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Abstract  13 

The paucity of experimental data makes both inference and prediction particularly challenging 14 

in viral dynamic models. In presence of several candidate models, a common strategy is 15 

model selection (MS), in which models are fitted to the data but only results obtained with the 16 

“best model” are presented. However, this approach ignores model uncertainty, which may 17 

lead to inaccurate predictions. When several models provide a good fit to the data, another 18 

approach is model averaging (MA) that weights the predictions of each model according to its 19 

consistency to the data.  20 

Here we evaluated by simulations in a nonlinear mixed-effect model framework the 21 

performances of MS and MA in two realistic cases of acute viral infection: i) inference in 22 

presence of poorly identifiable parameters, namely initial viral inoculum and eclipse phase 23 

duration ii) uncertainty on the mechanisms of action of the immune response. 24 

MS was associated in some scenarios with a large rate of false selection. This led to a 25 

coverage rate lower than the nominal coverage rate of 0.95 in the majority of cases and below 26 

0.50 in some scenarios. In contrast, MA provided better estimation of parameter uncertainty, 27 

with coverage rates ranging from 0.72 to 0.98 and mostly comprised within the nominal 28 

coverage rate. Finally, MA provided similar predictions than those obtained with MS.  29 

In conclusion, parameter estimates obtained with MS should be taken with caution, especially 30 

when several models well describe the data. In this situation, MA has better performances and 31 

could be performed to account for model uncertainty. 32 

  33 
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Introduction 34 

Since 1995 and the two seminal papers providing an estimate of the half-life of HIV 35 

particles in blood (1,2), the use of viral dynamic models has considerably expanded. 36 

Applications have been summarized in a recent issue of Immunological Reviews (3), showing 37 

their relevance for understanding the host-pathogen interactions in both chronic and acute 38 

infections (4–6).  In the last decade, parameter estimation of these models has increasingly 39 

relied on nonlinear mixed effect models (NLMEM), a statistical approach that improves both 40 

precision and accuracy of estimates by explicitly taking into account the between-subjects 41 

variability in the model (7,8). This is particularly true in the case of antiviral drug 42 

development where NLMEM have become central to support optimal treatment strategies in 43 

presence of a large variability in the response (9,10).  44 

Although inference has been greatly facilitated by the use of NLMEM, viral dynamic models 45 

remain often characterized by a lack of theoretical or practical identifiability (7,8). In fact the 46 

availability of powerful algorithms for inference has mechanically led to the development of 47 

increasingly complex models, questioning the reliability of viral kinetic parameter estimates. 48 

In order to improve identifiability of these models, a commonly used strategy is to fix 49 

parameters to plausible values and then to check the impact of these choices by conducting 50 

sensitivity analyses. For instance in acute viral infection, one can fix the initial viral inoculum 51 

or the eclipse phase duration, two parameters that can hardly be estimated using only viral 52 

load data  (11,12). Data fitting can also be used to evaluate the plausibility of different 53 

biological assumptions. In that case the usual approach is model selection (MS), where a 54 

predefined set of candidate models are fitted to the data and the model providing the best fit to 55 

the data (based on Akaike or Bayesian Information Criteria) is selected and carried forward in 56 

the analysis. In both contexts, these approaches, by focusing the predictions on a single 57 
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model, ignore the model uncertainty and may lead to wrong predictions (13) and potentially 58 

inaccurate biological conclusions  (14–16).  59 

In this paper, we propose to use model averaging (MA) as an alternative approach to MS in 60 

viral dynamics. MA is a conceptually simple approach, where the uncertainty related to each 61 

candidate model is taken into account and predictions associated to each model are weighted 62 

based on their consistency with the data  (17,18). Through an extensive simulation study, we 63 

compare parameter estimates and predictive performances of model averaging versus model 64 

selection. We discuss the benefits and limits of model averaging compared to model selection. 65 

Simulations are inspired from recent works in Zika and Ebola virus dynamics (19,20) 66 

representing two typical settings encountered in viral dynamic modeling: i) a set of 67 

parameters are fixed to arbitrary values of a given biological model to ensure identifiability; 68 

ii) model selection relies on the comparison of fitting criterion of a set of pre-defined different 69 

biological models.  70 

  71 
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Material and methods 72 

Model selection and model averaging 73 

Model for the observations. Let Yijm denote the j
th 

log viral load measurement of subject i at 74 

time j, and suppose that m=1,..,M candidate models can be used to simulate the data. The 75 

model for the observations is defined as:  76 

                            (1) 77 

where Vm is the viral load prediction function given by model m,  im is the vector of 78 

individual parameters under model m, tj the time of viral load measurement, assumed to be 79 

similar for all patients and all models, and      the residual error. Individual parameters  im 80 

are log-normally distributed and depend on the vector of fixed effects μm and the vector of 81 

random effects ηim~ (0,Ωm) with             . The variance-covariance matrix Ωm is 82 

assumed to be diagonal. Residuals errors are assumed to be independent and normally 83 

distributed            
  . Each biological model m is therefore associated with a set of 84 

population parameters,   , of dimension pm=dim(μm, Ωm, σm).  85 

Inference and model selection. For each candidate model, one can estimate the parameters 86 

using maximum likelihood estimates, providing, for each model, an estimate of the population 87 

parameters, noted    . One can also provide the confidence intervals of the parameters of 88 

interest under each model. This can be done using the asymptotic approximation where the 89 

density function of the estimated parameter    ,       , is assumed to be Gaussian with a 90 

variance-covariance matrix given by the inverse of the Fisher Information Matrix (FIM
-1

).  91 

Then, the most common approach is to select the model that best describes the data. This can 92 

be done using various criteria that rely on penalizations of the log-likelihood (LogL), such as 93 
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the Akaike information criteria (AIC), the consistent Akaike (CAIC) or the Bayesian 94 

information criteria (BIC) (21–24). In line with previous analysis (25,26), we relied on AIC 95 

given by AICm = -2LogL(    + 2pm . The analysis then focuses on the results (i.e., parameter 96 

estimates, confidence intervals, and predictions) obtained with the “best” model, i.e., the 97 

model associated with the lowest AIC among the m candidate models, noted AICmin, with 98 

parameter estimates noted     .  99 

Model averaging. As explained above, MS is limited in the sense that it ignores the 100 

uncertainty associated with each model and only focuses on a post hoc selected model (14). 101 

Alternatively, one can use model averaging (MA) to take into account the fact that several 102 

candidate models may provide a reasonable fit to the data . In this approach a weight is 103 

attributed to each candidate model, wm, proportional to AIC, such as    
 

      
 

  
      

  
   

 where 104 

ΔAICm = AICm – AICmin (14,17,18). In that case the MA estimator of    is given by     , 105 

with a density function given by                    
   . Another approach could be to 106 

consider only the models that are responsible for the majority of the weight (0.9 or 0.8), and 107 

equally average them (see Discussion section). 108 

  109 

Viral dynamic settings 110 

Our objective is to compare model selection and model averaging in two typical contexts of 111 

viral dynamic models. In the first setting, we focus on the issue arising from using model 112 

selection when some parameters of the model cannot be identified and are fixed to arbitrary 113 

values. In the second setting, we focus on the issue arising from using model selection when 114 

several different biological models can be proposed to fit the data.  115 
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Setting I: viral dynamic models in presence of poorly identifiable parameters. We here 116 

focus on the standard target cell limited (TCL) model given by: 117 

  

  
      (2) 

   
  

         (3) 

   
  

         (4) 

  

  
        (5) 

                                        

where, T are the target cells, I1 the infected cells in eclipse phase, I2 the productive infected 118 

cells and V the viral load in plasma. The model depends on the following disease parameters: 119 

β the infectivity rate constant, k the eclipse rate, δ the infected cell elimination rate, π the viral 120 

production rate constant, c the clearance of free virus, T0 the initial number of target cells and 121 

V0 the initial viral load. For the ease of interpretation and fitting, we reparametrized the model 122 

as        
  

, the basic reproductive ratio, instead of β, where R0 represents the number of 123 

secondary infection caused by one infected cells when the target cells are abundant. For the 124 

sake of simplificty we focused here on a simple, exponentially distributed, duration for the 125 

eclipse phase, but more complex models can be considered (27). 126 

Not all parameters of the TCL model can be uniquely identified when only the viral load data 127 

are available (28–30) and this issue is not circumvented when parameters are estimated using 128 

NLMEM. This can be shown by analyzing the expected standard errors obtained with the 129 

approximated Fisher Information Matrix (http://www.pfim.biostat.fr/; see more details in 130 

(30)). Table I provides the expected standard errors obtained with 30 individuals sampled 3 131 

days from day 3 up to day 18 post infection using typical parameter values close to those 132 

found during Zika infection in nonhuman primates (19). Although being theoretically 133 

identifiable, several parameters are associated with a very large expected standard error. This 134 

http://www.pfim.biostat.fr/
http://www.pfim.biostat.fr/
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can be corrected by fixing V0 and k to some arbitrary values, leading to expected relative 135 

standard errors lower than 30% for all parameter values. We here aim to evaluate the impact 136 

of the choice of k and V0 on parameter estimates.  137 

We also conducted a sensitivity analysis on the parameters variability of setting I (k=4 d
-1 

and 138 

V0=10
-4 

copies.mL
-1

). We reported the influence of lower and higher variabilities (ω=0.1 and 139 

ω=1, respectively) on the performances of MS and MA.  140 

 141 

Setting II: viral dynamic models including the immune response. In order to evaluate the 142 

impact of testing different biological assumptions in parameter estimates and predictions, we 143 

considered 4 additional models integrating the role of innate or adaptive immune response in 144 

the control of viral replication and inspired from the models used to describe Ebola infection 145 

in nonhuman primates (20). These models extend the TCL model with an additional 146 

compartment, noted F. This compartment is not observed and can therefore represent any 147 

biological entity involved in viral clearance, such as cytokine, macrophages, T-cell or 148 

antibodies (5,32,33). We assumed that F is produced at a rate q proportional to the number of 149 

productively infected cells, I2, and is eliminated at a rate dF  (20). Thus F could either i) 150 

increase the number of refractory infected cells (refractory model, R), ii) decrease the viral 151 

production (production inhibition model, PI), iii) increase the clearance of productive infected 152 

cells (cytotoxic model, C) or iv) increase the clearance of the virus (virus-killing model, V). 153 

In all models, the effects of F followed an Emax relationship with   the maximal effect of F 154 

and θ the sensitivity parameter. Table II displays the four model equations. 155 

  156 
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Simulations and parameter estimation  157 

 For each setting, the simulation procedure and parameter estimation under both MS 158 

and MA are described below.   159 

Parameter values. In the first setting, we aimed to evaluate the impact of fixing the two 160 

poorly identifiable parameters, k and V0, in the target cell limited model. For that purpose we 161 

defined a set of M=9 candidate models with values for V0 and k equal to V0 = 10
-5

;
 
10

-4
 or 10

-3
 162 

copies.mL
-1

 and k = 1; 4 or 20 d
-1

. The other parameter values are given in Table III. Figure 163 

1A shows that viral load is biphasic with a peak close to 10 log10 copies.mL
-1

 in all 9 164 

scenarios, but the time to peak depends on k and V0 to a lesser extent.  165 

In the second setting V0 and k were fixed to 10
-4

 copies mL
-1

 and 4 d
-1

, respectively. To 166 

ensure a fair comparison between the models, parameters were chosen to predict a similar 167 

contribution of the immune response to viral control, as measured by the area under the curve 168 

of the log10 viremia from 0 to 20 days (AUC). Thus, in all four models, the parameter values 169 

were such that AUC=100 log10 copies.days.mL
-1

 while assuming      would lead to AUC 170 

120 log10 copies.days.mL
-1

 (i.e., the absence of an immune system would lead to a 20% 171 

increase in AUC) (Figure 1B). The values of the TCL model were chosen to lead to a similar 172 

AUC=100 log10 copies.days.mL
-1

.  173 

We assumed that R0, δ, π, θ and ϕ were the estimated fixed effects. Those parameters, 174 

with the exception of θ, where associated to an intermediate between-subject variability, ω, 175 

equal to 0.3. Other parameters were assumed to be known with values given in Table III. 176 

Data simulation. For each model we simulated S=300 datasets of N=30 individuals using the 177 

same population parameter values,   
 , given in Table III. Therefore      2700 datasets 178 

were simulated in the setting I, and 1500 datasets were simulated in the setting II. We 179 

assumed measurements were made at days 3, 6, 9, 12, 15 and 18, with a lower limit of 180 
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quantification (LLOQ) of 1 log10 copies.mL
-1 

(20), and a measurement error term, σ, equal to 181 

0.7 log10 copies.mL
-1

. 182 

Parameter estimation. Each of the s=1,…, S dataset, was fitted using the M candidate 183 

models of each setting. The set of parameter estimates obtained on the dataset s using the 184 

model m, namely R0, δ, π, θ and   and their corresponding between-subjects variabilities if 185 

specified, was noted without loss of generality    
   Parameter estimates were obtained by 186 

maximization of the likelihood using the SAEM algorithm implemented in the MONOLIX 187 

software (version 2018, release 2). We used k1=800 and k2=200 iterations for the exploratory 188 

and smoothing phases, respectively. We used the asymptotic approximation to derive the 189 

probability density function of    
 , noted      

  , assumed to be Gaussian with a variance-190 

covariance matrix given by the inverse of the Fisher Information Matrix (FIM
-1

). The FIM 191 

was computed by stochastic approximation with at least 100 and up to 800 iterations. Of note, 192 

among the M models used to fit the data, only one is the true model (noted TM), i.e., the 193 

model used to generate the data, and we note     
  the parameter estimates obtained by fitting 194 

the dataset s with TM. 195 

For MA, 95% confidence intervals of     
  was then calculated by sampling 10,000 values in 196 

the mixture distribution       
      

       
   

    and computing the associated 2.5
th

 and 197 

97.5
th

 percentiles (14,18,34).  198 

 199 

Performances of model averaging and model selection for estimation 200 

Model selection. For each scenario, we reported the distribution weight of each candidate 201 

model as well as the proportion of simulations where each candidate model was selected 202 

(based on AIC, see above). 203 
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Parameter estimates and comparison with true parameter value. For each scenario, we 204 

reported the coverage rate obtained for each parameter with estimator based on MS, MA or 205 

TM, defined as the proportion of simulated datasets for which the true value of the parameter 206 

was contained in the 95% confidence interval of the estimated parameter. The coverage rates 207 

were compared with the prediction interval of a Binomial distribution with p=0.95 and S=300, 208 

i.e., [0.923; 0.973] and were reported for parameters R0, π and δ in setting I and R0 and δ in 209 

setting II.  210 

 211 

Performances of model averaging and model selection for prediction 212 

Finally, we aimed to evaluate MA in the context of prediction, i.e., the capability to anticipate 213 

the effect of a change in the experimental setting. We focused on the prediction of the impact 214 

of an antiviral treatment limiting the viral production π  with efficacy ε (0<ε<1) on the 215 

predicted proportion of patients with undetectable viral load (10 copies mL
-1

) at a given time 216 

point. We assumed that treatment was initiated at time t=6 and lasted until t=20 days, which 217 

coincides with the end of the follow-up. We considered 3 levels of efficacy on decreasing 218 

viral production with a factor    , namely ε = 0.90, 0.95 and 0.99, and we focused on the 219 

prediction at t=20. For each model and each value of ε, Monte-Carlo simulations were used to 220 

the expected proportion of patients below the limit of detection noted   
       221 

            
        .  222 

Following what has been done above, one can calculate, for each simulated dataset, the 223 

estimate that would be given by model selection, given by     
                   

     224 

    or by model averaging    
       

   
                

        . Likewise for the 225 

sake of comparison, one can also calculate the probability obtained by fitting the data under 226 
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the true model,    
                  

        . These values were summarized by 227 

calculating the bias and root mean square error (RMSE), given by  
 

 
     

      
     and 228 

 
 

 
     

      
    

 
 in the case of MA (similar applies to calculate the bias and RMSE in the 229 

case of MS or TM). For the sake of graphical representation, proportions of patients below the 230 

limit of detection were presented as percentages and biases and RMSE were therefore 231 

expressed in percentages. 232 

 233 

Results 234 

Setting I 235 

The first setting focused on the comparison between model averaging and model 236 

selection when parameters of the model (e.g., the eclipse phase, k, and the initial inoculum V0) 237 

cannot be identified and are fixed to arbitrary values (see Table III).  238 

Overall, the true set of parameter values was selected up to 62% of the simulations. The 239 

two parameters did not have the same rate of selection, with the correct values for k and V0 240 

being selected up to 71% and 96%, respectively (Figure 2A). Although the true model was not 241 

systematically associated with the lowest AIC, it was associated in all scenarios with the 242 

largest weight among the candidate models with a median value comprised between 0.32 and 243 

0.55 (Figure 2B). In all cases considered, at least two models had a weight greater than 0.20.  244 

We next evaluated the impact of these results on parameter estimates and coverage rates. 245 

The estimation of R0 using model selection was associated with a poor coverage rate between 246 

0.46 and 0.63 (Figure 3). Results for the loss rate of infected cells, δ, were better with a 247 

coverage rate ranging from 0.53 and 0.94, and was comprised in the nominal 0.95 coverage 248 
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rate in 3 out of 9 scenarios. For the viral production π, MS showed coverage rates ranging 249 

from 0.68 and 0.96, and was comprised in the nominal 0.95 coverage rate in 5 out of 9 250 

scenarios. Model averaging largely improved the coverage rates for all parameters and gave 251 

results close to those obtained with the true model. The coverage rates was between 0.91 and 252 

0.98 for R0, between 0.72 and 0.95 for δ and between 0.78 and 0.98 for π. Further the 253 

coverage rates were comprised in the nominal 0.95 coverage rate in 7 out 9 scenarios for R0 254 

and 5 out of 9 scenarios for δ and π. All confidence intervals can be found in supplemental 255 

figures S1, S2 and S3. 256 

Lastly we explored the effect of simulating with less (ω=0.1) or more (ω=1) inter-257 

subjects variability.  In both cases, MS provided subnominal coverage rates but MA corrected 258 

them (see Supplemental Figure S4). Eventually, we observed poorer coverage rates with 259 

ω=0.1 and improved with ω=1 compared to ω=0.3.  260 

 261 

Setting II 262 

In the second setting, we assessed the properties of parameter estimates when several 263 

biological models can be proposed. We focused on models characterizing the effect of the 264 

immune response, considering that the immune response compartment could alternatively 265 

make cells refractory to infection, limit the production of virus, increase the elimination of 266 

infected cells or increase the elimination of free virions (see Table III).  267 

Unlike what was found in the previous setting, the chance of selecting the true model was 268 

largely dependent on the model considered. In fact these chances were equal to 97% for the 269 

refractory model but this percentage could decrease to 58% with the cytotoxic model (Figure 270 

4A). Conversely, the models were also associated with a large rate of false selection with rates 271 
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ranging from 3 to 10% for the refractory model, and up to 20% for the production inhibition 272 

model. In the case of the target cell limited model, the chances of correctly selecting it were 273 

equal to 88% and the rate of false selection were ranging from 1 to 19%. The median weight 274 

associated to the true model ranged from 0.43 to 0.99 (Figure 4B).  275 

 276 

Accordingly, MS provided satisfactory coverage rates for target cell limited and 277 

refractory model (Figure 5); however it failed to achieve the nominal coverage rate in all other 278 

models, with values ranging from 0.62 to 0.91 for R0  and from 0.50 to 0.89 for δ. This could 279 

be improved by taking into account model uncertainty and using model averaging. Indeed the 280 

coverage rates ranged from 0.86 to 0.99 for both parameters in all models considered. In fact, 281 

MA had even better performances than the true model in some cases, which achieved 282 

subnominal coverage rate  in 3 of  the 5 considered scenarios (Figure 5).  All confidence 283 

intervals can be found in supplemental figures S5 and S6. 284 

 285 

Finally, we compared the predictive performances of MS, MA and the true model. For 286 

that purpose, we predicted the effect of a putative antiviral treatment on the proportion of 287 

patients having undetectable viremia at end of follow up (day 20). Here as well the 288 

performances obtained using model selection and model averaging were compared. In all 289 

cases, the percentage of undetectable viral loads at end of treatment was accurately predicted 290 

for both MS and MA, with no more than 4% of bias in all cases considered (Figure 6). In term 291 

of precision of estimation, the results were also largely similar in most scenarios, with RMSE 292 

ranging from 0.4 to 30.5% in all cases. In one case, namely ε=0.95, we found that MA 293 

outperformed the results obtained by MS. Here as well, the results obtained by model 294 

averaging were largely comparable with those obtained with the true model. 295 
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Discussion 296 

The objective of this study was to compare the estimation and the predictive 297 

performances of model selection and model averaging in the context of viral dynamic models. 298 

We explored two frequent issues encountered when developing viral dynamic models with 299 

uncertainty related either to (I) unidentifiable parameters or (II) the presence of several 300 

candidate biological models. In the two settings MS provided poor coverage rates of typical 301 

parameters. This stems from the fact that MS neglects model uncertainty and focuses on one 302 

single “best model”, leading to overconfidence in the parameter estimates. This can be 303 

corrected under certain conditions using MA, which provided better coverage rates and 304 

achieved the nominal coverage rate in most scenarios studied. MA can also be relevant to 305 

predict the effect of intervention, such as the percentage of patients that would achieve 306 

undetectable viral loads during treatment. Thus extending results found in other contexts, in 307 

particular dose finding studies (25,35).  308 

By offering a simple framework to take into account model uncertainty, MA accounts for the 309 

fact that in many situations several biological models are plausible. Our study shows the 310 

limitations of reporting only the best model. For instance, in the case of the target cell limited 311 

model, we found that the chance to conclude wrongly to an immune response controlling the 312 

infection was equal to 11%. In the case of the refractory model, which has been proposed as a 313 

driving force in several acute infection (33,36), our results were more reassuring, with a rate 314 

of false rejection of only 3%. This risk was larger with other models integrating an immune 315 

response, with rates of false rejection greater than 60% in some cases. By weighing the 316 

predictions of alternative models, MA avoids the caveat of MS. As advocated in other 317 

contexts (37,38), MA can be used to more transparently discuss model uncertainty and to 318 

stimulate new data acquisition (13).  319 
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 Although MA offers a simple alternative to MS, it also presents the defects of its 320 

virtue. As MA weighs the models according to their information criterion, using MA is 321 

relevant only if one model does not largely outperform the others. The weight value leading to 322 

“outperformance” is arbitrary, and depends also on the number of candidate models. 323 

Accordingly, one may question the need to use weights when making predictions. As 324 

suggested by a reviewer, we conducted a simulation where all models having a weight greater 325 

than a given threshold (0.1 or 0.2) were considered as equally likely in the prediction, and this 326 

approach provided results close to those obtained with MA (Supplemental Figure S7).  327 

MA still requires to make important assumptions that need to be kept in mind. First we used 328 

the asymptotic Gaussian approximations to calculate the standard errors. This assumption 329 

may not hold for all models, depending on their complexity and data paucity, as can been seen 330 

in some cases of Figures 3 & 5. Other approaches have been proposed in the context of 331 

NLMEM to calculate the standard error more precisely, such as bootstrapping (38), sampling 332 

importance resampling (39) or Hamiltonian Monte-Carlo methods (HMC) (40). Future work 333 

will be needed to evaluate in which contexts these methods, which are computationally 334 

demanding, are beneficial. Second in our simulations, we assumed that there was a true model 335 

and that it was part of the candidate models. Although there is no “true model” in real data, 336 

we made this hypothesis to stress that MA should be performed only with biologically 337 

relevant models. Likewise, MA should not be used to “blindly” average predictions of any 338 

models and modelers should, prior to the analysis, develop other models at hand and, if 339 

possible, discuss and perform new experiments to discriminate between them (13). In that 340 

perspective, using MA to calculate CI is meaningful only if parameter have the same 341 

interpretation across the candidate models. This is the case for half-life or viral production 342 

rates but is less evident for derived parameters such the basic reproductive number R0 (39,40). 343 

Finally, MA does not substitute to a proper analysis of parameter identifiability. In fact the 344 
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differences between MA and MS may simply reveal a poor practical identifiability, i.e., the 345 

fact that data available are not sufficient to precisely estimate parameters (8) and/or that the 346 

biological question is wrongly formulated (13). This is also what we observed here, with the 347 

wrong selection of models being in part due to the fact that the models had a poor practical 348 

identifiability, at least for some parameters. In order to be performant, MA requires that only 349 

a limited number of models are tested. It is only when a reasonable number of models remain 350 

that MA can be relevant, as an alternative to Bayesian approaches, that may be tedious in 351 

particular a non-linear mixed effect framework.  352 
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Supplemental information 360 

A readily usable R code to compute weights and confidence intervals in MA is provided in 361 

supplementary material. The example is based on digitized Zika data of Best at al. PNAS 2017 362 

and illustrates model averaging in the context of poorly identifiable parameters (setting I). 363 
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List of Tables 477 

Table I: Expected standard error (SE) of the fixed effect parameters using a target cell 478 

limited model when the estimated parameters include or do not include the initial 479 

inoculum, V0, and the eclipse rate, k. Expected standard errors were calculated using PFIM 480 

software and for a study design including 30 subjects sampled every 3 days from day 3 to day 481 

18. 482 

Parameter
 

(units) 
Estimation of R0, δ, V0, k and π 

Estimation restricted to R0, δ and 

π 

 Estimate SE 
Relative 

SE(%) 
Estimate SE 

Relative 

SE(%) 

R0 12 62.0 516% 12 0.84 7.0% 

δ (d
-1

) 1 0.10 10% 1 0.063 6.3% 

π 

(copies.cell
-1

.d
-1

) 
6000 3625 604% 6000 1446 24.1% 

V0 

(copies.mL
-1

)
 

10
-4 29.7 743% 10

-4
 (fixed) - - 

k (d
-1

) 4 38.9 971% 4 (fixed) - - 

c (d
-1

) 20 (fixed) - - 20 (fixed) - - 

T0 (cells.mL
-1

) 10
8 
(fixed) - - 10

8 
(fixed) - - 

 483 
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Table II: Differential equations system of immune response models. At t=0 we have 485 

                             and         . 486 

 487 

 

Target cell 

limited 

Refractory 

Production 

inhibition 

Cytotoxic Virus-killing 

  

  
            

    

   
                

   

  
                                          

   

  
                                  

    

   
         

  

  
                    

   

   
                     

    

   
 

  

  
                                          

 488 

  489 



23 

 

Table III: Parameter values used for simulations 490 

Parameter 

(units) 

Setting I Setting II 

 Target cell 

limited 

Target cell 

limited 
Refractory 

Production 

Inhibition 
Cytotoxic 

Virus-

killing 

R0
a 12 12 

δ
a
 (d

-1
) 1 1 

π
a
 

(copie.cell
-1

.d
-1

) 
6000 250 6000 

ϕ
a - - 1 0.99 0.9 36.5 

θ - - 2200 325000 3 0.001 

V0 (copies.mL
-1

) {10
-5

; 10
-4 

; 10
-3

} 10
-4 

k (d
-1

) {1; 4; 20} 4 

c (d
-1

) 20 20 

T0 (cells.mL
-1

) 10
8 

10
8 

q (d
-1

) 1 1 

dF (d
-1

) 0.4 0.4 

SD of the 

additive error 
0.7 0.7 

a
: parameters for which inter-individual variability ω=0.3 

 491 

  492 



24 

 

Legend to Figures 493 

 494 

Figure 1. Viral kinetics profiles obtained with the population parameters for each 495 

candidate model. (A) and (B) correspond to the simulation settings I and II, respectively. In 496 

Panel A, curves are regrouped by 3. At left, the first 3 curves correspond to models with k = 497 

20 d
-1

; center, models with k = 4 d
-1 

and right, models with k = 1 d
-1

. Within each group, red 498 

curves correspond to models with V0 = 10
-5 

copies.mL
-1

, yellow curves to models with V0 = 499 

10
-5 

copies.mL
-1

 and blue curves to models with V0 = 10
-5 

copies.mL
-1

. 500 

 501 

 502 
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 503 

Figure 2. Setting I. (A) For each scenario, the percentage of simulations where each 504 

candidate model was selected using AIC. Title of the facet indicates the true model. (B) 505 

Boxplots of weights (whiskers from the 2.5
th 

to the 97.5
th 

percentile) associated with each 506 

candidate model using AIC values. The asterisk denotes the true model in each scenario.  507 
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 509 

Figure 3. Coverage rate of R0 and δ in setting I. Coverage rate of the parameters R0 (dots), 510 

π (squares) and δ (triangles) for each scenario using model selection, model averaging or the 511 

true model. Dashed lines represents the prediction interval around 0.95. 512 
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 514 

Figure 4. Setting II. (A) For each scenario, the percentage of simulations where each 515 

candidate model was selected using AIC. Title of the facet indicates the true model. (B) 516 

Boxplots of weights (whiskers from the 2.5
th 

to the 97.5
th 

percentile) associated with each 517 

candidate model using AIC values. The asterisk denotes the true model in each scenario. 518 

 519 

 520 

Figure 5. Coverage rate of R0 and δ in setting II. Coverage rate of the parameters R0 (dots) 521 

and δ (triangles) for each scenario using model selection, model averaging or the true model. 522 

Dashed lines represents the prediction interval around 0.95. 523 
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 525 

Figure 6. Distribution of the expected proportion of patients below the limit of detection 526 

at day 20 using model selection (red), model averaging (green) or the true model (grey). 527 

For each scenario, whiskers represent the 2.5
th 

to the 97.5
th 

percentile and each row 528 

corresponds to a different value of the treatment effect, noted ε.  529 
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