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Effect of congenital adrenal 
hyperplasia treated by 
glucocorticoids on plasma 
metabolome: a machine-learning-
based analysis
Lee S. Nguyen1,2,7 ✉, Edi Prifti3,4,7, Farid Ichou5, Monique Leban1,6, Christian Funck-Brentano1,3, 
Philippe Touraine6, Joe-Elie Salem1,3 & Anne Bachelot6

Background. Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency leads to impaired 
cortisol biosynthesis. Treatment includes glucocorticoid supplementation. We studied the specific 
metabolomics signatures in CAH patients using two different algorithms. Methods. In a case-control 
study of CAH patients matched on sex and age with healthy control subjects, two metabolomic 
analyses were performed: one using MetaboDiff, a validated differential metabolomic analysis 
tool and the other, using Predomics, a novel machine-learning algorithm. Results. 168 participants 
were included (84 CAH patients). There was no correlation between plasma cortisol levels during 
glucocorticoid supplementation and metabolites in CAH patients. Indoleamine 2,3-dioxygenase 
enzyme activity was correlated with ACTH (rho coefficient = −0.25, p-value = 0.02), in CAH patients 
but not in controls subjects. Overall, 33 metabolites were significantly altered in CAH patients. Main 
changes came from: purine and pyrimidine metabolites, branched aminoacids, tricarboxylic acid cycle 
metabolites and associated pathways (urea, glucose, pentose phosphates). MetaboDiff identified 2 
modules that were significantly different between both groups: aminosugar metabolism and purine 
metabolism. Predomics found several interpretable models which accurately discriminated the two 
groups (accuracy of 0.86 and AUROC of 0.9). Conclusion. CAH patients and healthy control subjects 
exhibit significant differences in plasma metabolomes, which may be explained by glucocorticoid 
supplementation.

Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive diseases due to enzyme deficiencies 
leading to impaired cortisol biosynthesis and deficiency of the 21-hydroxylase enzyme is its most common form. 
Main treatment relies on steroid replacement therapy including glucocorticoids (GC) (i.e. hydrocortisone) alone 
or in association with mineralocorticoids (i.e. fludrocortisone)1. Although effective, long-term GC replacement 
therapy is associated with multiple adverse effects. They include, but are not limited to the appearance of cardio-
vascular metabolic risk factors (hypertension, insulin-resistance, obesity and dyslipidemia), immunosuppression 
with infections, psychological disturbances and osteoporosis. Moreover, oral GC intake does not supplement ade-
quately cortisol’s physiological circadian rhythm, and the dosage needed to suppress androgens is usually higher 
than that needed for substitution only2. These elements all contribute to increased health costs and decrease of 
quality of life and life expectancy2–6.
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In CAH patients, dosage adjustment of GC routinely consists in assessing clinical symptoms and adrenal 
androgen levels7. Because of a narrow therapeutic index, metabolomic analyses may be suitable to better charac-
terize the effects of this medication and prevent its adverse effects while conserving its benefits. Indeed, pharma-
cometabolomic studies quantify and analyze circulating metabolites following drug administration, specifically 
identifying activated pathways8,9. Previous metabolomic analyses of CAH patients showed that those requiring a 
higher dosage of GC presented a different metabolomic profile compared with those who required a lower dos-
age, with altered free fatty acids, bile acids, and amino acid metabolites pathways10. However, no comparison was 
performed with healthy control subjects, hence, impact of CAH on metabolome remains unclear.

In the present study, we aimed to compare the metabolomic profile of CAH patients treated with GC supple-
mentation, to healthy control subjects, using a machine-learning-based algorithm (Predomics)11. A previously 
published package of metabololomic analyses (MetaboDiff) was used as quality-controller12.

Results
Clinical and hormonal differences between CAH and control.  Table 1 summarizes clinical and 
characteristic parameters from this prospective study cohort (n = 168), which included 84 CAH patients and 84 
healthy control subjects. Both groups were similar in age, gender proportion, systolic and diastolic blood pressure, 
history of cardiovascular disease (1.2% vs 7.1%, p = 0.054) and smoking status (active or past represented 27% in 
both groups). Healthy control subjects were taller than CAH patients (169 vs 163 cm, p < 0.001) and had lower 
body-mass index (23.1 vs 25.8, p < 0.001). Clinical and biological differences between gender and between groups 
were analyzed in a previous paper13. Among CAH patients, 42 (50%) had classic salt-wasting form, 16 (19.0%) 
with simple virilizing form and 26 (31.0%) had non-classical form.

Compared to healthy control subjects, CAH patients presented significantly higher levels of insulin levels, 
HOMAIR, 17-OH progesterone, progesterone, total testosterone, ACTH, renin and aldosterone (see Table 1).

Correlations between hormones and metabolites.  Correlations are presented within a heat map pro-
vided in Supplementary Figure A. Overall, univariate correlations were not significant below a p-value < 0.001, 
which makes the following observations uncertain due to the number of tests performed.

Briefly, in CAH patients, 17-OH-progesterone levels correlated with fatty acid metabolites, hexoses (sum of 
glucose, galactose and fructose) and urea. In healthy control subjects, 17-OH progesterone correlated with argi-
nine and proline.

In both groups, androstenedione levels correlated with succinate, glutamate, fatty acid metabolites, urea cycle, 
arginine and proline metabolites. Androstenedione also correlated with leucine, isoleucine and valine metabolism 
pathway in healthy control subjects.

In CAH patients, renin levels correlated with glutamate and lysine metabolites, while it only correlated with 
tryptophan metabolites in healthy control subjects. There was no association between plasma cortisol levels and 

Control (n = 84) CAH (n = 84)

p-valueMedian
Perc. 
25

Perc. 
75 Median

Perc. 
25

Perc. 
75

Age (years) 27.2 23.4 35.0 28.2 22.6 36.9 0.88

Height (cm) 169.0 163.0 177.0 163.0 157.0 170.0 0.001

Weight (kg) 67.8 60.5 74.0 68.0 57.5 78.0 1.0

BMI 23.07 20.88 25.61 25.8 22.19 29.03 0.001

Systolic blood pressure 112.0 105.0 120.0 110.0 103.0 123.0 0.64

Diastolic blood pressure 70.0 64.0 74.0 68.0 59.0 75.0 0.16

Insulin 5.4 4.0 8.2 8.8 5.8 13.0 <0.001

HOMAIR 1.0 0.8 1.7 1.8 1.1 2.5 0.001

Estradiol (pg/mL) 46.5 27.7 146.0 48.5 30.5 99.0 0.88

Progesterone (ng/mL) 0.8 0.4 1.3 2.0 0.8 6.4 <0.001

FSH (IU/mL) 4.9 3.3 7.6 4.9 2.9 6.5 0.88

LH (IU/mL) 5.7 4.3 9.2 5.2 2.7 7.5 0.22

Androstenedione (ng/mL) 2.3 1.6 3.0 2.8 1.4 5.3 0.17

17-OH-progesterone (ng/mL) 1.6 0.9 2.4 11.9 2.8 29.5 <0.001

Total testosterone (ng/mL) 0.4 0.3 4.5 0.8 0.3 2.9 0.003

SHBG (ng/mL) 56.1 35.3 76.2 46.7 29.9 82.3 0.28

ACTH (pg/mL) 19.5 12.4 29.9 31.3 10.3 67.2 0.009

Renin (pg/mL) 12.8 8.2 17.0 19.5 12.1 41.7 0.001

Aldosterone (pg/mL) 107.0 73.1 148.0 137.0 114.0 264.0 0.09

Cortisol (µg/L) 110 77.5 140 94.85 35.65 144 0.49

Table 1.  Clinical and hormonal features of control subjects and CAH patients. Abbreviations: ACTH: Adreno 
CorticoTrophic Hormone; BMI: body-mass index; FSH: Follicle Stimulating Hormone; HOMAIR: Homeostasic 
model assessment of insulin resistance; LH: luteinizing hormone; Perc: percentile; SHBG: Sex hormone-binding 
globulin; 17-OH: 17α-Hydroxyprogesterone.
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metabolic pathways in CAH patients, whereas in control patients, cortisol correlated with lysine, leucine, isoleu-
cine, valine, steroid, nicotinate and nicotinamide metabolites.

Finally, in CAH patients, indoleamine 2,3-dioxygenase (IDO) activity correlated with ACTH (rho = −0.25, 
p = 0.02), whereas it was not in control participants. The association between IDO and ACTH in CAH patients 
was independent from GC supplementation (p < 0.001), after adjustment in multivariable analysis using global 
linear modeling.

Metabolic differences between CAH and control patients.  Differences in metabolite abundance 
between CAH and control patient are presented in Fig. 1 and Supplementary Table A. Overall, between the two 
groups, 50 metabolites differed significantly (denoted with a ‘+’ symbol in Fig. 1), 33 of which, resisted adjust-
ment for multiple testing (denoted with a ‘#’ symbol in Fig. 1). Main pathways identified included: purine and 
pyrimidine metabolism, branched aminoacid metabolism, tricarboxylic acid (TCA) cycle and associated path-
ways (urea, glucose, pentose phosphates).

The comparative metabolomics package “MetaboDiff” showed significant differences between the two groups 
and isolated two modules: module 13 | Aminosugar metabolism and module 4|Purine metabolism, (Hypo)
Xanthine/Inosine containing (see Fig. 2).

Similarly, the machine-learning based approach identified ternary (Ter) models combining several metabo-
lites that accurately classify CAH and control patients. Metabolites which featured the higher importance in these 
models included (decreasing order, with featuring importance greater than 2.5): lactose/sucrose, diethanolamine, 
guanosine, xanthine, creatine, 3-hydroxy-3-methyglutarate, inosine, hydroxybutanoate, hypoxanthine and hex-
osamine (see Fig. 3).

Figure 1.  Differences in metabolite abundance between CAH and control patients. Abundance was log-
10 transformed before imputation. Legend: blue color represents CAH patients. + sign denotes significant 
difference in unadjusted analysis only; # denotes significant difference after adjusting for multiple comparisons.
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Moreover, two models illustrating the machine-learning approach were manually generated. A first Ter model 
combining 4 metabolites (guanosine, inosine, xanthine and creatine) reached an empirical accuracy of 0.82 and 
area under receiver operator characteristics curve (AUROC) of 0.86 and a second Ter model combining 4 metab-
olites (guanosine, inosine, xanthine and 3-hydroxy-3-methyglutarate), empirical accuracy was 0.81 and AUROC 
0.85.

For comparison purpose, the best automatically generated 4-features Ter model found a combination of xan-
thine, hydroxybutanoate isomer, n-acetyl-beta-alanine and hexosamine. Its empirical accuracy was 0.86 and 
AUROC 0.9 (estimated generalized accuracy of the algorithm was 0.74 and AUROC was 0.86).

Discussion
The main findings of this study are: (i) CAH patients treated with GC express a specific metabolomic signature 
allowing for metabolomic analyses to accurately discriminate them from healthy control subjects matched on 
gender and age and (ii) the machine-learning-based approach, Predomics, finds concordant results with the dif-
ferential metabolomics analysis tool MetaboDiff, and allows to generate accurate and interpretable models.

Metabolomics analyses showed that CAH patients exhibited a specific metabolic signature. Main altered path-
ways were those influencing the amount of purine and pyrimidine metabolites, branched amino acids, tricarbo-
xylic acid (TCA) cycle metabolites (urea, glucose, pentose phosphates). The isolated use of GC in healthy control 
subjects has previously been associated with metabolomics alterations14. These alterations were important even 
for small dosage of GC supplementation and redisposed all the main energetic pathways, including glycolysis, 
TCA cycle, urea cycle and their connection with fatty acid and amino acids. In the present work, most differences 
between CAH patients and control subjects lied on these same pathways. A plausible explanation may be that 
CAH patients may not exhibit other metabolomics alterations than those related to treatment. With similar cor-
tisol levels in both groups, and without any significant correlation between cortisol and metabolic pathway; these 
findings support the fact that cortisol is not an adequate marker of disease control in this well-supplemented pop-
ulation. Moreover, diurnal cortisol intra-individual variations is well-known factor difficult to predict or correlate.

In this cohort, ACTH was associated with the IDO enzyme activity. IDO catalyzes the reaction degrad-
ing tryptophan to kynurenine, passing the rate-limiting step in the pathway which ends to nicotinamide ade-
nine dinucleotide (NAD) biosynthesis15,16. ACTH is overexpressed by the pituitary gland in uncontrolled 
CAH patients, due to a lack of negative feedback1. Incidentally, in CAH patients, the most common mutation 
results in a 21-hydroxylase deficiency, which in humans, may be mimicked by a microsomal reduced NAD 
phosphate-dependent cytochrome p450 enzyme (POR) deficiency17. While POR deficiency also involves several 
other metabolic pathways, the association found between ACTH and IDO enzyme activity may explain how NAD 
pathway is altered in both diseases. Remarkably, the association remained statistically significant after adjusting 
for GC supplementation in multivariable analysis.

All metabolites found by the machine-learning based approach Predomics, to discriminate CAH patients from 
healthy control subjects, were related to pathways known to be influenced by GC treatment. Specifically, purine 
metabolism (containing xanthine, hypoxanthine, guanosine, inosine) highly discriminated CAH patients from 
healthy control subjects; followed by aminosugar metabolism (lactose, sucrose, hexosamine), branched ami-
noacid metabolites (3-hydroxy-3-methylbutyrate) and creatine, mevalonate and ketones metabolism, all which 
branch into the citrate cycle. Combining purine metabolites to another identified metabolite allowed to manually 
generate simple models with only four features, which showed high accuracy and discrimination, as compared to 
automatically selected models.

Limitations.  We acknowledge several limitations in this study. Although the number of patients was rela-
tively high for this rare disease, the sample size still was not very large and results might differ in a larger popu-
lation of CAH patients. Second, correlations were moderate which may be due to confounding factors altering 

Figure 2.  MetaboDiff module visualization diagram with differences between CAH and control patients. 
Modules are represented as branches of a dendrogram, red color denotes significant difference in module 
abundance between CAH and control patients.
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levels of circulating metabolites. The external validity of these results relies in part, on the fact that they com-
fort biochemical mechanisms proven experimentally decades ago for some of them (i.e. glucocorticoid-induced 
purine metabolism)18, or in the last five years, using advanced metabolomic tools, for others (i.e. metabolomic 
profiling of healthy subjects supplemented in GC)14. Regarding statistical analyses, we performed state-of-art 
data-processing techniques, p-value correction methods using Bonferroni-Hochberg procedure and stringent 
data filtering; we also omitted variables that were associated with medication intake to avoid false-positives and 
applied non-parametric statistics which are robust to normality distributions but at the expense of power. The 
machine-learning-based approach used here minimizes the sum of a cost function and regularizes L1 norm for 
sparsity, under a constraint on the unary value of the linear model that predicts classes. Besides being relatively 
simple and interpretable, the generated models are robust to generalization and offer importance scoring of the 
features.

Conclusion
CAH patients and healthy control subjects display significantly different plasma metabolomes signatures. Main 
differences may be explained by GC supplementation of CAH patients only. Predomics identified such simple 
signatures allowing for accurate discrimination between CAH and healthy control subjects.

Methods
Study design.  This study is ancillary to the Cardiovascular Risk Profile in Patients With Congenital Adrenal 
Hyperplasia (CARDIOHCS) study (clinicaltrials.gov identifier NCT01807364), a multicenter prospective obser-
vational case-control study comparing early cardiovascular damage in adult men and women with CAH due 
to 21α-hydroxylase deficiency and healthy control subjects13,19,20. All participants provided written informed 
consent to participate, and the study was approved by each hospital ethics committee including Pitie-Salpetriere 
University Hospital.

Study population.  Patients with CAH and healthy subjects were all assessed at the Clinical Investigation 
Center Paris-Est (CIC-1901, Pitié-Salpêtrière University Hospital, Paris, France). Eighty-four young adults (58 

Figure 3.  Feature importance of metabolites in models created by Predomics. Left: The feature importance 
(mean decrease accuracy) of the Ter models. Features (rows) are ordered by the average MDA in the three 
experiments. Right: boxplots indicating the distribution of the same metabolites in the two study groups. The 
blue color indicates enrichment in the CAH group while red in the controls (i.e. in the boxplots, lactose is 
enriched in the control group). On the left panel, the colours indicate the same concepts also associated with the 
sign of the features in the TER model (-1 is blue, and 1 is red).
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women and 26 men) with CAH and 84 control subjects matched for sex, age, and smoking status were pro-
spectively included in the CARDIOHCS study between May 2011 and August 201513,19,20. The adults with CAH 
included in the study, were diagnosed during childhood and confirmed by genetic testing of 21α-hydroxylase 
deficiency. Exclusion criteria for CAH and healthy subjects were: previous history of cardiovascular disease, use 
of combined contraceptives within 1 month of data collection, and current pregnancy. Patients with CAH were 
treated, as needed by their standard of care, with hydrocortisone or dexamethasone, and fludrocortisone. All 
patients required to be fasting for at least 12 hours prior to blood sampling, and to refrain from coffee-containing 
products for at least 24 hours.

Study objectives.  The main objective of this ancillary study was to characterize the metabolomic profile 
of CAH patients compared to that of matched healthy controls using untargeted approaches. To this aim, two 
analytic methods were performed.

Hormone analyses.  Blood samples for the determination of serum concentrations of 17-OH progester-
one, progesterone, estradiol, total testosterone, aldosterone, renin, androstenedione, sex hormone–binding 
globulin (SHBG), adrenocorticotropic hormone (ACTH), follicle-stimulating hormone (FSH), luteinizing hor-
mone (LH) were collected in dry tubes and further assayed in the immunology laboratory of Pitié-Salpêtrière 
University Hospital. Estradiol, progesterone, SHBG and testosterone were assayed using chemiluminescence 
(Modular-E170; Roche, Mannheim, Germany) and 17-OH progesterone by radioimmunoassay (KIP1409; 
DIAsource ImmunoAssays, Louvain-la-Neuve, Belgium). Cortisol was sampled concomitantly with the other 
hormones, more than 8 hours after last intake of corticosteroids in CAH patients and after 12 hours of fasting in 
healthy subjects. Baseline hormonal measurements were assessed in all subjects, under their regular treatment 
for CAH patients.

Metabolomic analyses preparations.  Eight volumes of frozen acetonitrile (−20 °C) containing internal 
standard (labelled mix of amino acids at 12.5 μg/mL) were added to 50 μL serum samples and vortexed. Samples 
were sonicated for 15 minutes and centrifuged for 2 minutes at 10.000 × g and at 4 °C. Then, centrifuged sam-
ples were incubated at 4 °C during one hour for slow protein precipitation. Samples were then centrifuged at 
20.000 × g at 4 °C and supernatants were transferred to another series of tubes and then dried out and frozen at 
−80 °C until the liquid chromatography-mass spectrometry (LC-MS) analyses. Samples were reconstituted based 
on starting mobile phase composition of the chromatographic method (water/acetonitrile (99:1; v-v) contain-
ing 0.1% of formic acid). Reconstituted samples were, then, centrifuged and transferred to vials before LC-MS 
analyses.

Ultra-performance Liquid Chromatography-Mass Spectrometry (UPLC-MS) analyses of 
serum samples.  Metabolite profiling analysis was carried out on a UPLC Waters Acquity (Waters Corp, 
Saint-Quentin-en-Yvelines, France) coupled to a hydrid Orbitrap based instrument, a Q-Exactive (Thermo Fisher 
Scientific, Illkirch, France). LC-MS analyses was made in full scan positive and negative mode with a resolution of 
70 000 (FWHM) and a scan range of m/z 50–750. Mass spectrometer was systematically calibrated before LC-MS 
analyses in both ion polarity modes with the Pierce calibration solution.

LC-MS analyses were performed using a modification of the method of Garali et al. to screen 
microbiota-derived metabolites21. Briefly, a ‘PFPP column’ Discovery HS F5-PFPP column, 3 μm, 2.1 × 150 mm 
(Sigma, SUPELCO, Saint Quentin Fallavier, France) kept at 35 °C. Injection volume and autosampler tempera-
tures were set to 10 μl and 5 °C in both column systems, respectively. Flow rate was set to 0.250 mL/min and the 
mobile phase consisted of 0.1% of formic acid in water (A) and 0.1% of formic acid in acetonitrile (B) during 
28 minutes.

Untargeted metabolomics data analyses.  Processing steps of MS data, including peak picking, peak 
grouping, retention time correction, and annotation of isotopes and adducts, were performed using XCMS R 
package with CentWave algorithm and CAMERA tools implemented in R software and the galaxy workflow-
4metabolomics22–24. Processing of LC-MS data were analyzed based on standard protocols25,26 and resulted in a 
datamatrix in which each metabolomic feature was characterized by a retention time (RT), mass to charge ratio 
(m/z), and its corresponding intensities for each sample and the isotope-adduct annotation from CAMERA tool.

Metabolomics data matrix was filtered, normalized, curated and log-10 transformed based on quality assur-
ance (QA) strategy27,28. Peaks with more than 30% of missing values were discarded. Metabolites from the 
Xenobiotics category were also discarded. Principal component analysis (PCA) was also plotted to assess the 
absence of technical drift during data acquisition process (data not shown). Robust features were annotated based 
on their mass to charge ratio (m/z) and retention time (RT) using public, and ‘in-house’ databases then confirmed 
based on MS/MS experiments. Following these processing and annotation steps, 140 features met the acceptance 
criteria. Moreover, indoleamine 2,3 dioxygenase (IDO) enzyme activity was computed as the abundance ratio of 
kynurenine over tryptophan.

Statistical analysis.  Continuous variables are presented as median (interquartile range) and categorical var-
iables as number (proportions). For enrichment and statistical analyses of the metabolomics data the MetaboDiff 
R package (v 0.9.3) was used29. Briefly, the MetaboDiff analysis consists on different steps, including annotation, 
imputing missing data by k-nearest neighbor approach and removal of metabolites with at least 40% of missing 
data. Data are then renormalized using variance stabilizing normalization to ensure that variance remains nearly 
constant over the measured spectrum30. To derive meaningful subpathways that are enriched between groups, 
MetaboDiff generates a metabolic correlation network, which offers the possibility to integrate external informa-
tion such as pathway information12. Module significance can be determined as the average absolute metabolite 
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significance measure. The Predomics approach, based on specific machine-learning models and genetic algo-
rithm, searches a few sparse models in a very large combinatorial space. The best ternary models is then selected 
by applying a penalty on the number of features used – for each feature added the accuracy is decreased by a 
value of 1/100. A feature importance score is computed during the cross validation11. The resulting data were 
used to assess differential abundance between patients and controls and using unpaired non-parametric tests 
(Mann-Whitney). Associations with clinical numerical variables were tested using Spearman correlations. 
P-values were adjusted for multiple testing using the Benjamini-Hochberg method31. Prediction analyses were 
performed using the Predomics package searching for ternary models with the beam-search algorithm using 
default parameters11. Here we used the MetaboDiff imputed data prior to normalization for interpretability rea-
sons. Cross-validation was performed using a 20-times 5-fold configuration and the sparsity penalization coeffi-
cient was set to 1%.

Statement.  All described methods were carried out with relevant guidelines and regulations.
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