible that just a fraction of patients
with a given disease will drive the overall population-wide ten-
dencies to acquire a specific secondary disease, as previously
observed22. Such differential comorbidity risks might be
explained by the existence of disease subtypes, as previously
described in diseases such as diabetes31 and different cancers32,33.
The patient similarity network obtained for different diseases
allows us to measure diseases’ transcriptional heterogeneity
(Supplementary Fig. 4), defined as the percentage ratio between
the observed and the total number of possible intra-disease
interactions. Since the detection of more than 24 genes deregu-
lated in the same or opposite direction in a pair of patients
(Fisher’s exact test FDR ≤ 0.0001) determines the presence or
absence of a connection in this network (see “Methods”), tran-
scriptomic heterogeneity must relate to sets of commonly
deregulated genes. According to this definition, diseases with few
intra-disease interactions, i.e. in which patients are less similar to
each other, have higher transcriptional heterogeneity. The ICD9
categories: diseases of the skin and subcutaneous tissue, symp-
toms, signs, and ill-defined conditions (a category which includes
septic shock) and neoplasms are the ones with the lowest tran-
scriptional heterogeneity between patients (Supplementary
Fig. 4). On the contrary, mental disorders and diseases of the
nervous system and sense organs are the most transcriptionally
heterogeneous ones (Supplementary Table 2), potentially as a
consequence of diagnostic methods. Such results denote that high
transcriptomic heterogeneity might drive different comorbidity
patterns in patients affected by the same disease. High hetero-
geneity can potentially reflect the presence of molecular disease
subtypes31, when patients perfectly fit the subgroups but not the
disease label. Interestingly, we obtained a significant correlation
between the transcriptomic heterogeneity and the number of
associated symptoms (see Supplementary Notes). Alternatively,
high heterogeneity can also be a consequence of low specificity in
the diagnostic procedures. Indeed, conditions diagnosed using
more accurate methods, like biopsies used for neoplasms, show
lower transcriptomic heterogeneity compared to others based on
neurocognitive evaluation, e.g. central nervous system disorders.
Patient-subgroups in diseases can also be due to genetics and/or
to the environment34, more explicitly living conditions, food and
drug intake26.

To further analyze the hypothesis on the existence of disease
subtypes driving the differential comorbidity risks, we generated
patient-subgroups within each disease, based on patients’
differential expression profiles (see “Methods”). In total, 180

patients were left out of any subgroup, while the other patients
were classified into 1126 different subgroups, with a mean
number of seven subgroups per disease. Subsequently, we
retained only those subgroups that presented a significantly
higher number of genes deregulated in the same orientation
(coordinately deregulated genes, up- or downregulated in all the
patients within the subgroup) than expected by chance (randomly
shuffling patients and subgroup associations; see “Methods”).
This reduced the number of subgroups to 728. A total of 21% of
these molecularly homogeneous subgroups included patients
coming from different studies (meaning that 36% of the diseases
analyzed by multiple studies show patient-subgroups composed
by patients coming from different studies). Even large patient-
subgroups composed by many tens of patients share genes that
are deregulated in the same direction in all the patients,
supporting the reliability of transcriptomically defined patient-
subgroups. More specifically, the largest patient-subgroup is
composed by 105 patients suffering from septic shock, a disease
belonging to the symptoms, signs and Ill-defined conditions
category. However, this disease is one of the most homogeneous
at the transcriptomic level. Among the genes coordinately
deregulated in all the patients we detect TAGLN3 gene, which
is a paralog of the TAGLN2 gene, previously described to
influence the activation of T-cell immunity, potentially involved
in septic shock35.

To quantitatively evaluate the consistency of the patient-
subgroups and diseases in terms of patient-similarities, we
calculated the intra- and inter-disease/subgroup interaction
percentages for each patient (Supplementary Fig. 5). Most
patients presented a higher intra-subgroup than intra-disease
interaction percentage, which means that they have more
interactions with other patients of their subgroup than with
patients having the same disease but belonging to another
subgroup. Such difference was especially higher in patients
affected by more transcriptomically heterogeneous diseases, e.g.
mental disorders and diseases of the nervous system, where the
inter-disease/subgroup interactions were similar (compared to
neoplasms where the inter-subgroup interaction percentage was
considerably higher than inter-disease).

In summary, the observed transcriptomic heterogeneity
indicates the presence of patient-subgroups, which in some cases
might suggest a complementary classification of patients besides
traditionally defined diseases. Defining these patient-subgroups
from expression data, we provide the conceptual basis to design a
clinically relevant patient stratification based on patient-specific
comorbidities.

Generating the Stratified Comorbidity Network. Using the
same approach as the one used to construct the DMSN, we next
considered patient interactions at the level of subgroups, and
generated the Stratified Comorbidity Network (SCN), which has
728 nodes (i.e., the number of patient-subgroups) and 55,664
edges. Exploring disease interactions at this more detailed level
could potentially confirm relations observed between diseases,
discover new relations not detected at the disease level, and find
comorbidities opposite to the ones described at the disease level.
Overall, 82% (2468/3024) of the pRMS and nRMS interactions
detected in the DMSN between the diseases were corroborated at
the subgroup level in the SCN. Additionally, we detected 3949
new interactions not described in the DMSN. Interestingly,
among these new sets of disease interactions, 558 (14%) are
opposite to the trends observed at the global disease level. This
confirms that patients with a specific disease can present different
comorbidity relations depending on the subgroup they belong to,
as could be expected given the observed disease heterogeneity.
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Molecular similarities between patient-subgroups. To perform
a more in-depth analysis of our SCN, we focused on patient-
subgroups composed of at least four patients with coordinately
deregulated genes (Supplementary Fig. 6 and Supplementary
Data 3), selecting only those interactions where genes are detected
(see “Methods”; Fig. 3c). The resulting network comprises 272
patient-subgroups and 3552 interactions, which we can translate
into 1280 interactions among 87 diseases. Almost half (45%) of
these SCN disease−disease interactions, based on the interactions
between patient-subgroups, were not present in the DMSN.
Comparing the newly detected pRMS interactions (detected in
the SCN but not in the DMSN) with Hidalgo’s and Jensen’s
epidemiological networks11,22, we observed that 42% and 3% of
these new interactions, respectively, were described by epide-
miological studies. For instance, we observed a higher than
expected risk of developing AD in a subset of smokers, a relation
observed at the epidemiological level that was also previously
suggested in the literature36.

Additionally, the selection of the pRMS and nRMS interactions
in the SCN based on shared deregulated genes allows a deeper
analysis of the molecular bases of the comorbidities described in
the DMSN. For example, we detected miR-10a to be involved in
the direct comorbidity relation between the Asthma 28 subgroup
and NSCLC 17,24,61,73,82,85,95 subgroups. This relation has
been previously described by epidemiological studies but was not
detected in the DMSN. Supporting the obtained results, previous
studies have described that miR-10a controls airway smooth
muscle proliferation37, which plays a pivotal role in the
pathogenesis of asthma, while this miRNA is also deregulated
in NSCLC38.

Focusing on the AD−NSCLC relation, we detected 4 out of 25
AD subgroups presenting nRMS relations with NSCLC sub-
groups. Interestingly, the genes (and their associated pathways)

detected to be involved in the nRMS relations of each of the AD
subgroups are different, noteworthily associated to immune,
starvation, mitochondrial, and methylation processes (Fig. 5).
Among others, Natural Killer cells have been separately
associated with NSCLC and AD, with a purported proangiogenic
role in the former39 and decreased cytotoxic functions in the
latter40. Regarding glucose starvation, lower brain glucose
metabolism has been associated with AD41, while the activation
of glucose absorption and metabolism towards anaerobic path-
ways characterize the majority of NSCLC42.

Interestingly, despite the inverse comorbidity relation (identi-
fied in our network as an nRMS) between AD and NSCLC
previously described by epidemiological studies and detected also
in our DMSN, we detected the AD 31 subgroup to be positively
connected (pRMS) to the NSCLC 67 subgroup. Such a result is
quite interesting, since despite being inversely comorbid diseases,
patients suffering from one can end up developing the second
one, as shown by the results obtained for these subgroups. The
gene potentially involved in this relation is NUP54. Interestingly,
NUP54 associated pathways (Reactome43, Kyoto Encyclopedia of
Genes and Genome44 and Gene Ontology45) suggest its
involvement in SUMOylation (among others), a process pre-
viously described to be associated with both diseases46 (Fig. 5).
The obtained results highlight the importance of the study of
comorbidity at the personalized level, since there can be
completely opposite relations between distinct subgroups from
the same disease (additional examples are described in the Sup-
plementary Notes, Supplementary Fig. 7).

Association of differential expression to drug effects. Since gene
expression can be altered by drug intake, we investigated if any of
the observed interactions could be related to the effects of drugs
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and small molecules on gene expression patterns, as previously
done by Jahchan et al.47. To this end, we compared patients’
differential expression profiles with those reported in the LINCS
L1000 library (see “Methods”). This database records the gene
expression profile changes induced by thousands of compounds
on a large panel of cell lines, allowing the user to estimate which
compound could generate a given gene expression alteration
profile. We added LINCS drugs as nodes in our SCN and
investigated whether specific patient-subgroups have any com-
mon drug associations. If the changes generated by the drug were
similar to the ones observed in specific patient-subgroups, the
drug could be responsible for such patterns. On the other hand, if
the changes were opposite to the ones observed in patient-sub-
groups, the drug could serve to treat those patients specifically,
opening the way to drug repurposing47,48. Our results show that
patients within each subgroup had significantly more common
drugs associated with them than expected by chance (see
“Methods”; Supplementary Fig. 8). Strikingly, using patient−drug
associations, we identified different molecular mechanisms
potentially involved in the comorbidity between specific patient-
subgroups (Supplementary Notes, Fig. 3d), vouching for the
importance of a personalized approach to comorbidity relations.

Patient-specific comorbidity profiles. We have seen that
comorbidity relationships can be understood when subdividing
diseases into patient-subgroups, suggesting different underlying
molecular mechanisms. The generation of patient-specific
comorbidity profiles allows the identification of those patients
that present significant nRMS and pRMS relations with other
diseases. For instance, focusing on the AD−NSCLC inverse
comorbidity relation, only 56 and 140 of the AD and NSCLC
patients (i.e., 30% and 46% respectively) presented a significant
nRMS with the other disease.

The final application of the presented approach is to develop a
methodology to predict the most probable comorbidities for each
patient. To this end, we considered each patient, evaluated its
molecular similarities with all others, and ranked all diseases from
the most probable to the least (see “Methods”; Fig. 6), associating
LINCS drugs to the comorbidity risks.

We then looked for examples where a patients’ first-line-
treatment might be causative of increasing the risk of developing
the most probable secondary disease (Fig. 6) based on our
transcriptomic data. As an example, we detected one AD patient
connected to haloperidol (a traditional antipsychotic drug used to
treat psychosis, including the ones suffered by AD patients49)
with a significant pRMS with interstitial cystitis (interpreted as a
significant relative risk of developing the disease). Since 66% of
the patients with interstitial cystitis are positively connected to
haloperidol, it could be speculated that treating this specific AD
patient with haloperidol would increase their risk of developing
interstitial cystitis, suggesting that alternative treatments should
be sought.

Another remarkable case is the one of cyproterone, an anti-
androgen drug usually used to treat hypersexuality in males,
severe acne and hirsutism, which has recently been proposed to
treat aggressivity in dementia50. Interestingly, 23 of the 189 AD
patients were negatively connected to cyproterone (pointing to
the use of the drug to revert their disease status) and at the same
time presented a significant pRMS with astrocytoma (again,
interpreted as a significant relative risk of developing the disease).
Since 66% of the astrocytoma patients were positively connected
to the drug, suggesting that it can cause changes similar to the
ones observed in the disease, the drug should be avoided to treat
those AD patients’ aggressivity as it might increase their risk of
developing astrocytoma.

To facilitate the analysis of other cases beyond the proof of
principle results reported in this paper, we make all the generated
results accessible to the research community through the Disease
PERCEPTION portal (Fig. 7; http://disease-perception.bsc.es/),
which allows interactive exploration of the Disease Molecular
Similarity Network and the Stratified Comorbidity Network.

Clinical perspectives. Disease subtyping based on gene expres-
sion profiles is becoming commonplace in oncology and
increasingly in other pathologies like diabetes31. Analogously, our
results suggest that investigating differential expression profiles
could additionally serve to detect the molecular processes
potentially driving comorbidities between pairs of diseases, ser-
ving in the future for guiding treatment choice. Expression pro-
files allow the identification of subgroups of patients that might
present different physiological states and different comorbidity
relations, extending the procedures for disease classification based
on the analysis of expression profiles. Indeed, our results show
that significant relative molecular similarities can often be related
to epidemiologically observed comorbidities, supporting this
possibility.

In the future, the richer patients’ molecular phenotypes built
with transcriptomics, proteomics and other experimental infor-
mation will allow a more in-depth study of complex comorbidity
patterns and mechanisms, beyond the current picture provided
by epidemiological approaches. Indeed, the overlap between the
obtained significant relative molecular similarities with the
epidemiologically described comorbidities, even when working
with different tissues (as in the case of AD−NSCLC relation),
suggests that the molecular basis of comorbidities has a systemic
character, and profiling patients’ blood samples might be
sufficient to produce comorbidity risk profiles, as suggested in
other scenarios51,52.

It must also be noted that epidemiological detection of
comorbidities is far from perfect, since it can be affected by
multiple biases, including reporting biases, statistical issues with
detection of co-occurrence of rare diseases and uneven coverage
of comorbidities spanning different age-ranges. Therefore, we
propose the additional use of molecular data to complement
epidemiological approaches in the design of management
strategies to deal with the important problem for global health
that multimorbidities represent53.

Methods
Gene expression analysis. Gene expression raw data (CEL files) were downloaded
from the Gene Expression Omnibus (GEO, GSE* files http://www.ncbi.nlm.nih.
gov/geo) and ArrayExpress (EMTAB* files https://www.ebi.ac.uk/arrayexpress/)
for 132 diseases, 2 lifestyle conditions (smoking and physical activity) and ageing,
including 186 datasets (Supplementary Data 4). Studies conducted on HG
U133Plus2 Affymetrix microarray platform were selected to allow using the frozen
Robust Multiarray Analysis normalization method54 and reduce the bias due to
inter-platform differences. The linear regression model provided by the LIMMA
package was used to identify differential gene expression55, comparing each sample
case (from now on denoted as patient) with all the control samples from the
same study.

Since the number of significantly DEGs detected varies considerably depending
on the disease under study (and thereby directly affects the Fisher’s exact tests), we
decided to select a fixed number of up- and downregulated genes. To first evaluate
the effect of this selected number of genes for the Fisher’s exact test results, we
calculated intra-disease patient-similarities as previously done with diseases23,24

using the same threshold for the interactions (Fisher’s exact test, FDR ≤ 0.05) while
varying the number of selected genes. As can be observed in Supplementary Fig. 9,
the number of detected intra-disease interactions increased with the number of
DEGs selected, with a stronger increase in the 100−500 range and then increasing
linearly. We therefore decided to continue the analysis using the top 500 up- and
downregulated genes based on the t values provided by LIMMAs’ differential gene
expression analyses.

Patient similarity network generation. As previously mentioned, we followed a
similar strategy to that reported by Ibañez et al.23 on disease−disease similarities.
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Overlaps between pairs of patients were assessed by one-tailed Fisher’s exact tests
on lists of DEGs. Two patients are positively connected if they present significant
overlaps between genes deregulated in the same direction (both up- and down-
regulated). On the other hand, two patients are negatively connected if they present
significant overlaps between genes upregulated in one patient and downregulated
in the other one, and vice versa. If both types of significant overlaps are detected in
the comparison (e.g. significant overlaps between genes up- and downregulated in
the two patients, and between genes upregulated in one patient and downregulated
in the other one), we considered there is no link between those patients. This
condition removes 55,086 positive and 24,950 negative potential interactions
between patients, that is 2% and 15% of the positive and negative interactions,
respectively (Supplementary Fig. 10).

Then, we looked for the one-tailed Fisher’s exact test threshold that did not
produce random interactions. To this end, we generated 1000 patients randomly
selecting 500 genes as up- and 500 genes as downregulated. We calculated the
similarities (both positive and negative) between the generated patients varying the
Fisher’s exact test threshold. We repeated this process 100 times and calculated the
mean number of patient interactions (independently of the direction of the
interaction). As expected, the number of detected interactions in this randomized
set decreased while decreasing the threshold (Supplementary Fig. 11). Based on the
obtained results, we generated the patient similarity network calculating patient
−patient interactions using an FDR threshold of 0.0001. We repeated the analysis
varying the number of DEGs selected (100, 200, 300, 400, 1000, 1500, 2000, 2500,
3000, 3500, 4000, 4500, 5000), obtaining for each of them the optimal threshold to
avoid detecting random interactions (Supplementary Fig. 12).

Relative Molecular Similarity estimates. For each pair of diseases, we consider a
contingency table (Table 1) counting the number of positive interactions con-
necting patients from the two diseases and the ones connecting one of the diseases
with other ones.

We can then define the proportion of interactions connecting patients from the
two diseases of interest to the total number of interactions of disease A (1) and the
proportion of total number of interactions connecting patients of disease B and
diseases other than A, compared to the total number of interactions outside of
disease A (2). Positive interactions between patients are considered as interactions
of interest, merging both negative and no-interactions as into the “other
interactions” category.

Pexposed ¼ Nab

Ta
; ð1Þ

Pnotexposed ¼ Nnab

Tna
: ð2Þ

These quantities allow us to define positive Relative Molecular Similarities
(pRMS) for each pair of diseases, according to formula (3).

RMSab ¼
Pexposed
Pnotexposed

: ð3Þ

Repeating the same procedure using negative interactions (considering positive
interactions as no-interactions), we similarly define negative Relative Molecular
Similarities (nRMS).

95% confidence intervals were calculated for diseases, patient-subgroups and
patient−disease relations using formula (4).

LN RRð Þ± 1:96 ´
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Then, the Stratified Comorbidity Network was filtered selecting only those
patient-subgroups composed of at least four patients with coordinately deregulated
genes, selecting only those interactions where genes are detected. This means that
in the case of pRMS, at least one gene should be deregulated in the same direction
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Fig. 7 The Disease PERCEPTION portal. Through this user-friendly and programmatically accessible portal, the user can visualize comorbidity relations at
the disease and patient-subgroup levels. Moreover, users can extract patient-subgroup information, filtering by subgroup size, intra-subgroup connectivity,
as well as by shared drugs and/or genes. Genes and drugs in the networks are hyperlinked to databases, facilitating an interactive exploration of the
molecular basis of each connection. a Disease network view. Each node represents a disease, colored based on the disease category it belongs to. Blue and
red edges denote positive and negative Relative Molecular Similarity (pRMS, nRMS) interactions. Relative risk cut-off can be modified. b AD neighbors
view. Desired diseases can be selected to show their patient-subgroups. c AD and NSCLC patient-subgroups with >4 patients per subgroup. d Same
as c excluding intra-disease interactions. e Same as c showing only patient-subgroup interactions with shared drugs. Selecting edges of interest displays
genes and drugs potentially involved in the selected interactions.
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in all the patients from the two subgroups, while in the case of nRMS, at least one
gene should be upregulated in one subgroup and downregulated in the other
subgroup (or vice versa).

Comparison with epidemiological networks. To validate our results regarding
comorbidities, we compared them with the ones obtained at an epidemiological
level by Hidalgo et al.11 and Jensen et al.22. Hidalgo et al.11 used ICD9 disease codes
to associate patients to diseases generating a disease−disease network called the
Phenotypic Disease Network, composed by 995 nodes (ICD9 codes) and 104,434
interactions. We therefore grouped our patients manually using the same disease
taxonomy (extracted from http://www.icd9data.com) and calculated relative
molecular similarities between ICD9 codes as previously done at the disease level,
reducing the confidence interval to 99% as in their analysis. To verify the sig-
nificance of the overlap between our pRMS and nRMS with the ones detected by
Hidalgo et al.11, we conducted 100,000 randomizations generating random inter-
actions between the common set of 94 ICD9s. The same was done to compare our
network with the disease trajectories, a network composed by 681 nodes (ICD10
codes) and 4014 edges22, in this case associating our patients to ICD10 codes. This
approach was repeated for each DEG selection (from 100 to 5000). As can be
observed in Supplementary Figs. 13 and 14, the number of epidemiologically
described interactions overlapping the DMSN increases while increasing the
number of selected DEGs. The epidemiological interactions retrieved by the DMSN
generated selecting a small number of DEGs are recovered also with the largest
DEG selection, denoting a consistency on the overlap with epidemiological inter-
actions (Supplementary Figs. 15 and 16). Since the selection of 500 DEGs is the one
that allows us to recover the highest number of interactions for the pRMS, without
recovering also a significant number for the nRMS11,22 (Supplementary Table 3), in
the rest of the manuscript we used the selection of the top 500 DEGs.

Other omics layers. To compare and complement the overlap obtained with
epidemiology using different omic layers, we downloaded microbiome and
miRNA-based disease interactions. The microbiome-based disease-interaction
network was downloaded from Ma et al.10, where diseases are positively/negatively
connected if they present similar/opposite changes in the microbiota composition
(extracted by text mining from microbiome-analyzing publications). miRNA-based
disease interaction network was downloaded from Lu et al.9, where two diseases are
connected if they share at least one associated miRNA. In this paper, the miRNA-
disease association was extracted from ~100 PubMed papers. To make both net-
works comparable with the expression-based network, we transformed disease
names into ICD10 codes using the Unified Medical Language System56.

Patient clustering. Same disease patients were clustered into patient-subgroups
based on their discretized differential gene expression information (top 500 up-
and downregulated genes were assigned 1 and −1 values respectively, while all the
other genes were assigned a 0). The optimal number of clusters within each disease
was obtained using the Silhouette method57, where k-means analyses were con-
ducted using Hartigan and Wongs’ algorithm58 varying the number of clusters
from 2 to the total number of patients within the disease. The number of clusters
with the highest silhouette score was selected as the optimal number of clusters,
assigning the patients to their corresponding patient-subgroups using k-means and
measuring the total number of shared genes (genes commonly deregulated in the
same direction in all the patients within each subgroup).

Then, patients from the same disease were assigned randomly to patient-
subgroups, measuring the total number of shared genes (this process was repeated
10,000 times). Only those patient-subgroups with significantly more shared genes
than expected by chance were selected (p value ≤ 0.05 estimated by randomization).

To deepen our analysis of the molecular bases of comorbidity relations between
patient-subgroups, we filtered those subgroups with at least four patients, selecting
only those interactions with overlapping genes coordinately deregulated in the
same direction in both patient-subgroups for positive interactions, and in opposite
directions for negative interactions.

Analysis of the transcriptomic heterogeneity of the diseases. To analyze the
transcriptomic heterogeneity of diseases based on patient-similarities, which
requires at least 24 genes to be deregulated (minimal number of genes needed in
the Fisher’s exact test to obtain a significant overlap with the chosen threshold) in
the same or opposite direction (depending on the sign of the interaction), we
calculated the intra- and inter- disease/subgroup interaction percentages for each
patient. When the intra-subgroup interaction percentages were similar to the intra-
disease interaction percentages, we define the disease as transcriptomically

homogeneous, whereas in transcriptomically heterogeneous diseases we would
observe higher intra-subgroup interaction percentages compared to the intra-
disease ones.

Genes’ associated pathways. To facilitate the molecular interpretation of the
comorbidity relations between patient-subgroups, as well as of the biological
characteristics of each of them, we looked for the pathways to which each of the
detected genes belong in Reactome43, Kyoto Encyclopedia of Genes and Genome44

and Gene Ontology45.

L1000 LINCS analysis. The LINCS L1000 library is a large catalog of gene
expression signatures in cancer cell lines induced by drug treatment or gene
knockdown59. The t values of differential gene expression obtained for each patient
when compared against all the control samples in each study were used as gene
expression signatures of the patients, and compared against the LINCS L1000
library (http://www.lincscloud.org/), as performed previously24.

From the L1000 library, drug-induced expression signatures were obtained
from experiments in which the transcriptional state of the cell is measured before
and after the treatment with the drug. This allows to study the transcriptional effect
of the drug. In order to obtain consensus expression signatures for each drug, a
differential expression analysis was performed on control vs. treated cells using
Limma55.

In the LINCS L1000 data, all the wells in which the same drug was used were
considered as treated samples. All the dimethyl sulfoxide-treated wells from all the
plates with at least one treated well were considered as untreated controls. The
plate in which the drug was tested was taken as a covariate in the expression
analysis. As only one type of cell line is used in each plate, using this covariate we
take into account the technical batch due to different plates and the biological
variability due to different cell lines. Different drug concentrations and exposure
time to the drug were not taken into account. In the LINCS L1000 data some drugs
(pert_iname) are represented by different molecules, (pert_id) usually from
different vendors. In these cases, we obtained the pert_id associated signatures, that
is, associated to the molecule, and a consensus signature in which all the pert_id
corresponding to the same drug were considered. In this last case, the pert_id was
also taken as a confounding variable.

The t-moderated statistic was used as a measure of the expression of the gene. It
was preferred over the logFC because the t statistic takes into account the sampling
variance. However, both statistics were highly correlated in all the signatures tested.

In order to measure the similarity of each patient signature to a given drug
signature, the enrichment of the top 250 upregulated and downregulated genes by
the drug was determined in the patient signature using a pre-ranked GSEA, as
previously done by Iorio et al.48.

The fgsea R package was used60. A consensus Enrichment Score (ES) was
obtained subtracting the ES values of the DN signature from those ES of the UP
signature.

Personalized comorbidity profiles. For each patient we calculated the pRMS and
nRMS with each of the analyzed diseases based on transcriptomic similarities with
other patients, as done before with diseases and patient-subgroups, producing a
ranked disease list from the most similar to the least. Then, for each disease we
added LINCS drugs and ranked them from the one similar to most patients to the
one similar to the least, highlighting the first-line treatments (https://www.
vademecum.es). As a final step, we look for examples where a patients’ first-line
treatment might be causative of increasing the risk of developing the most probable
secondary diseases (Fig. 6), i.e. drugs that are positively connected to most patients
of the secondary diseases.

Disease PERCEPTION portal. The portal is composed of a database loader, an
SQL database, a REST API and a web frontend. The tabular data and the source
code of the database loader, REST API and web frontend are available at the
GitHub project https://github.com/inab/disease_perception.

The database loader is written in Python 3.5, and it uses pandas61 and SQLite to
prepare an SQLite database instance. The SQL database is composed of 16 tables,
with the disease groups, diseases, patient-subgroups, patients, studies, genes, drugs
and their relationships. The data loaded comes from all the results consolidated
from the analyses previously described.

The REST API is written in Python 3.5, and it uses Flask, Flask-RESTPlus and
Flup. It is available at http://disease-perception.bsc.es/api/, and it is documented
using OpenAPI.

The Disease PERCEPTION web frontend is written in Javascript ES7/ES2016,
and it uses Cytoscape.js62, the external layout plugins COLA, COSE-Bilkent, Dagre
and Klay, JQuery, Bootstrap, Tippy and Popper. It is built using yarn, babel and
webpack, as described in its documentation on the GitHub repository.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Table 1 Contingency table.

Disease B No disease B Total

Disease A Nab
ðinteractions of interestÞ

Nanb
ðother interactionsÞ Ta

No disease A Nnab
ðinteractions of interestÞ

Nnanb
ðother interactionsÞ Tna
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Data availability
All data needed to understand and assess the conclusions of this research are available in
the main text, supplementary materials and Disease PERCEPTION portal (http://disease-
perception.bsc.es). The raw datasets (whose identifiers are provided in Supplementary
Data 4) are publicly available and can be downloaded from ArrayExpress (https://www.
ebi.ac.uk/arrayexpress/) and GEO (http://www.ncbi.nlm.nih.gov/geo).

Code availability
Code is available at https://github.com/jonsv89/Disease_PERCEPTION.
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