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Abstract: One of the main characteristics of carcinogenesis relies on genetic alterations in DNA and
epigenetic changes in histone and non-histone proteins. At the chromatin level, gene expression is
tightly controlled by DNA methyl transferases, histone acetyltransferases (HATs), histone deacetylases
(HDACs), and acetyl-binding proteins. In particular, the expression level and function of several
tumor suppressor genes, or oncogenes such as c-Myc, p53 or TRAIL, have been found to be regulated
by acetylation. For example, HATs are a group of enzymes, which are responsible for the acetylation of
histone proteins, resulting in chromatin relaxation and transcriptional activation, whereas HDACs by
deacetylating histones lead to chromatin compaction and the subsequent transcriptional repression of
tumor suppressor genes. Direct acetylation of suppressor genes or oncogenes can affect their stability
or function. Histone deacetylase inhibitors (HDACi) have thus been developed as a promising
therapeutic target in oncology. While these inhibitors display anticancer properties in preclinical
models, and despite the fact that some of them have been approved by the FDA, HDACi still have
limited therapeutic efficacy in clinical terms. Nonetheless, combined with a wide range of structurally
and functionally diverse chemical compounds or immune therapies, HDACi have been reported to
work in synergy to induce tumor regression. In this review, the role of HDACs in cancer etiology
and recent advances in the development of HDACi will be presented and put into perspective as
potential drugs synergizing with TRAIL’s pro-apoptotic potential.

Keywords: histone deacetylase (HDAC); histone deacetylase inhibitors (HDACIs); chromatin
remodeling; cancer; tumor necrosis factor (TNF); TRAIL; methylation; silencing

1. Introduction

Cancer is considered as the leading cause of death worldwide. It has been reported to occur
as a result of epigenetic modifications, including amplifications, translocations, deletions, and point
mutations [1,2]. These epigenetic modifications are linked to abnormal cellular transformation,
characterized, among other things, by uncontrolled proliferation and resistance to cell death, forming a
lump or what is called a tumor. In addition, DNA methylation and the post-translational modification
of proteins such as histones, including acetylation and methylation, are also believed to play a central
role in tumorigenesis by modifying the structure of chromatin and the subsequent negative regulation
of tumor suppressor genes or oncogenes without any change in the DNA sequence [3]. The main
function of histones is the packaging of genomic DNA inside the nucleus. Histone proteins are rich
with positively charged amino acids, lysine and arginine, which makes their overall structure positive.
In this context, histones can interact with the negatively charged phosphate group of DNA. These
proteins are composed of several types of histone including H1, H2A, H2B, H3, and H4. H2A, H2B, H3,
and H4 represent the main histone core, while H1 is known as a linker histone [4]. The core multimeric
protein is an octamer molecule, mainly consisting of two copies of each histone type (2H2A, 2H2B, 2H3,
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and 2H4) forming a globular structure called the nucleosome (Figure 1a). Each nucleosome is wrapped
by approx. 146 bp of DNA and separated by 50 base pair (bp) linker DNA. The N-terminal domain of
histones possesses an unstructured part that has also been suggested to be involved in the epigenetic
modification of chromatin. Considering the process by which histone proteins are post-translationally
modified, chromatin adopts various structural conformations that regulate both the repression and
activation of gene transcription (Figure 1b and [5]).
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Figure 1. Illustration of histone core composition and impact of chromatin relaxation or compaction by
histone acetyltransferases (HAT) or histone deacetylases (HDAC) on gene expression (a) Histone protein
consists of five main types H1, H2A, H2B, H3, and H4. Two copies of each histone type (2H2A, 2H2B,
2H3, and 2H4) constitute the octamer histone core (nucleosome), wrapped by approx. 146 bp of DNA.
H1 is known as linker histone that is associated to linker DNA between each nucleosome. (b) Epigenetic
modification of histone proteins by HDAC/HAT. HAT stimulates transcriptional activation of the tumor
suppressor genes via acetylation of N-ε-lysine residues of histone results in more relaxed chromatin,
which facilitates the accessibility of target gene promoter to transcription factors. Conversely, HDAC
induces transcriptional repression of tumor suppressor genes by deacetylating N-ε-lysine residues of
histone in which the chromatin adopts compacted structure conformation, thus hiding the target gene
promoter from the transcription factors.

Acetylation/deacetylation of the N-ε-lysine residues of histones is regulated by a group of
acetylating and deacetylating enzymes. Histone acetyltransferases (HATs) transfer an acetyl group
from an acetyl-coA molecule to the N-ε-lysine residues of histone, resulting in the neutralization
of its positive charge and in the activation of gene transcription. In contrast, histone deacetylases
(HDACs) remove the acetyl group from the N-ε-lysine residues of histone providing a tight interaction
between DNA and histone protein (Figure 1b). In this case, the chromatin exhibits more compacted
conformation [6]. Excessive histone deacetylation induced by HDAC can have a significant impact
on the pathology of cancer via the silencing of tumor suppressor genes, including p53. For instance,
the more the chromatin is condensed, the fewer promoters of these target genes are accessible to
transcription factors, whereas when cells exhibit higher HAT activity, chromatin relaxation is associated
with an increased transcriptional activation of tumor suppressor genes [7,8]. Given that dysregulation
of HDAC and/or HAT function has been associated to cancer etiology, intensive research is being
conducted worldwide to develop HDAC inhibitors. In this review the role of HDAC and epigenetic
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modifications in cancer will be discussed with a special emphasis on the potential interest of HDAC
inhibitors for immunotherapies based on TRAIL or TRAIL-derivatives.

2. Classification and Localization of HDACs

HDAC can be classified into four groups according to their homology with yeast function and
sequence (Figure 2). Class I histone deacetylases contains four proteins ranging from 42 to 45 kDa;
known respectively as HDAC1, 2, 3 and 8, which are mostly localized in the nucleus. Class II HDACs
are larger in size (120-130 kDa) and includes HDAC4, 5, 6, 7, 9, and 10. Class II histone deacetylases
have been further subdivided in two groups, Class 2a that encompasses HDAC4, 5, 7, and 9, which
display high sequence homology. HDAC6 and 10 have been grouped in class 2b due to the presence of
an extra catalytic domain. Class II HDAC members are mainly localized in the cytoplasm, however
they shuttle from the cytoplasm to the nucleus when phosphorylated. Class III histone deacetylases
are also known as sirtuins due to their homology with the yeast silent information regulator 2 (Sir2)
gene and to their requirement of NAD+ for their enzymatic activity. Class IV is considered as a
category in its own, with HDAC-11 as a single member. Similar to class I and II members, HDAC11 is
a metalloenzyme that contains Zn+2 ion in its binding pocket [9–14].
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Figure 2. Different classes of HDACs. Four different classes of HDACs were identified in mammalian
cell based on their sequence homology and structure similarity to the corresponding yeast HDACs.
Class I is homologous to the yeast reduced potassium dependency 3 (RPD3) and includes HDAC1, 2,
3, 8. Class II is homologous to yeast Hda1 and divided into two sub classes, class IIa HDAC4, 5, 7, 9
and class IIb HDAC6, 10. Class III is also known as sirtuins that contain SIRT1-7. Class IV has its own
character and shows structural similarity to classes I and II.

Besides histones, HDACs can also deacetylate non-histone proteins, some of which are transcription
factors such as E2F1, c-Jun, GATA1, TFIIE, TFIIF, p65 (RelA), transcription repressors like Yin Yang 1,
Mad/Max, the tumor suppressor gene p53 [12,15,16], and the oncogene c-Myc [17] to cite a few. Other
non-histone proteins are frequently regulated by HDACs such as the steroid hormone receptor binding
protein, the cytoskeletal protein (α-tubulin), nuclear transport (importin-α7), DNA helicase (WRN),
signal transduction (β-catenin), and the heat shock protein (Hsp90) [18–21]. On the other hand, like
deacetylation, hyperacetylation of given proteins can change their function. Likewise, hyperacetylation
of p53 was shown to increase its stability and subsequent induction of apoptotic cell death [18,20–22].
Moreover, acetylation of Hsp90 leads to the activation of the proteosomal degradation of the receptor
tyrosine-protein kinase (ErbB2) oncoprotein [23]. Non-histone protein acetylation can also be induced
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by a large majority of histone acetyl transferases (HATs). Thus, HATs have recently been renamed
as lysine acetyl transferases (KATs). This family of enzyme has been divided into two main groups
(Figure 3). Type A is the larger group and includes several sub-families. The members of type A
HATs are mostly localized in the nucleus and classified into families according to their sequence
homology. The Gcn5-related N-acetyltransferases (GNAT) family, includes both KAT2A and KAT2B.
The p300/CBP family consists of KAT3A and 3B.
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Figure 3. Different HAT/KAT subtypes and their domains. Besides the lysine acetyltransferase domain,
KAT can harbor a bromodomain that can facilitate interactions with modified histones. The MYST and
CBP families also contain a zinc-binding domain which facilitates DNA binding. Some MYST family
HATs contain in addition an N-terminal chromodomain, which binds to methylated lysine residues.
HAT = catalytic histone acetyltransferase domain, BRO = bromodomain, CHR = chromodomain, ZN =

zinc-binding domain.

The MYST family represents the largest HAT family, which includes KAT5, KAT6A, KAT6B, KAT7,
and KAT8. Type B HATs are abundant in the cytoplasm such as KAT1 and KAT4. The members of
both CBP/P300 and GNAT families contain a bromodomain (BD) that mainly binds to the acetylated
lysine rich region of histone proteins. Moreover, the members of CBP/P300 and MYST family members
possess a cysteine rich, zinc-binding domain which facilitates binding to acetyl group. Some MYST
family HATs contain in addition an N-terminal chromodomain, which binds to methylated lysine
residues [24]. HATs can also acetylate non-histone proteins that could influence their promotor
activities and specificities, such as β-catenin, Myc proto-oncogene protein (C-MYC), tumor suppressor
protein p53, and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) [25–27].

3. Molecular Mechanism of HDAC Action

HDACs are involved in the epigenetic modification of histone proteins via removal of acetyl
group of N-ε-lysine residues of histone. Considering that HDACs induce hypoacetylation, the distance
between the nucleosome molecule and chromatin DNA is markedly decreased and hence the histone
adopts a compacted structure of wrapped DNA (Figure 1). Chromatin compaction impedes the
access of transcription factors to the promoter of the target genes present within the area, including
tumor suppressor genes, resulting in uncontrolled cell proliferation and cancer development. The
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catalytic domain of HDAC consists of approx. 390 amino acid residues (Figure 2), which comprises
a set of conserved amino acids. The substrate binding site of HDAC adopts a curved tunnel with
a wider bottom, similar to Zn+2-binding proteins like thermolysin and carboxypeptidase [28–30].
The structural environment of the HDAC substrate binding site encompasses two adjacent histidine
residues (His142 & His 143), two aspartic acid residues (Asp176 & Asp183), and one tyrosine residue
(Tyr306). Deacetylation process occurs through a charge-relay system in the presence of Zn+2 ions.
The carbonyl group of the acetyl lysine residues is polarized for nucleophilic attack as a result of
coordination with Zn+2 bonded water molecules and hydrogen bonding with Tyr306 [31,32]. Zn+2

coordinated residues along with substrate binding constitute a tetrahedral structure, mainly consisting
of five coordinates including water molecules. This step was reported to be the rate limiting step in
the hydrolysis of the acetyl group of lysine residue by HDAC8 [30]. Furthermore, activation of the
nucleophile is mediated by the general base character of the adjacent His142 and His134 residues
in the substrate binding site, which are influenced by hydrogen bonding with Asp176 and Asp183,
respectively [33]. H143 residue is localized in a close vicinity to the leaving amino group of acetyl
lysine. Therefore, it acts as a proton donor and hence mediates the separation of the amino group as a
result of tetrahedral structural conformation [34].

4. Physiological Function of HDAC

HDACs are recruited to the gene promoter in the form of multiprotein complex (see examples
Figure 4 and [35]). The interacting protein partners of HDACs are mostly acting as transcriptional
coregulators. They include proteins such as mSin3 interacting domain of the paired amphipathic helix
protein (sin3a), the nuclear receptor co-repressor 1 (N-CoR), and the nuclear receptor co-repressor 2/

silencing mediator for retinoid and thyroid hormone receptors (SMRT). The binding of a specific DNA
sequence by transcriptional regulatory proteins along with HDACs can also occur with the help of
epigenetic modifying proteins such as methyl binding proteins (MBDs), DNA methyl transferases
(DNMTs), and histone methyl transferases (HMTs). For example, the MBDs, methyl-CpG binding
domain (MeCP2), is believed to recruit HDAC to methylated promoters resulting in transcriptional
repression (Figure 4a and [36]). The receptor interacting protein 140 (RIP140) is a negative co-regulator,
which binding to HDAC1 and HDAC3 represses expression of nuclear receptors (Figure 4b and [37]).
Hyperacetylation of histones can also occur independently of the loss of HDAC activity. For example,
knockout of DNMT1 revealed a significant increase of the acetylated histone H3 and a decrease in
the level of the methylated form. The decreased level of methylated H3 was mainly attributed to the
dissociation of HDAC-DMNT1 complex leading to hyperacetylation of H3 [38].

Moreover, HDACs were reported to regulate neuronal differentiation via direct interaction with
the N-terminal domain of DMNT3b. Inhibition of HDACs in pheochromocytoma cell line (PC12)
prevented cell differentiation stimulated by nerve growth factor (Figure 4b). The case was reversed
when DMNT3b was overexpressed in the same cell line in which a significant cell differentiation
was detected [39]. HDAC can also interact with transcription factors and nuclear receptors other
than MBDs. The interaction of HDAC with the cell cycle regulator retinoblastoma protein (Rb) leads
to uncontrolled cell progression [40]. Rb is a family of tumor suppressor proteins involved in the
inhibition of cell growth via the suppression of cell cycle progression. When a cell is ready to divide,
Rb is inactivated by phosphorylation allowing cell cycle progression. Defects in Rb proteins were
found to play a central role in the initiation of cancer [41]. Transcription factor E2F belongs to a
protein family that is responsible for cell cycle control and the synthesis of DNA in eukaryotes. It
consists of nine members, of which three (E2F1, E2F2, and E2F3a) are transcription activators and the
remaining six (E2F3b, E2F4, E2F5, E2F6, E2F7, and E2F8) are cell cycle repressors. The gene promoters
of E2F transcription repressors was suggested to be inactivated by HDAC-Rb complex in transformed
cells [39,42,43]. It has been reported that the interaction between HDAC and Rb promotes uncontrolled
cellular proliferation and the initiation of cancer. Trichostatin A (TSA), a classical HDAC inhibitor
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(HDACI) is able to prevent HDAC-Rb complex assembly hence repressing the transcription of genes
essential for cell cycle progression [44].Cancers 2019, 11, x 6 of 31 
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for gene silencing and subsequent chromatin remodeling [37].

In addition, HDAC has the ability to bind nuclear receptors, thus mediating the regulation of gene
expression. For example, estrogen receptors (ERs) are nuclear receptors involved in the transcriptional
regulation of genes that determine the function of both breast and ovary. For instance, the nuclear
receptor ER-α is activated by its ligand 17β-estradiol, which is implicated in the transcriptional
regulation of estrogen responsive genes in different cell types. Such an interaction was found to
mediate the normal development of breasts as well as progression of breast cancer. The downregulation
of ER-α expression in the breast epithelium is critical for the initiation of breast cancer. The reason
behind was mainly assigned to the in vivo interaction between HDAC1 and ER-α in its promoter
region suppressing its transcriptional activity (Figure 4b). This interaction can be reversed by the
availability of estrogens and also in the breast cancer MCF7 cell line with the HDAC inhibitor
TSA, resulting in the upregulation of ER-α on both mRNA and protein levels [45]. Macaluso and
coworkers [46] demonstrated that the transcriptional silencing of ER-α is mediated by two multiprotein
repression complexes (1) pRb2/p130-E2F4/5-HDAC1-histone methyl transferase (SUV39H1)-p300 and
(2) pRb2/p130-E2F4/5-HDAC1-DNMT1-SUV-39H1 that are recruited to the ER-α promoter of breast
cancer cells.

5. Role of HDAC in Cancer

Strong evidence suggests that defects in the DNA methylation as well as defects in the
post-translational modification of histones are directly causative of cancer initiation in humans.
Indeed, the loss of acetylated lysine residue (Lys16) and trimethylated Lys20 of histone H4 is considered
as an initial event for the development of cancer [47]. Furthermore, the decreased rate of histone
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acetylation in gastrointestinal tumors was also found to be associated with invasion and metastasis [48].
The mechanism by which HDACs deacetylate lysine residues of histone proteins still remains enigmatic.
However, hypoacetylation due to decreased levels of HATs was mainly attributed to either mutations
or chromosomal translocation such as leukemias. This was found to be accompanied by increasing in
HDAC activity [49]. The most available data regarding the mechanism of HDAC in cancer is restricted
in the formation of HDAC-fusion protein complex during binding to a specific gene promoter. These
fusion proteins are considered as an end product of chromosomal translocation in case of hematological
malignancies [50]. Acute promyelocytic leukemia (APL) is a subtype of acute myelocytic leukemia
(AML), known as the cancer of white blood cells. The genotypic character of APL is represented
in the chromosomal translocation between chromosome 15 and 17 including the retinoic receptor-α
(RARα). Some fusion proteins like promyelocytic leukemia/retinoic acid receptor (RAR-PML) and
retinoic acid receptor promyelocytic leukemia zinc finger protein (RAR-PLZF) are recruited along
with HDAC to a specific DNA sequence located in the promoter region (Figure 5) known as retinoic
acid-responsive elements (RAREs). Consequently, the expression of genes that are responsible for the
normal differentiation and proliferation of myeloid cells is inhibited [51,52].
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Figure 5. Recruitment of HDAC to retinoic acid-responsive elements (RARE) in Promyelocytic leukemia
(PML). HDAC forms a multiprotein complex with RAR-PLZF, resulting in the transcriptional repression
of retinoic acid receptor (RAR) target gene, responsible for normal differentiation and proliferation of
myeloid cells. HDACi can reverse this case by restoring the sensitivity of PML to retinoic acids.

Several studies have reported the overexpression of HDAC in different types of cancer such as
HDAC1 in gastric [53], prostate [54], colon [55], and breast [56] cell carcinomas. Overexpression of
HDAC2 was also reported in cervical [57], gastric [58], and colorectal cancers [59]. HDAC3 and HDAC6
were found to be overexpressed in colon and breast cancers [54,60]. In this context, overexpression
of HDAC can lead to the transcriptional repression of tumor suppressor genes via recruitment of
HDAC in the form of multiprotein complex to their specific promoter regions. Cyclin-dependent
kinase inhibitor (p21WAF1) is a cell cycle progression inhibitor. Expression of p21WAF1 is significantly
influenced by promoter hypoacetylation. Inhibition of HDAC significantly increases the acetylation of
p21WAF1 promoter and subsequent inhibition of tumor growth [61].

Expression of p21 is also influenced by p53 that competes with HDAC1 to specific promoter
region of p21 known as promoter-specific RNA polymerase II transcription factor (Sp1). This results in
the release of HDAC1 from Sp1, leading to an increase in the expression of p21 ([62] and Figure 6).
Inhibition of HDAC increases the acetylation of p53 and enhances its stability, which subsequently
strengthens the interaction with p21 promoter. Moreover, HDAC inhibitors have been described to
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induce hyperacetylation of sp1 [63] and sp3 [64] and to change the promoter acetylation profile and
expression levels of several death receptors involved in the transduction of apoptotic signals (Figure 6).
These include the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptors
(DRs) DR4 [65–67] and DR5 [66,68–71], as well as FAS ligand/CD95 ligand (FASL) [72,73], and FAS [74].
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Figure 6. Schematic representation of the molecular mechanism of HDCAIs-induced cell cycle arrest
and induction of apoptotic cell death. P21 gene promoter Sp1 can bind HDAC multi protein complex
repressing gene transcription. Inhibition of HDAC activates transcription of p21 that stimulates cell
cycle arrest. HDACIs can also induce apoptosis via stimulation of tumor necrosis factor (TNF) protein
members like TRAIL and CD95.

Class III HDAC/sirtuins are of growing interest in oncology due to their ability to regulate gene
expression, apoptosis, stress responses, genome integrity, and cancer metabolism [75–84]. Lys16
residue of H4 (lys16-H4) and Lys9-H3 were reported to be the substrate of this group of HDACs [85,86].
Dysregulation of their expression levels has been described in cancer cells associated or not with
oncogenic or tumor suppressor functions. For example, SIRT1 was found to be highly expressed in
human lung cancer [87], prostate cancer [88], and leukemia [89], however its expression is reduced
in colon cancer, when compared to normal tissues [90]. Mechanistically, sirtuins such as SIRT1 are
able to deacetylate p53 leading to the inhibition of its DNA damage functions [91] or to induce the
hypoacetylation of the DNA repair enzyme Ku70, enhancing its non-homologous end joining DNA
repair ability [92,93] and allowing the survival of cancer cells [21]. On the contrary, treatment with
SIRT1 inhibitors leads to the increased expression of tumor suppressor genes and increased level of the
acetylated lys16-H4 and lys9-H3 in both colon and breast cancer cell lines [86].

Inhibition of HDAC gained the attention of several research groups in the field of cancer drug
discovery, making HDAC a promising drug target for the treatment of cancer [94,95]. HDACIs are
suggested to induce apoptosis by inhibiting multiple signaling pathways. The effect of HDACIs is not
restricted to histone proteins, these inhibitors can also directly impact non-histone proteins [48,96].
They are categorized into two categories: (1) HDAC isoform-selective inhibitors, which target several
types of HDAC, and (2) pan-inhibitors, which act against all type of HDACs [97]. Clinical trials have
been conducted for various HDAC inhibitors against different type of tumors. These inhibitors are
divided into four different classes based on their chemical structures (Figure 7), which include (I)
hydroxamic acids, (II) short chain fatty acids, (III) benzamides, and (IV) cyclic peptides [98]. The group
of hydroxamic acid-based HDACIs assessed in clinical trials include abexinostat, belinostat, givinostat,
pracinostat, panobinostat, quisinostat, resminostat, and vorinostat [99]. Trichostatin A (TSA) and
suberoyl bis hudroxamic acid also belong to the hydroxamic acid group.
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TSA is a natural HDAC inhibitor that was originally isolated from actinomycete Streptomyces
hygroscopicus and is used for its antifugal property. Like belinostat, panobinostat, vorinostat and
TSA are able to inhibit all classes of HDACs. However, TSA is solely used in laboratories due to
the fact that this pan-HDAC inhibitor displays high toxicity [100]. Valproic acid (VPA), butyric acid
and phenylbutyric acid, belong to the HDACi class of short-chain fatty acids (Figure 7). VPA targets
class I and IIa HDACs [101], whereas butyric and phenylbutyric acids target HDACs of class I and
II [96]. This class of HDAC inhibitors is probably the least potent of the family of HDAC inhibitors.
Benzamides, represent another subclass. It includes the class I HDACi’s entinostat, tacedinaline, and
4SC202, as well as mocetinostat a class I and IV HDAC selective inhibitor. The last subgroup of HDAC
inhibitor is represented by romidepsin, a class I HDAC inhibitor.

To date, only four compounds have been investigated as HDAC inhibitor and approved by
US Food and Drug Administration (FDA) in clinical trials. These compounds, including vorinostat
(suberoylanilide hydroxamic acid, SAHA) and Romidepsin (cyclic tetrapeptide) which revealed
a promising HDAC inhibition against different type of cancers were approved for the treatment
of cutaneous T-cell lymphoma [102–105]. Belinostate (Class I) was approved for the treatment of
peripheral T-cell lymphoma [106]. Panabinostat is a member of the hydroxamic acid group and has
recently been tested in clinical trials and approved for the treatment of multiple myeloma [96]. Other
inhibitors are under development.
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Class III HDAC inhibitors, which selectively target the NAD+-containing HDACs sirtuins
have mostly been implemented in the treatment of various clinical diseases like cardiovascular
disorders, aging, neurodegenerative disorders, and cancer [107]; however, recent studies have reported
the investigation of sirtuins, particularly sirtinol, cambinol, and EX-527 as therapeutic agents for
cancer [108,109]. It should be noted though that cambinol was found to display stronger affinity to
neutral sphingomyelinase-2 than class III HDACs [110], questioning its specificity for sirtuins.

The anticancer effect of HDAC inhibitors have been found to involve a number of molecular
events including inhibition of angiogenesis, generation of reactive oxygen species (ROS), and apoptosis
(Figure 8). Inhibition of angiogenesis by HDAC inhibitors was found to prevent cancer metastasis.
Their anti-angiogenic properties were associated with their ability to inhibit pro-angiogenic proteins
such as vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase (eNOS), bFGF
and TGFbeta1 [111–113], to cite a few.
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Some inhibitors such as entinostat, also known as MS-275, were also found to induce radical oxygen
species (ROS) leading to cell death in leukemia cells through the regulation of BH3 interacting domain
death agonist protein (Bid) and B-cell lymphoma-2 (Bcl-2) expression levels [114,115]. Mechanistically
it was found in prostate (LNCaP), breast (MCF7), and bladder (T24) cancer cell lines that both vorinostat
and entinostat induce ROS by inhibiting the binding protein-2 (TBP-2), an inhibitor of the cellular
thioredoxin (Trx) [116]. Interestingly, the induction of ROS in leukemia cells by vorinostat was also
associated with activation of caspase-10 and Hsp90 cleavage [117].

More specifically, cellular cell death induced by HDAC inhibitors is largely associated with
their ability to regulate selectively both the intrinsic and extrinsic pro-apoptotic pathways in tumor
cells [118–121], but not in normal cells [122,123]. Vorinostat for example is able to induce the
transcriptional activation of pro-apoptotic genes like Bcl-2-associated X protein (Bax), Bcl-2 associated
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agonist of cell death protein (Bad) and Phorbol-12-myristate-13-acetate-induced protein 1 (Noxa),
promoting apoptosis through mitochondrial membrane changes and leading to the release of the
pro-apoptotic factors such as Diablo/second mitochondria-derived activator of caspases (Smac), ATP
and Apoptotic protease activating factor 1 (Apaf1), caspase-9, Serine protease (HtrA2), and cytochrome
c (cyt c) in transformed fibroblast cell ([123] and Figure 8).

Other BH3-containing pro-apoptotic Bcl2 family members have been described to account for
histone deacetylase inhibitor-induced cell death, including Bmf [124], Bak [125], Bid [126], and
PUMA [125,127]. Along the line, it was found that Apaf1 expression level is significantly upregulated
by the HDAC inhibitor TSA or siRNAs targeting HDAC1, HDAC2 and HDAC3 in hepatocellular
carcinoma cell lines [128]. Concomitantly, HDAC inhibitors are also able to trigger apoptosis by
down-regulating the anti-apoptotic proteins of the Bcl-2 family such as Bcl-2 itself [129], Bcl-xL [130,131],
Bcl-xS [132], Mcl-1 [115,131], as well as XIAP [115,131] and survivin [133,134], two cellular inhibitors
acting downstream of the mitochondria. Remarkably, the tumor properties of histone deacetylase
inhibitors, consistent with their selective effect on pro-apoptotic genes involved in the intrinsic cell
death pathway, also regulate genes associated with the extrinsic pathway, largely regulated by receptors
of the TNF superfamily, including FasL, TRAIL and their cognate receptors ([132,135–137] and Figure 8).

6. DNA Methylation and Cancer

DNA methylation is another important epigenetic modification that occurs in the mammalian
genome leading to regulation of gene expression. It acts in concert with other epigenetic mechanisms,
including acetylation, to regulate normal gene expression and is often found to be exacerbated in
cancer. Likewise, genome-wide hypermethylation has been described in primary and metastatic
tumors [138–142]. Methylation occurs at specific DNA sequences such CpG dinucleotides, representing
5–10% of the human genome [143–145]. CpG dinucleotide-rich genomic DNA regions are also known
as CpG islands, they are repeated in the human genome every 100 kb. DNA methylation is controlled
by a group of DNA methyl transferases (DNMTs) [146] and demethylases (See the following reviews
for detail [147–151]) [152]. Dysregulation of TRAIL signal transduction by methylation will be further
described in the Section 7.1.

7. Epigenetic Regulation of TRAIL Proapoptotic Signaling

TRAIL belongs to the tumor necrosis factor (TNF) family, which encompasses 19 ligands and
29 receptors. These members were found to play a major role in the induction of apoptotic cell
death and cell survival as well [153–157]. TNF-α, tumor necrosis factor related apoptosis-inducing
ligand (TRAIL), and Fas ligand (FasL/CD95L) are considered as the major cytokines/proteins in this
family with proapoptotic potential. The apoptotic pathway mediated by these cytokines occurs
through two different signaling pathways, mainly the extrinsic (cytoplasmic) pathway and the intrinsic
(mitochondrial) pathway (Figure 9). The extrinsic pathway is initiated when ligands such as FasL and
TRAIL bind to their agonistic cell surface cognate death receptors (DR). Consequently, DR tends to
oligomerize and induces the recruitment of Fas-associated death domain (FADD) and procaspase-8/-10
to form the death-inducing signaling complex (DISC). Following the assembly of DISC, a cascade of
controlled programmed suicide signals is mediated by the activation of cellular caspases including
the initiator caspases-8/-10 and the executioner caspases-3, -6, -7. The intrinsic pathway occurs via
the cleavage of Bid by caspase-8 into truncated Bid (tBid) which subsequently translocates to the
outer mitochondrial membrane in combination with Bax. This results in changing the equilibrium
potential of the outer mitochondrial membrane and release of cyt c. Release of cyt c in the cytosol
enables its interaction with Apaf1, leading to the formation of a large protein complex known as
apoptosome, which recruits and activates the initiator caspase-9, allowing activation of the effector
caspase-3, the apoptosis executioner [158–160]. In some instances, such as during ER stress, some
receptors of this family, including DR4, DR5 and TNFR1 are able to engage apoptosis or necroptosis in
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a ligand-independent manner by inducing the recruitment and activation of the caspase-8 [161–164] or
through RIPK1/RIPK3 and MLKL [164].
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Figure 9. Schematic diagram summarizing the different cell death signaling pathways-induced
by epigenetic modification of chromatin following treatment with HDAC inhibitors and
demethylating agents.

Like HDAC inhibitors, TRAIL was found to display selective antitumoral properties [165] and
whereas it has raised major interest for cancer therapy [166], it soon became clear that a number
of tumor cell lines or primary cells derived from patients suffering from cancer exhibit inherited
secondary resistance toward TRAIL-induced cell death [167]. Such resistance may arise due to (1) the
downregulation of cell surface DRs, (2) insufficient expression of caspase-8, and (3) overexpression
of some antiapoptotic agents including caspase-8 and FADD-like apoptosis regulator (c-FLIP), Bcl-2,
B-cell lymphoma-extra-large (Bcl-xL), myeloid cell leukemia 1 (Mcl-1), survivin, and (XIAP), X-linked
inhibitor of apoptosis [160]. Epigenetic drugs such as HDAC inhibitors and demethylating agents have
been found, however, to regulate the expression levels of both the receptors and downstream signal
executioners or regulators of TRAIL (Figure 9). Moreover, histone deacetylase inhibitors have also
been found, in some instances, to trigger selective apoptosis in cancer cells through death receptors
([135,137,168,169] and Figure 9). The molecular mechanisms by which these compounds trigger or
restore the sensitivity of cancer cells toward apoptosis induced by the extrinsic or intrinsic pathway
are often specific of the cell type, the drug itself, and the dose. In the following paragraph we will
summarize the current understanding of the molecular mechanisms induced by epigenetic modulators
associated specifically with TRAIL, its cognate receptors and downstream proximal signal transduction
partners or regulators.
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7.1. Restoration of TRAIL-Induced Apoptosis by Demethylating Agents

7.1.1. Regulation of Survivin and XIAP by Methylation

Survivin is one of the most distal inhibitors of TRAIL pro-apoptotic signaling. Its promoter is often
hypomethylated in tumors, including hepatocellular, cervical or ovarian carcinomas and astrocytomas
or multiform gliomas ([170–174] and Figure 10a). Although, none of these reports investigated the
corresponding protein expression levels in these biopsies, contrary to normal counterpart cells, these
findings suggest that survivin may be highly expressed in these tumors and thus likely to inhibit
TRAIL-induced cell death. Indeed, overexpression of survivin in tumor cells and biopsies, at the
protein level, has largely been described in the literature and is most of the time associated with
poor outcome, prompting interest in its targeting [175,176]. However, the hypomethylation of the
promoter of survivin was also found to allow p53 binding, thus leading to the repression of survivin
transcription and protein expression ([177] and Figure 10a). Supporting these findings, the same authors
demonstrated that hypermethylation of survivin promoter, in endometrial tumors, was associated with
high expression levels of the protein [177]. Demethylating drugs such as decitabine have been shown
to be poor inhibitors of survivin expression in small cell lung carcinoma (SCLC) cells [178]. However,
the combination of class I & II HDAC inhibitor with decitabine inhibits survivin expression in these
cells and increases their sensitivity to TRAIL-induced cell death [178]. The second most important
and downstream inhibitor of TRAIL, XIAP, is not directly regulated by methylation, but its regulator,
XIAP-associated factor 1 (XAF1), which is itself negatively regulated by hypermethylation [179]. As
with survivin, the methylation status of XAF-1 promoter is not the only determinant of its basal
transcription expression level, since it was found that restoration of XAF1 expression could be achieved
by stimulating cells with IFN-beta, in spite of sustained promoter hypermethylation in these cells [180].
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Figure 10. (a) Epigenetic regulation of survivin in transformed cells. The promoter region of
survivin is hypermehylated thus inhibiting TRAIL-dependent apoptotic signaling pathway. In contrast,
hypomethylation of survivin promoter facilitates the binding of p53 repressing its transcriptional
activation. (b) Epigenetic alterations represented in the methylation of TRAIL death receptors (DR4,
DR5, DcR1, and DcR2) confer significant contributions to TRAIL-resistance in different type of tumors.
Several DNA (Dmnt1&Dmnt3) and histone (KDM2B&KDM4A) methylases control the regulation of
these receptors on the genomic level. Demethylation drugs such as azacitidine and decitabine as well
as HDACIs like SAHA, TSA, and sodium butyrate can restore TRAIL sensitization.

7.1.2. Regulation of Initiator Caspases by Methylation

Further upstream are the caspase-8 and caspase-10, two cysteine proteases whose expression is
required to enable TRAIL-induced apoptosis. Deregulation of the caspase-8 expression associated with
CASP8 gene promoter hypermethylation has been described in neuroblastoma [181], retinoblastoma
(Rb) [182], von Hippel-Lindau, and sporadic phaeochromocytoma cells [183]. Contrary to survivin or
even XAF1, treatment of corresponding cells with decitabine, alone, restores both expression levels
of caspase-8 and sensitivity to TRAIL-Induced apoptosis [181,182,184,185]. Methylation-induced
regulation of caspase-8 expression has also been described in SCLC [178,186] and hepatocellular
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carcinomas (HCC) [187,188]. Of interest, silencing both DNMT1 and DNMT3b in HCC was found to
be sufficient to restore caspase-8 expression and sensitivity to TRAIL-induced cell death ([188] and
Figure 10b). In another study performed on 76 patients associated with glioblastomas, the loss of
caspase-8 by methylation of its promoter reached more than 50% of the patients [189].

7.1.3. Regulation of TRAIL Receptors by Methylation

Besides caspase-8, the most important genes regulated by methylation and impacting
TRAIL-induced cell death are those encoding its cognate receptors, namely DR4, DR5, DcR1 and
DcR2. One of the earliest study performed on pediatric neuroblastoma cell lines, represented by nine
neuroblastomas, three peripheral primitive neuro-ectodermal tumors (PNETs), and three cell lines
from adult tumors, demonstrated that a loss of DcR1, and DcR2 mRNA expression occurred in 86%
and 66% of tumor cells respectively, due to methylation of their promoter (Figure 10b). Methylation of
DR4 and DR5 was also demonstrated, but to a much lesser extent, 47% and 20%, respectively [190].
Inhibiting methylation using 5-Azacytidine (Vidaza), restored in all cases transcription of DcR1 and
DcR2 in these cells. Remarkably, methylation of DcR1 and DcR2 promoters was not observed in normal
tissues, originating from heart, liver, lung, muscle, ovary, spleen or kidney [190,191].

Aberrant methylation of DR4 (41%), DR5 (10%), DcR1 (24%), and DcR2 (26%) were also described
in von Hippel-Lindau and sporadic phaeochromocytomas [183]. The same authors also found out
that similar methylation profiles could be detected in neuroblastomas and that 5-aza-2′-deoxycytidine
(decitabine), by inhibiting promoter methylation of these genes could restore their expression. In
glioblastomas, like CASP8, more than 40% of the cell lines studied displayed significant methylation in
DR4 gene promoter, explaining at least partially the heterogeneity of the disease [189].

A high throughput quantitative DNA methylation analysis, performed on 17 gene promoter
regions associated with DNA damage response (DDR) and death receptor apoptotic pathway with
162 normal and cancerous breast tissues from 81 sporadic breast cancer patients, demonstrated that
sporadic breast tumor tissues displayed an obvious hypermethylation of TRAIL receptor genes DR5,
DcR1, DcR2 associated with an hypomethylation of DR4 [192]. In another study focusing on invasive
cervical cancers (9 cell lines and 114 primary tumors), it was demonstrated that DcR1 and, to a
lesser extent, DcR2 are hypermethylated, but not DR4 and DR5 [193]. Hypermethylation of DcR1
gene promoter was found to be associated with 56 (45.5%) of the 123 invasive cervical cancers (CC).
Methylation in SCLC was less frequently detected with 5.7% of the investigated tumors [193]. While it
remains unclear why these receptors are differentially regulated by methylation in different tumor
cell types and whether this has any influence toward TRAIL-induced apoptosis, a number of studies
provide evidence that indeed silencing of TRAIL agonist receptors can impair TRAIL-induced cell
death. It has been demonstrated for instance that silencing DR4 by methylation in astrocytic gliomas
impedes TRAIL-induced cell death [194]. The resistance of cancer cell lines to TRAIL attributed to the
hypermethylation of the promoter region of DR4 was abrogated by decitabine and associated with the
re-expression of DR4 at the cell surface [194]. Methylation of DcR1 promoter was demonstrated in
malignant melanoma cells to require the DNA methyl transferase DNMT1, whereas DcR2 methylation
involved both DNMT1 and DNMT3a ([195] and Figure 10b). In breast cancer cells, however DcR2
methylation was proposed to be solely mediated by DNMT1 [196]. Like DcR2, methylation of DR5
may be governed by DNMT1 and DNMT3a [188,197]. Transcriptional regulation of DR4 and DR5
has, in addition been demonstrated to be also tightly controlled by two histone lysine demethylases,
namely KDM2B [198] and KDM4A ([199], respectively (Figure 10b). Differential activity or expression
of these DNA and histone methyl transferases is thus likely to account for selective expression of
TRAIL receptors in tumor cells. Likewise, the DNMT1 inhibitor, brominated alkaloid Isofistularin-3
(Iso-3), from the marine sponge Aplysina aerophoba restores selectively DR5 but not DR4 expression
in the B lymphoma cell line Raji, increasing its sensitivity to TRAIL-induced cell death [197]. In the
same vein, silencing DNMT1 and DNMT3b in human hepatoma cells restores DR5 expression and
TRAIL sensitivity [188].
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Inhibition or silencing of KDM4A or KDM2B was also found to be sufficient to restore DR4
and DR5 expression, respectively and enhance or confer sensitivity to TRAIL [198,199]. It should
nonetheless be mentioned here, that in addition to DR4 or DR5, the effects associated with the regulation
of the methylation status of their promoter or histone neighborhood can also involve the coordinated
negative regulation of antiapoptotic proteins such as c-FLIP, survivin, XAF1 or Mcl-1 [198], or the
upregulation of pro-apoptotic proteins such as TRAIL itself [199].

7.2. HDACIs Sensitize Tumor Cells to TRAIL-Mediated Apoptosis

Regulation of Gene Expression by HDACi

As illustrated in Figures 9 and 11c, HDACi have often been described to enhance apoptosis
induced by death-domain-containing receptors of the TNF family by coordinating proapoptotic and
anti-apoptotic gene expression. For the sake of clarity, only the effects of HDACi on TRAIL-induced
cell death will be presented here.

In melanoma cell lines, the HDAC 1 and 3 inhibitor suberoyl bis-hydroxamic acid (SBHA) is able,
alone, to enhance TRAIL-induced cell death by coordinating the upregulation of the pro-apoptotic
proteins caspase-8, caspase-3, Bid, Bak, Bax, and Bim, while downregulating at the same time the
antiapoptotic proteins, Bcl-xL, Mcl-1, and XIAP [126,131,200]. VPA, SAHA, and TSA on several
melanoma cell lines were found to allow acetylation of H3 and H4 histones, leading to an increase in
DR4 and DR5 expression levels and to concomitant inhibition of Bcl-xS, Bcl-xL [132]. Keeping in mind
that immunotherapy has dramatically changed the treatment paradigm of melanoma, it is interesting
to note that another study demonstrated that SAHA by inducing DR5 expression on the cell surface
and downregulating c-IAP-2 and Bcl-xL is able to sensitize resistant melanoma cells to human cytotoxic
T-lymphocytes (CTL) [201,202]. Coordinating the up-regulation of death receptors and downregulation
of cFLIP and Bcl-2 family members by HDACi (Figure 11a) has also been described to a variable
extent in leukemia ([66,118,120,121,203,204], breast carcinoma [199,205], lung carcinoma [119,178,199],
glioblastoma [197,206], neuroblastoma [168,207], hepatocellular carcinoma [208,209], or bladder
carcinoma [119,210,211]. Regardless of the molecular mechanism, HDACi are often able to restore
TRAIL-induced apoptosis in resistant cancer cells [95,125,135,137,178,185,197,200–202,206,207,212–219].

By inhibiting histone deacetylases, HDACi induce the accumulation of acetylated lysine residues
on histones, which leads to the relaxation of the chromatin and allows gene expression (Figure 11b).
However, gene expression or repression is also regulated by BET (bromodomain and extra terminal)
proteins, which have a strong affinity for acetylated histones. BET proteins represent thus an attractive
target for cancer therapy, in particular when combined with HDACi, since it was found that BET
inhibitors such as JQ1 can inhibit c-Myc [220]. Combination treatments associating HDACi and BETi
induce strong apoptosis in advanced-stage cutaneous T-cell Lymphoma through inhibition of c-Myc
and upregulation of pro-apoptotic proteins, including DR4, DR5 and TRAIL [221]. Interestingly, BETi,
such as JQ1, OTX015, CPI-0610 or I-BET762, in non-small cell lung carcinoma (NSCLC), induce strong
and preferential inhibition of XIAP and c-FLIP [222], suggesting that like HDACi, these inhibitors are
able to coordinate selectively and differentially the expression levels of pro-apoptotic and anti-apoptotic
proteins regulating TRAIL-induced cell death. Alone, JQ1 was found to inhibit both the short and
the long isoform of c-FLIP in the NSCLC H157, H1299 and A549 cell lines and combined with TRAIL,
synergistically induced apoptosis [223]. Its effect on c-FLIP was proposed to occur regardless of c-Myc,
through a mechanism involving the proteosomal degradation [223].
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Figure 11. Schematic representation of epigenetic events regulating TRAIL-induced apoptosis. (a) Main
genes regulated by HDACi, either positively or negatively. (b) Illustration of the main epigenetic
events affecting chromatin compaction and inhibitors that stimulate chromatin relaxation-based
histone acetylation. Bromo-and extra terminal domains (BET) specifically bind to acetylated histones,
regulating either positively or negatively genes in the neighborhood. Methylation of CpG island
by DNA methylases also contribute to gene silencing. (c) HDACi can also regulate gene expression
and increase sensitivity to TRAIL-induced apoptosis through acetylation of non-histone proteins.
Acetylation of c-Myc induce its degradation whereas acetylation of Ku70 and p53, on the other
hand, lead to enhanced TRAIL-induced cell death due to degradation of c-FLIP and upregulation of
pro-apoptotic gene expression. HDACi can also induce regulation of TRAIL death receptors (DR4 &
DR5) gene expression through the ER-stress sensors ATF4 and CHOP, see text.

This caspase-8 inhibitor, prevents apoptosis induced by death-domain containing receptors of the
TNF superfamily [156,224], as well cell death induced by TLR3 [225]. c-FLIP is targeted by HDAC
in almost all tumor cell type [66,69,121,205,208,209,226–231]. Mechanistically, this short-lived protein
was found to interact, in colorectal cancer cells, with the DNA repair protein Ku70 [232]. By inducing
Ku70 acetylation, vorinostat was found in these cells to disrupt Ku70 binding to c-FLIP, allowing
polyubiquitination and degradation of c-FLIP by the proteasome (Figure 11c). These effects were
recapitulated by an HDAC6 inhibitor [232]. It was next found in the hepatocellular carcinoma cell line
HepG2 that SIRT1 interacts with c-FLIP and Ku70, inhibiting Ku70 acetylation and leading to c-FLIP
stabilization [69]. Inhibiting SIRT1 expression using siRNAs or its function using the SIRT1 inhibitor
amurensin G, a specific SIRT1 inhibitor, induced c-FLIP degradation and increased cell death-induced
by TRAIL [69]. It should be noted here, though, that SIRT1 was also found to inhibit c-Myc, repressing
in turn expression of ATF4, CHOP and DR5 ([69] and Figure 11c). Consistent with these findings,
it has been demonstrated that DR5 and DR4 expression levels increase in cells submitted to acute
or persistent endoplasmic reticulum (ER) stress through the regulation of ATF4 and CHOP, and that
the upregulation of DR4 an DR5, in these conditions, can contribute to apoptosis induced by ER
stress in a TRAIL-independent manner [161–163]. Notably, salermide, a class III HDAC inhibitor, was
found to induce an ER stress leading to the upregulation of DR5 at the cell surface of NSCL cells and
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to trigger apoptosis, mediated at least in part by DR5 [233]. Salermide-induced DR5 upregulation
was mediated through the activation of the ER-stress sensors inositol-requiring enzyme 1 α (IRE-1α),
binding immunoglobulin protein (Bip), cyclic AMP-dependent transcription factor (ATF3), ATF4, and
CCAAT/-enhancer-binding protein homologous protein (CHOP) [233].

Finally, histone deacetylase inhibitors have been found to act at the very proximal level of the
TRAIL signal transduction pathway. For instance, in chronic lymphocytic leukemia cells, romidepsin
has been described to facilitate FADD recruitment to DR4, enhancing thus TRAIL DISC formation
and activation [203]. In leukemia cells, HDAC inhibitors, including VPA, SAHA, TSA and entinostat,
used alone, have also been demonstrated to induce apoptosis through upregulation of TRAIL itself
contributing to their pro-apoptotic activity ([135,137] and Figure 9). Along the line, it may be worth
mentioning that association of the protein synthesis inhibitor homoharringtonine, also known as
omacetaxine mepesuccinate, recently approved by the FDA, acts synergistically with vorinostat to
induce apoptosis in a TRAIL/TRAIL receptor-dependent manner in acute myeloid leukemia cells [234].
Altogether these findings further highlight the importance of the epigenetic regulation of TRAIL and
its cognate receptors in cancer cells.

8. Conclusions

The epigenetic modification of histone and non-histone proteins plays a central role
in the physiopathology of cancer as a result of imbalanced acetylation/deacetylation and
methylation/demethylation ratios. While several HDACi are approved by the FDA as a single
agent in the treatment of different type of cancers, combination of HDACi with chemotherapeutic
agents, epigenetic regulators such as demethylating agents or Bet inhibitors may increase their
therapeutic potential. Alternatively, since HDAC inhibitors like TRAIL display apparent selective
antitumoral properties, their association with TRAIL, which restores the sensitivity of resistant tumor
cells to apoptosis by coordinating the downregulation of antiapoptotic genes, including c-FLIP, XIAP,
and survivin or the upregulation of TRAIL agonist receptors (DR4 and DR5), could represent a
promising antitumoral approach. To date, only one clinical trial has been conducted to determine the
safety and tolerability of combinations associating a TRAIL derivative and a HDACi. Conatumumab,
a fully human monoclonal agonist antibody against DR5, was combined with vorinostat in a phase Ib
study with patients suffering from low grade lymphoma, mantle lymphoma, diffuse lymphoma, or
Hodgkin’s disease. While the overall response of this study was reported to be poor (Clinical study
report 20060340) despite the fact that the combination demonstrated a safety profile, the evaluation of
TRAIL, or derivatives combined to HDACi or other epigenetic regulators, such as demethylating agents,
is likely to represent an interesting therapeutic opportunity to treat patients suffering from cancer.
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