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Abstract 

Aims: Agonists to the glucagon-like peptide 1 receptor (GLP1R) agonists and dual agonists targeting 

GLP1R and the glucagon receptor (GCGR) or the Glucose-dependent insulinotropic peptide receptor 

(GIPR) are currently being developed for the treatment of non-alcoholic steatohepatitis (NASH). We 

have tested specific mono-agonists to these three receptors individually and in combination in a 

mouse model of diet-induced NASH and fibrosis, to decipher the contribution of their activities and 

potential additive effects on improving systemic and hepatic metabolism. 

Materials and methods: Advanced NASH was induced by pre-feeding C57BL/6J mice a diet rich in fat, 

sucrose and cholesterol for 36 weeks. This was followed by eight weeks of treatment with the 

receptor-specific agonists 1-GCG (20 µg/kg bid sc), 2-GLP1 (3 µg/kg bid sc) or 3-GIP (30 µg/kg bid sc), 

or the dual (1+2) or triple (1+2+3) combinations thereof. A dual GLP1R/GCGR agonistic peptide, 4-

dual-GLP1/GCGR (30 µg/kg bid sc), and liraglutide (100 µg/kg bid sc) were included as references.  

Results: Whereas 1-GCG and 3-GIP alone, at the selected low dose, did not influence body weight, 

liver lipids and histology, their combination with 2-GLP1 provided additional weight loss, reduction in 

liver triglycerides and improvement in histological NAFLD activity score (NAS). In addition, there was 

a trend to further reduction in markers of hepatic inflammation and fibrosis. Notably, compared to 



high-dose liraglutide, 4-dual-GLP1R/GCG as well as the dual and triple combinations of selective 

mono-agonists demonstrated stronger improvement in NAS at the same extent of body weight loss. 

Conclusions: GCGR and GIPR agonism provide additional, body weight-independent improvement in 

a murine model of advanced NASH with fibrosis on top of GLP1R agonism.  

  

Introduction 

Non-alcoholic fatty liver disease (NAFLD) covers a spectrum of hepatic abnormalities ranging from 

simple steatosis to non-alcoholic steatohepatitis (NASH) and liver fibrosis. Fatty liver is very common, 

with an estimated global prevalence of approximately 25%, and strongly associated with other 

systemic conditions such as obesity, diabetes and dyslipidemia.1 Progression to NASH and especially 

to NASH with advanced fibrosis is a strong risk factor for the development of cirrhosis and 

hepatocellular carcinoma, has been linked to increased overall and liver-related mortality, and is 

becoming the leading cause of liver transplantation.2,3,4,5,6 From a pathophysiological perspective, fat 

and triglyceride accumulation in the liver, hepatic and adipose tissue insulin resistance, inflammation 

as well lipotoxicity and oxidative stress are involved in the development of NAFLD. At present there 

are no approved pharmacological therapies available to treat NAFLD/NASH. Lifestyle intervention 

focusing on weight loss is regarded as first line therapy.7
 Thus, novel treatment options for 

NAFLD/NASH are highly warranted. 

Amongst the various approaches which are being investigated to treat NAFLD/NASH are agonists of 

the glucagon-like peptide 1 receptor (GLP1R) agonists or GLP-1-based multi-agonists as they have 

been shown to produce significant and sustained weight loss as well as elicit favorable metabolic 

effects.8,9 For example, treatment of patients with biopsy-confirmed NASH with liraglutide, a once 

daily GLP1R agonist, over 48 weeks at a dose of 1.8 mg/day (LEAN study) led to a resolution of NASH 

in 39% of the treated patients as well as to reduced worsening of fibrosis.10 

Unimolecular dual or triple agonists activating besides the GLP-R also the glucagon receptor (GCGR) 

or/and the glucose-dependent insulinotropic peptide receptor (GIPR) are emerging as a promising 

class of next generation drug molecules offering significantly improved metabolic effects and weight 

loss.11 Besides their pronounced effects on glycemic control and body weight, dual GLP1/GCGR 

agonists were shown to improve lipid metabolism and hepatic steatosis in mice with diet-induced 

obesity (DIO).12 When studied in non-human primates, treatment with an activity- balanced, lipidated 

dual GLP1R/GCGR agonist, MEDI0382, led to significant hepatic fat reduction, which was also seen in 

human clinical studies.13,14 MEDI0382 is currently under advanced clinical development for treatment 

of NAFLD/NASH. (clinicaltrials.gov; NCT04019561) 



Likewise, unimolecular dual GLP-1R /GIPR agonists as well as triple GLP-1R/GIPR/GCGR agonists have 

been shown to improve glycemic control and weight loss in DIO mice accompanied by improved liver 

function and hepatic steatosis.15,16  

However, very little is known on the effects of these multi-incretin approaches in models of obesity 

and insulin resistance in combination with manifest NASH and advanced fibrosis. Also, the 

contribution of their individual components – GLP1R, GCGR and GIPR agonism – on hepatic and 

metabolic disease in the setting of NASH has not been thoroughly investigated. In the absence of 

such systematic studies, we have designed acylated, selective GLP-1R, GCGR and GIPR agonists as 

tool compounds and studied them alone and in combination in a mouse model of diet-induced, 

biopsy-confirmed advanced NASH and fibrosis to better understand their individual contribution and 

potential additive effects on improving systemic and hepatic metabolism.  

  



Methods 

Animals and experimental design 

The peptides were investigated in a mouse model of diet-induced obesity, NASH and fibrosis (DIO-

NASH model) as described.17 All animal experiments were conducted according to the international 

principles for care and use of laboratory animals and were covered by personal licenses for Jacob 

Jelsing (2013-15-2934-00784 and 2015-15-0201-00518) issued by the Danish committee for animal 

research.  

Male C57BL/6J mice (5 weeks old) obtained from JanVier (LanVier Labs, France) were placed on 

either standard rodent chow (Altromin 1324, Brogaarden, Denmark) or AMLN diet (D09100301, 

Research Diet, United States). AMLN diet is a NASH-inducing diet rich in fat (40%, including 18% 

trans-fat), carbohydrates (40%, including 20% fructose) and cholesterol (2 %) as previously 

described.18 After 33 weeks on these diets, a baseline liver biopsy was conducted for histological 

assessment of individual fibrosis and steatosis staging, as described.17 A total of 96 mice (n=12 per 

treatment group) were randomized and stratified according to body weight and liver Col1A1 

quantification. Ten mice on chow diet were included as controls. Treatment commenced 36 weeks 

after starting on the diets and lasted for eight weeks with all animals remaining on the same diet as 

in the pre-treatment phase. At the end of the intervention, animals were euthanized and liver tissue 

and serum samples were collected. 

Tested compounds and doses are summarized in table 1. All compounds were administered twice 

daily by subcutaneous injection using phosphate-buffered saline as vehicle. 

Methods used for body weight and body composition analysis, blood sampling, plasma biochemistry 

and liver tissue biochemistry are detailed in Supplemental Information. 

Histology assessment 

Baseline liver biopsy and terminal samples were collected from the left lateral lobe (about 50-100 mg 

at baseline and 200mg at the end) and fixed overnight in 4% paraformaldehyde. Liver tissue was 

paraffin embedded and sectioned (3μm thickness). Sections were stained with Hematoxylin and 

Eosin and Sirius Red to assess hepatic steatosis and fibrosis respectively, followed by analysis with 

Visiomorph software (Visiopharm, Denmark). Col1a1 and galectin-3 were assessed using IHC staining. 

A blinded to the study pathologist performed the histological assessment and scoring. NAFLD activity 

score (NAS) (steatosis/inflammation/ballooning degeneration) and fibrosis stage were quantified 

applying the criteria proposed by Kleiner et al.19 

 



Hepatic gene expression changes 

Liver tissue was harvested from the left lateral lobe, stabilized overnight in RNAlater® solution 

(Merck KGaA, Darmstadt, Germany) and stored at -80 °C. Total RNA isolation was performed with the 

miRNeasy kit following the instructions of the manufacturer (QIAGEN GmbH, Hilden, Germany). RNA 

was quantified with an Agilent RNA 6000 Nano kit using an Agilent 2100 Bioanalyzer (Agilent 

Technologies Inc, Waldbronn, Germany). Gene expression was quantified using droplet digital PCR or 

qRT-PCR analysis as described in Supplemental Information. 

 

Statistical analysis 

Data are presented as mean ± standard error of the mean (SEM). Statistical significance was 

evaluated using Dunnett’s test one-factor linear model for body composition, blood and liver 

biochemistry. T-test was used for the comparison of differences of gene expression between the 

groups. P < 0.05 was set as the statistical significance level. 

 

 

Results 

Test compounds 

For the systematic study of incretin hormone analogs and their combination in the described NASH 

animal model, specific mono-agonists of the GLP1R, GCGR and the GIPR were generated. In addition, 

an earlier described dual GLP1R/GCGR agonist20 was used as well as Liraglutide as GLP1 standard for 

comparison. Compounds 1-GCG, 2-GLP1 and 3-GIP were all designed based on the exendin-4 

sequence using acylation with either palmitic acid or stearic acid to prolong their half-life, similar to 

liraglutide (table 1a). In mice, 1-GCG is an equipotent GCGR agonist compared to glucagon itself with 

a much better selectivity profile towards the GLP1R (> 300-fold). 2-GLP1 & 3-GIP were at least 3000-

fold selective for their corresponding receptor (table 1b).21,22 In mice, the dual agonist 4-dual-

GLP1/GCG was 10-fold more active at the GLP1R compared to the GCGR. All selected compounds had 

reasonable pharmacokinetic properties in mice with half-lifes of 2.5-4.1 h after subcutaneous 

administration (table 1c). In order to guarantee full daily coverage in our DIO-NASH model the 

compounds were dosed twice daily (b.i.d.) by subcutaneous administration. The doses selected for 

compounds 1-GCG, 2-GLP1, 3-GIP were 20 µg/kg, 3 µg/kg and 30 µg/kg b.i.d, respectively. These 

comparably low doses were selected to allow for the identification of additive or synergistic activity 

when given in combination at the same individual doses. Liraglutide as a reference GLP-1R agonist 



was administered at 100 µg/kg twice daily to provide near-maximal effects that can be achieved with 

a selective GLP1R agonist. The dose of compound 4-dual-GLP1/GCG was chosen as 30 µg/kg b.i.d. to 

achieve an extent of weight loss which is similar to liraglutide at 100 µg/kg b.i.d.  

 

Body composition and food intake, blood glucose 

Figure 1a shows the relative change in body weight over the treatment period of eight weeks. 

Average body weight at the onset of treatment was 36.1 gram (± 0.3 gram SEM) without significant 

differences between treatment groups, compared to 31.1 ± 0.4 gram for the chow control mice. 

Whereas vehicle-treated mice gained about 3 % over the treatment period, body weight remained 

constant for mice treated with 1-GCG or 3-GIP at the tested doses. Treatment with 2-GLP1 led to 

body weight loss of 5 % whereas 4-dual-GLP1/GCG, liraglutide or the dual or triple combinations of 1-

GCG, 2-GLP1 ± 3-GIP led to 8-9 % weight loss, all significantly different from vehicle controls and 

getting close to the weight of lean control mice. Weight loss was driven primarily by an initial 

decrease in food intake in the first week of treatment which then recovered and remained stable for 

the rest of the treatment period (figure 1b). Body weight loss predominantly resulted from loss of fat 

(figure 1c) whereas there was no significant change in lean mass (figure 1d).  

Mice with NASH had enlarged livers that had about twice the weight of those of the chow control 

mice (figure 1e). Whereas treatment with 1-GCG or 3-GIP alone had no effect on liver weight, 2-

GLP1, the combination of 2-GLP1 with 1-GCG or with 1-GCG and 3-GIP as well as 4-dual-GLP1/GCG 

and liraglutide led to a significant reduction in liver weight. 

As expected, treatment with the glucagon receptor agonist 1-GCG led to an increase in blood glucose 

whereas it remained constant or decreased in all other treatment groups (figure 1f). Of note, DIO-

NASH mice are not diabetic which explains the limited glucose lowering seen for the GLP1R- or GIPR-

agonist containing treatment groups. 

 

Liver enzymes, hepatic steatosis and histopathology 

Plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were 

significantly reduced upon intervention with 2-GLP1, the 1-GCG + 2-GLP1 dual combination, the 1-

GCG + 2-GLP1 + 3-GIP triple combination, 4-dual-GLP1/GCG or liraglutide (figures 2a and 2b). In the 

same groups, total liver triglycerides were lower than in vehicle control mice at the end of the 

treatment period (figure 2c). Notably, there was a significant add-on effect of GCGR and GIPR 



agonism to GLP1R activation in lowering liver triglycerides which was also observed for lowering total 

liver cholesterol (figure 2d).  

Whereas 1-GCG or 3-GIP alone did not lead to a reduction in liver fat content, hepatic steatosis was 

lower in all treatment groups containing GLP1R-agonistic activity (figure 2e) with a significantly 

stronger reduction observed for the 1-GCG + 2-GLP1 + 3-GIP triple combination compared to the 

GLP1R agonist 2-GLP1 alone. Hepatic galectin-3 as a marker of liver fibrosis was decreased in the dual 

and triple combination group and upon treatment with 4-dual-GLP1/GCG or liraglutide (figure 2f). 

The change in the histological NAFLD activity score (NAS) upon treatment is depicted in figure 3a. In 

the pre-treatment biopsy, DIO-NASH mice had, on average, a NAS of 6 primarily driven by a steatosis 

score of 3 in all DIO-NASH animals and an inflammation score of 3 in 85 % of all DIO-NASH mice 

whereas there was little hepatocyte ballooning (35 % with score 1, 65 % with score 0) at the onset of 

therapy. Treatment with 1-GCG, 2-GLP1 ± 3-GIP dual and triple combinations or the dual 

GLP1R/GCGR-agonist 4-dual-GLP1/GCG led to a stronger decrease in NAS compared to treatment 

with single GLP1R-, GCGR- or GIPR-agonistic peptides (figure 3a) with improvements in all three NAS 

components steatosis, lobular inflammation and hepatocyte ballooning (not shown). Of note, the 

dual GLP1/GCG agonist and the dual and triple combination treatments also provided a stronger 

decrease in NAS compared to liraglutide (figure 3a) although the amount of body weight loss 

between these groups was nearly indistinguishable (figure 1a). 

The majority of the DIO-NASH mice had a fibrosis score of two in the pre-biopsy. Whereas in the 1-

GCG and 3-GIP groups only two and one mice, respectively, showed an improvement by one point, 

about 50 % of animals treated with 2-GLP1, the dual or triple peptide combination or 4-dual-

GLP1/GCG exhibited a reduction in hepatic fibrosis score by one point (figure 3b). 

This improvement in histology is also reflected in changes in the expression of marker genes for 

fibrosis (Col1a1, Col3a1, Loxl2) or inflammation (Ccl2, Tlr4). In addition, dermatopontin (Dpt), 

previously described to be associated with NASH both in rodents and in people23 was found to be 

regulated in DIO-NASH mice and partially normalized upon treatment (figure 4). 

 

Discussion  

Using a mouse model of biopsy-confirmed, diet-induced, advanced NASH with fibrosis, we have 

demonstrated that combining GLP-1 receptor, glucagon receptor and GIP receptor agonism provides 

additive effects in improving hepatic steatosis, liver injury and NAFLD activity. 



GLP1R agonists are an established therapy for the treatment of diabetes and obesity24,25,26,27,28,29,30, 

with positive effects on cardiovascular outcome.31,32,33,34,35 Recently, dual GLP1R/GCGR14,36  and 

GLP1R/GIPR37 have demonstrated clinical proof of concept in lowering body weight and blood 

glucose in obese patients with type-2 diabetes. Treatment of patients with biopsy-confirmed NASH 

with the GLP1R agonist liraglutide led to NASH resolution and inhibition of fibrosis progression10, and 

GLP1R agonists were shown to improve hepatic and metabolic health in pre-clinical models of NAFLD 

or NASH.38,39,40,41,42,43 In contrast, there is little information on the activity of dual or triple agonists in 

models of NASH, and the contribution of individual incretin or glucagon effects to the combined 

activity of these molecules has not been systematically investigated. A dual-active peptide targeting 

GLP1R and GCGR, G49, was described to improve hepatic steatosis and ameliorate liver injury in mice 

on a methionine and choline-deficient diet and partial hepatectomy.44 Likewise, a unimolecular 

GLP1R/GCGR/GIPR triagonist led to an improvement in steatohepatitis in mice with diet-induced 

obesity.16 However, these studies did not include specific GLP1R or GCGR agonists as comparators to 

delineate the relative contribution of the two components to the observed effects. 

Weight loss is a strong predictor of a reduction in hepatic steatosis and resolution of NASH, 

independently of whether it is induced by diet and exercise,7 bariatric surgery45  or pharmacological 

intervention.10 Correspondingly, weight loss observed in our study was tied to improvements in liver 

metabolism and histology. However, combination of sub-maximal doses of GLP1R and GCGR mono-

agonists or of GLP1R, GCGR and GIPR mono-agonists as well as administration of a dual GLP1R/GCGR 

agonist provided a more pronounced improvement in NAFLD activity score compared to a high dose 

of liraglutide eliciting the maximal GLP1R-mediated response, at the same extent of weight loss. 

Thus, it is likely that there are additional, weight-independent effects via activation of, e.g., liver 

GCGR leading to inhibition of hepatic de-novo lipogenesis and stimulation of liver fat utilization.46  

While providing a first systematic investigation of individual and combined effects of GLP1R-, GIPR- 

and GCGR agonism in diet-induced NASH, our study has certain limitations:  

Firstly, peptides could only be tested at one dose because including several doses per mechanism 

alone and in combination would have made the study excessively large and costly. Individual doses 

were selected according to previous studies in other murine models to produce small effects on 

weight and metabolic parameters. However, the selected dose of 2-GLP1 by itself led to significant 

weight loss, glucose lowering and reduction in hepatic steatosis, leaving less room for additive or 

synergistic effects of 1-GCG and/or 3-GIP on top of 2-GLP1 to be explored. In further studies, lower 

doses of 2-GLP1 should be included. 

Secondly, development of NASH in our model is driven by a diet artificially high in fat, especially 

trans-fat, fructose and cholesterol. Whether and how results obtained with this murine model 



translate into clinical efficacy in humans is not clear. In reverse translational studies, several 

molecules with clinical efficacy in NASH, e.g., obeticholic acid, liraglutide and elafibranor also led to 

improvements in NASH in our model.42 However, it remains to be shown that the model also predicts 

forward translation into humans. Notably, following an FDA ban on trans-fat as a food component,47 

the NASH inducing diet has recently been changed to contain palm oil instead of trans-fat.48 

Finally, it was outside of the scope of our study to further investigate the molecular mechanisms of 

how GLP1R-, GCGR- or GIPR-specific agonists and their combinations elicit their beneficial effects on 

systemic metabolism and steatohepatitis, e.g. through comparative expression, proteomics or 

metabolomics analysis. Such studies are currently under way. 
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Table and Figure Legends 

 

Table 1. Structure, activities and pharmacokinetics of test compounds. (a) Amino acid sequence and 

modifications of peptides used in this study. (b) In-vitro potencies (EC50 in pM) in HEK293 cells 

overexpressing the murine GLP1R, GCGR or GIPR for peptides used in this study. Potencies 

determined for human GLP-1, human glucagon and human GIP are shown for comparison. 

 

Figure 1. (a) Body weight change (% of day 0) throughout the eight-week treatment period. (b) 

Comparative 24-hour food intake relative to NASH vehicle group. (c) Lean tissue mass, (d) fat tissue 

mass, and (e) relative liver weight at study termination. (f) Four-hour fasting blood glucose levels 

after six weeks of treatment. Values are mean of n=10-12 + SEM. *p<0.05; **p<0.01, ***p<0.001 

compared to NASH Vehicle 

 

Figure 2. (a) Plasma AST, (b) plasma ALT activities at study termination. (c) Liver triglycerides, (d) liver 

total cholesterol in mg/g wet liver tissue at study termination. (e) Hepatic fat content, (f) hepatic 

galectin-3 content (% fractional area) as determined by histological quantitative assessment 

(morphometry). Values are mean of n=10-12 + SEM. *p<0.05; **p<0.01, ***p<0.001 compared to 

NASH Vehicle. #p<0.05, ##p<0.01, ###p<0.001 compared to 2-GLP1 treatment group. 

 

Figure 3. (a) Representative H&E stained images (20x) of liver morphology at study termination and 

individual changes in NAFLD activity score (pre- vs. post-treatment) for the different treatment 

groups. (b) Representative picrosirius red stained images (20x) and individual changes in fibrosis 

score for the different treatment groups. 

 

Figure 3. Hepatic expression of fibrosis marker genes (a) Col1a1, (b) Col3a1, (c) Loxl2 and (d) Dpt, 

inflammation marker genes (e) Ccl2 and (f) Tlr7 at study termination as determined by digital droplet 

PCR. Values are mean of n=10-12 + SEM. *p<0.05; **p<0.01, ***p<0.001 compared to NASH Vehicle. 

 



a) Peptide Sequences 

Compound Sequence Bid Dose 
[µg/kg] 

1-GCG Tza-s-QGTFTSDYSKQ-K[Glu-C16]-ESRRAQEFIEWLLAGGPESGAPPPS-NH2 20 

2-GLP1 H-s-EGTFTSDVSKQ-K[Glu-C16]-EKRAA-Aib-EFIEWLKNTGPSSGAPPPS-NH2 3 

3-GIP Y-a-EGTFISDYSIA-K[Glu-C16]-DKIHQQDFVNWLLAQKPSSGAPPPS-NH2 30 

4-Dual-GLP1/GCG H-s-QGTFTSDLSKQ-K[Glu-C18]-DSRRAGDFIEWLKNGGPSSGAPPPS-NH2 30 

Liraglutide HAEGTFTSDVSSYLEGQAA-K[Glu-C16]-EFIAWLVRGRG-OH 100 

Tza: Thiazolyl-alanine; Aib: 2-Aminoisobutyric acid 

b) In vitro receptor agonist potencies (cAMP release) in HEK-293 cell lines stably 
expressing mouse GLP-1, glucagon or GIP receptors 
 

 mouse EC50 [pM] 

Compound GLP1R GCGR GIPR 

1-GCG 396 1.3 >10,000 

2-GLP1 1 >10,000 >10,000 

3-GIP >10,000 >10,000 3 

4-Dual-GLP1/GCG 2.3 25 >10,000 

Liraglutide 4.4 >10,000 >10,000 

    

hGLP-1 0.9   

hGlucagon 43.5 1.3 >10,000 

hGIP   1.2 

 
c) Pharmacokinetic parameters after single subcutaneous administration to female 

C57Bl6 mice 

Compound Dose 
[mg/kg] 

Cmax 
[ng/ml] 

AUC0-24 
[ng h/ml] 

T1/2 
[h] 

1-GCG 1 5640 36600 2.5 

2-GLP1 0.5 1820 11800 3.5 

3-GIP 0.5 5060 38200 4.1 

4-Dual-GLP1/GCG 1 1930 11000 3.2 

Liraglutide 1 7700 79100 3.4 

 

Table 1 
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