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ABSTRACT 

 

Background and Aims: Non-Alcoholic SteatoHepatitis (NASH) is considered as a pivotal 

stage in Non-Alcoholic Fatty Liver Disease (NAFLD) progression, as it paves the way for 

severe liver injuries such as fibrosis and cirrhosis. The etiology of human NASH is multi-

factorial and identifying reliable molecular players and/or biomarkers has proven difficult. 

Together with the inappropriate consideration of risk factors revealed by epidemiological 

studies (altered glucose homeostasis, obesity, ethnicity, sex…), the limited availability of 

representative NASH cohorts with associated liver biopsies, the gold standard for NASH 

diagnosis, probably explains the poor overlap between published “omics”-defined NASH 

signatures. Approach & Results: Here we have explored transcriptomic profiles of livers 

starting from a 910 obese patient cohort which was further stratified based on stringent 

histological characterization, to define ”NoNASH” and ”NASH” patients. Sex was identified as 

the main factor for data heterogeneity in this cohort. Using powerful bootstrapping and random 

forest (RF) approaches, we identified reliably differentially expressed genes participating to 

distinct biological processes in NASH as a function of sex. RF-calculated gene signatures 

identified NASH patients in independent cohorts with high accuracy. Conclusions: This large-

scale analysis of transcriptomic profiles from human livers emphasized the sexually dimorphic 

nature of NASH and its link with fibrosis, calling for the integration of sex as a major determinant 

of liver responses to NASH progression and responses to drugs. 
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INTRODUCTION 

Non-alcoholic fatty liver disease (NAFLD) is a growing health burden initially 

developing in western countries and spreading to areas in which lifestyle and diet 

changes increase the prevalence of obesity and insulin resistance (1). NAFLD is now 

the most common chronic liver condition with a worldwide prevalence of ≈25% of the 

total population (2). NAFLD encompasses a spectrum of liver histological 

manifestations, from relatively benign hepatic steatosis (NAFL) to more severe liver 

injuries leading to non-alcoholic steatohepatitis (NASH). Lobular inflammation and 

ballooning degeneration of hepatocytes are histological characteristics of NAFL 

progression toward NASH (3). NASH is strongly associated with fibrosis (4-6), which is 

itself, even at early stages, predictive of increased overall and liver-related mortality (7-

9).  

A number of genome-wide scale transcriptomic analyses described hepatic gene 

expression pattern alterations in NAFL and NASH patients versus ”healthy obese” or 

lean individuals (10-16), prompting meta-analysis to define NASH and/or fibrosis core 

molecular signatures (12, 13, 17). Although identifying novel or confirming established 

players in NASH progression, these studies did not allow the definition of a predictive 

core gene signature, as little overlap between each meta-analysis was observed. 

Multiple confounding factors and technical biases may account for this inconsistency, 

such as differences in genetic origin, unappreciated environmental factors and cohort 

stratification criteria. In addition, stratification did not always take into account major 

risk factors for NASH revealed by epidemiological studies such as the metabolic status 

(18, 19). Most importantly, many human pathological manifestations are sex-dependent 

(20, 21) and NAFLD-induced liver injuries are mostly reported as more severe in men 

(22). However, despite obvious sex dimorphic traits in metabolic regulations (23), sex 

was not considered as a factor neither in the design nor upon interpretation of the above 

mentioned studies. 

Generating a global overview of biological processes involved in human disease 

requires genome-wide analysis of large cohorts containing hundreds of patients to 

insure the robustness of results (24). Transcriptomic signatures are generally defined 

through ”top-down” approaches (25), starting from a comparative analysis to identify 

differentially expressed (DE) genes (DEGs) between healthy and pathological 

conditions to further select, within this DEG set, several genes supposedly constituting 

the ”disease” signature. However, the imbalance between the population size (few 
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hundreds) and the number of quantified RNA transcripts (several thousands) generates 

unstable results, which display a high sensitivity to the genetic, biological and biometric 

characteristics of the studied cohort (26). Despite being long-established, this variability 

remained ignored in previous studies, in which single differential analysis were 

performed on non-segmented cohorts. Furthermore, machine learning methods, such 

as logistic regressions, are traditionally used to guarantee an unbiased selection of 

signature genes amongst DEGs (27). Although they may lead to comprehensive 

models, these methods fail to integrate non-linear gene interactions reflecting biological 

complexity (28). Non-linear approaches, such as Random Forests (RF) or Support 

Vector Machine (SVM), can model such complex interactions, but remain rarely used 

in such studies due to methodological complexity (29-31). Furthermore, variability in 

computational and statistical methods applied to DEG selection also contributes, 

especially in a small cohort size context, to observed discrepancies between identified 

signatures. 

The main objective of this study was to define, using unbiased and robust 

bioinformatic approaches, NASH molecular signatures through a transcriptomic study 

starting from a large cohort of morbidly obese patients (n=910). In addition to 

highlighting optimal bioinformatic approaches for biological signature identification, this 

study identified sex as the main parameter affecting NASH signature definition and 

associated altered biological processes.  
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METHODS 

 

Cohorts and Datasets 

The Hopital Universitaire de Lille (HUL) cohort (ABOS, ClinicialTrials.gov: NCT 

01129297) was recruited amongst obese patients visiting the Obesity Surgery Department at 

the Centre Hospitalier Universitaire de Lille. All patients fulfilled criteria for, and were willing to 

undergo weight-loss surgery. More details on the constitution and characterization of this 

prospective cohort are in the Supplemental Data section. Liver needle biopsies were obtained 

at the time of surgery from 910 patients undergoing bariatric surgery (32). Anthropometric, 

histological and metabolic characteristics are indicated in Table 1. RNA extraction, purification, 

labeling and hybridization procedures for microarray analysis have been reported (32). 

Transcriptome analysis was performed using Affymetrix Human Transcriptome Array (HTA) 

2.0 and .CEL files were normalized in a single run of the apt-probeset-summarize command 

(gc-scale-rma analysis using meta probesets and full quantile normalization, APT program 

2.10.0, ThermoFisher). Expression data are available at NCBI GEO:GSE130991. 

The Universitair Ziekenhuis Antwerpen (UZA) cohort was recruited amongst 

overweight patients visiting the Obesity Clinic at UZA suspected to have NAFLD based on 

imaging and blood biochemistry assays [see (33) for details]. Liver biopsies were from 178 

obese patients of which 79 further underwent gastric bypass surgery. Anthropometric, 

histological and metabolic characteristics, RNA extraction, purification, labeling and 

hybridization procedures have been previously reported (12). Transcriptome analysis was 

performed using Affymetrix Human Gene (HuGene) 2.0ST and .CEL files were normalized as 

above. Expression data are available at NCBI GEO:GSE83452. 

Ahrens and collaborators described the Universitätsklinikum Dresden (UKD) cohort 

which includes lean (control, n=18) and morbidly obese patients (BMI>42kg/m², n=45) either 

classified as healthy (no steatosis, n=18), NAFL (steatosis only, n=12) or NASH (steatosis and 

inflammation, n=15) with low fibrosis stage (F≤1, mild) (11). Transcriptome analysis was 

performed by these authors using Affymetrix HuGene 1.1ST arrays and .CEL files were 

normalized as above. Gene expression data are available at NCBI GEO:GSE48452. 

Moylan and collaborators described the Duke University (DU) cohort composed of 72 

overweight or obese patients (29kg/m2<BMI<46 kg/m2) who were stratified according to the 

fibrosis stage [(F≤1, moderate, n=40) and (F≥3, severe, n=32)] as recommended in (34). The 

NASH phenotype (inflammation and ballooning) was also more pronounced in the severe 

branch of the cohort (10). Transcriptome analysis was performed by these authors using 
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Affymetrix HG U133 Plus 2.0 arrays and .CEL files were normalized as above. Gene 

expression data are available at NCBI GEO:GSE49541. 

 

Cohort stratification, data analysis and bioinformatic procedures.  

Detailed information can be found in the Supplemental Data section. 
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RESULTS 

 

Definition of the learning cohort 

The prospective HUL cohort includes morbidly obese patients presenting all grades of 

liver steatosis, lobular inflammation and ballooning. Validated liver transcriptomic profiles were 

obtained from 910 biopsies, which were classified on the basis of histological parameters 

(steatosis, hepatocyte ballooning, lobular inflammation, Figure 1) to yield a fully characterized 

620 patients cohort with healthy [HL, n=118 (19%)], steatotic [NAFL, n=431 (70%)] or NASH 

livers [NASH, n=71 (11%)] (Table 1). “Borderline” samples to which an unambiguous 

classification could not be attributed were excluded (n=199) (Figure 1 and Supp. Figure 1). Of 

note, the HL and NAFL categories were mostly associated to no or moderate fibrosis (F0 to 

F2, 98%, Table 1), whereas NASH patients exhibited an important proportion of severe fibrosis 

(F3 to F4, 43%, Table 1). With the aim of eliminating selection bias and confounding factors 

when assessing the effect of NASH on gene expression profiles as a function of sex, we first 

defined a so-called “learning cohort” from the 620-patient cohort as follows. First, biopsies were 

selected according to stringent quality and biological criteria (Figure 1). These criteria were: 

(a) defining a minimal length >10mm and a number of portal areas per biopsy >8, leading to a 

420 biopsies subset (characteristics of this subcohort are detailed in Supp. Table 1); (b) 

excluding from the analysis patients with normal hepatic insulin sensitivity as they are virtually 

absent from the NASH category (Figure 2) by using a HOMA-IR index >2.4 which is, after 

exclusion of patients taking ”rapid insulin”, an arbitrary threshold in accordance with common 

practices (35, 36); (c) defining a ”NoNASH” group including healthy (HL) and steatotic (NAFL) 

livers. To eliminate or reduce any referral or unidentified bias as well as confounding factors, 

patients were then propensity-matched within each subgroup (NoNASH or NASH) based on 

sex, BMI, HOMA-IR and fibrosis grade. This defined the HUL learning cohort composed of 124 

matched male or female NoNASH patients and of 46 male or female matched NASH patients 

(Supp. Table 2) allowing to investigate the importance of the sex factor in balanced groups 

(Table 2). NASH patients displayed higher fibrosis scores and HOMA-IR than NoNASH 

patients (F3-F4=29% vs 5%, mean HOMA-IR=27.7 vs 6.8, respectively)(Supp. Table 2). 

 

Differential gene expression analysis 

The source of variation in gene expression was investigated using multivariate ANOVA 

on normalized log2-transformed gene expression signals. Computation of F-ratio (variation 

explained by the test variable/unexplained variation) for each factor considered in the 
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differential model clearly confirmed sex as the factor explaining the highest expression 

variance to the dataset (Figure 3). Accordingly, DEGs were first identified, as usually performed 

in signature discovery studies, by a single Limma run comparing either NoNASH to NASH 

gene profiles irrespective of sex, or considering only female or male patients (thereafter 

referred to as “All”, “Women” or “Men” respectively). A variable number of genes was found 

significantly DE when comparing NASH to NoNASH patients in the men (3,083), women (297) 

and all patients (3,466) strata (FDR< 10%).  

The robustness of DEGs identification was assessed by a bootstrap procedure based 

on a random subsampling rate = 0.9 (100 iterations) of the learning cohort subgroups followed 

by Limma differential analysis. This procedure generated 3 groups (G) of DEGs reliably 

detected in more than 75 bootstrap runs (FDR <10%, Gmen, Gwomen and Gall) and revealed 

important qualitative and quantitative discrepancies with DEGs detected by a unique Limma 

run (Figure 4A and 4B, Supp. Figure 2). As an example, CHIL3L1 was detected as DE in the 

single Limma run for both men and women contrasts, with high fold changes (FCs) (FCmen = 

3.30; FCwomen = 2.14). However, the bootstrap procedure reliably detected CHIL3L1 as 

overexpressed only in male NASH patients (Gmen), as it was found significantly DE in all 100 

Limma runs. In contrast, it was dismissed from the women contrast (Gwomen) as it was found 

significantly DE in only 32 out of 100 runs despite a high mean FC (σFCw = 2.14). This 

bootstrap analysis thus attributed 1,325 (vs 3,083 in the single Limma run), 55 (vs 297) and 

1,868 (vs 3,466) DEGs to Gmen, Gwomen and Gall contrasts respectively (Figure 5A; Supp. Figure 

3). Variance analysis did not reveal significant differences in global gene expression between 

men and women, suggesting that the difference in DEG number was not linked to difference 

in gene expression heterogeneity (Supp. Figure 4). Thus a strong influence of patient/sample 

heterogeneity on the differential analysis process was observed.  

The incomplete overlap between Gwomen and Gmen suggested a contribution of a sex-

specific factor to differential analysis results, as only 39 common transcripts were identified 

(71% of Gwomen and 3% of Gmen)(Figure 5B). When raising the FC threshold of reliable DEGs up 

to 1.5 (Supp. Table 3), this overlap increased in proportion (13 overlapping transcripts; 87% of 

Gwomen and 15% of Gmen), while 74 and 2 genes remained men- and women-specific respectively 

(Supp. Figure 5). Men-specific genes with highest absolute log2FC values were Solute Carrier 

Family 22 member 10, SLC22A10) (σFCm = 0:42), Chitinase-3-like protein 1, CHI3L1 (σFCm = 

3.36) and Hermansky-Pudlak syndrome 5 protein, HPS5 (σFCm =2.24) and the 2 women-

specific genes were HYDIN1(σFCw  = 0.52) and HYDIN2 (σFCw = 0.39). 

While suggesting a clear dichotomy between male and female patients, this latter 
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analysis did not provide an overview of altered liver functions in NASH. A gene ontology (GO) 

term enrichment was thus performed on reliable Gwomen, Gmen and Gall using the Biological 

Processes (BP) database (Table 3). Interestingly, term enrichment within Gall identified cell-cell 

contact, immune cell migration, inflammatory response and extracellular matrix remodeling as 

the most prominent processes, in agreement with the published literature (37). However, GO 

BP term enrichment of DEGs in Gwomen pointed to cell cycle regulation processes, whereas Gmen 

revealed a pattern more related to metabolic and inflammation processes (Table 3). This 

dichotomy was also observed when restricting gene lists to genes with absolute log2FC > 

log2(1.2) to reduce technical noise, which additionally revealed a specific enrichment of 

cholesterol-related genes in the men gene set (Supp. Table 4). Due to the low number of 

dysregulated genes passing this FC threshold (n=41), the women sub-cohort did not allow a 

statistically significant enrichment in any GO BP term, but visual inspection of the gene list did 

not highlight any gene involved in cholesterol metabolism.  

 

RF-based identification of signatures 

A recursive feature elimination (RFE) strategy coupled to RF models was used to select 

an optimal gene subset from Gwomen, Gmen and Gall (Figure 1, 6A, 6B; Supp. Figure 6) to predict 

NoNASH and NASH patients. By progressively eliminating genes with lowest classification 

power, a minimal gene set yielding a maximized AUC was defined. Signatures corresponding 

to these optimal subsets contained 20, 15 and 108 genes extracted from Gwomen, Gmen and Gall 

and are thereafter referred to as Swomen , Smen and Sall respectively (Supp. Table 5). The overlap 

between these 3 signatures indicated that men- and women-specific signatures shared only 1 

gene (Thymidylate Synthetase, TYMS ) (Figure 6C). The larger signature obtained when 

considering all patients (Sall) largely overlapped with Swomen and with Smen, albeit to a lesser 

extent, highlighting the need of both sex-specific signature genes in the RF model to efficiently 

classify an heterogeneous population.  

 

Classification power of signatures 

A Principal Component Analysis (PCA) was first employed to validate Swomen, Smen and 

Sall as tools to separate NASH from NoNASH patients. Separations between NoNASH and 

NASH patients using gene expression values from reference signatures were sharper than 

when considering all DEGs expression values (Figure 7; Supp. Figure 7), suggesting that these 

signatures are highly efficient in discriminating NoNASH vs NASH patients. 
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The classification power of these 3 signatures was then evaluated through 200 cross-

validation runs using the learning cohort. The distribution of AUCs determined from these runs 

(Figure 8A, 8B, Supp. Figure 8) showed that highest AUC values were achieved by RF models 

learnt from Swomen, Smen and Sall to predict women (AUC RF-Swomen  = 0.957), men (AUC RF-

Smen = 0.970) and all patients (AUC RF-Sall = 0.952) respectively. In comparison, mean AUC 

reached when using randomly selected signatures models built from Gwomen, Gmen and Gall (AUC 

Rdm- Gx) were strictly lower than those determined using reference signatures, however with 

AUCs > 0.8. Amongst guided random signatures, those built from Gwomen reached higher AUC 

to predict NASH when classifying all patients and more especially the women-only cohort, with 

performances close to reference signature (Figure 8A, AUC Rdm-Gwomen = 0.939). It is worth 

noting here that these guided random signatures are composed of 20 genes randomly selected 

amongst 55 reliable DEGs from Gwomen, thereby inducing a frequent overlap between reference 

and guided random signatures. Thus the high AUCs achieved by these random signatures did 

not suggest the uniqueness of a predictive NASH signature in RF models, but are rather 

indicative of a set of similar signatures built from a limited list (here n=55) of predictive genes. 

Unguided random signatures built from the full list of genes (Rdm-All) reached poor AUCs 

around 0.62. 

 

Single gene predictors. 

Reference signatures were also compared to single gene predictors to classify NASH 

vs NoNASH patients in the learning cohort. The classification power of each gene composing 

Swomen, Smen and Sall to classify women, men and all patients respectively were evaluated 

(Figure 8C, 8D and Supp. Figure 9). All genes from Swomen and Smen reached absolute AUC 

greater than 0.77 and 0.82 respectively, especially for FAT1 with an AUC close to the Smen 

model (AUCSmen = 0.970; AUCFAT1 = 0.953). For Sall genes, AUCs were low and fluctuated from 

0.62 to 0.86, suggesting a higher complexity of the corresponding predictive model. 

We also tested ad-hoc signatures including a number of genes equal to reference ones 

and displaying the highest FC in Gmen, Gwomen and Gall of the learning cohort (Supp. Figure 10). 

For some genes, despite high FC, corresponding individual prediction for NASH remained poor 

(HMGCS1 in the men group, FCmen=2.4; AUCmen=0.65). Of note, RF-based-models using these 

ad-hoc signatures most often reached better prediction than individual gene predictors. Taken 

together, these analyses demonstrate that the RF-calculated signals have a predictive power 

superior to random and ”single gene” predictors. 
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Independent cohort validation. 

Reference signatures were used to classify NASH and NoNASH patients from other 

cohorts (Table 4). When confronted to the HUL “testing” cohort (excluding the 170-patient 

learning cohort, n=450), RF models learnt from Swomen, Smen and Sall reached similar AUC when 

classifying men as NASH or NoNASH patients (AUCmen = 0.87/0.87/0.93), women (AUCwomen 

= 0.86/0.84/0.87) and all patients (AUCall = 0.88/0.84/0.88). The similarly high AUC values 

reached when classifying the HUL cohort by these three signatures demonstrated the capacity 

of RF to learn efficient classification rules from various gene signatures. A validation using 

independent cohorts was however required to more precisely assess the ability of such 

signatures to identify NASH patients. Classification predictions ran on the UKD cohort yielded 

improved AUC values in the women and all patients sub-cohorts when compared to HUL AUC, 

whereas HUL-generated signatures were slightly less accurate at classifying UKD men as 

NASH or NoNASH patients (AUCmen = 0.79/0.75/0.79). HUL-generated signatures performed 

only fairly to classify the UZA cohort (56 NoNASH; 122 NASH), with the best AUC being 

reached when using Swomen to predict women, men and all patients (AUCwomen = 0.73; AUCmen 

= 0.76; AUCall = 0.75), whereas Smen yields an AUC around 0.65. Since these values remained 

significantly lower than AUCs obtained with other cohorts, we assessed signature 

performances after restricting the NASH category to highly fibrotic patients (F≥3, n=60). RF 

model performances on this UZAhigh fib. sub-cohort increased the classification prediction power 

to the same extent for men, women and all patients. Swomen and Sall models to reach similar 

performances with AUC in the 0.78-0.84 range, and remained higher than models learnt from 

Smen. These values remained however below those reached with other tested cohorts, 

suggesting a peculiar yet undetermined biological feature of the UZA cohort or a center effect.  

The DU cohort has been stratified according to extreme histological phenotypes, 

distinguishing a “mild NAFLD” group with a low fibrosis grade (F≤1) and a “severe NAFLD” 

group with more pronounced liver damages associated to NASH (inflammation and ballooning) 

and strong fibrosis (F≥3) (10), thus ressembling the UZAhigh fib sub-cohort. We assessed the 

predictive power of signatures for all patients as sex was not discriminated in this cohort. RF 

models learnt from Swomen, Smen and Sall showed similar or better AUC for DU cohort (AUCall = 

0.80/0.89/0.87) when compared to HUL patient classification. This shows that signature 

performances extend beyond NASH prediction and may identify patients with severe, clinically 

relevant fibrotic lesions. 

 

Signature correlation networks 



Vandel et al., HEP-20-0090 R2 

13 
 
 

To quantify gene relationships within each signature, gene expression correlation 

networks were built by computing Pearson correlations between each transcript pair in the 

learning cohort. The 3 resulting gene co-expression networks shared a similar structure, 

displaying a core of ”central” highly correlated genes and more loosely correlated ”peripheral” 

genes (Supp. Figure 11). The Sall signature contains 2 core gene sets, the first one including 

KPNA2, ANXA2P2, ANXA2, MEAF6, ITGAX and TNFRSF12A and the second one containing 

DDB2, MDM2, ZMAT3, TYMS, RPS27L and RRM2B. The most highly correlated genes in 

Swomen were UBD, STMN2, ANXA2P2, FABP5P1 and FABP5P7, whereas NIN, SDCBP, 

CCND1, RRM2B and FAT1 were most correlated in the network computed from Smen. All 

correlations were positive except for CYP2C19 in the Swomen network and SFP1 and CYP2C19 

in Sall. Thus this correlation study again emphasized the male-female dichotomy in human 

NASH. 

 

Correlation with clinical parameters 

To assess whether RF-built signatures, in addition to identify NASH patients, also segregate 

patients according to biochemical or biometric parameters, Spearman correlation coefficients 

were computed between RF-based classification predictions learnt from Swomen, Smen and Sall 

and clinical parameters for the 620 NoNASH/NASH patient cohort (Table 1) to increase 

statistical power (549 NoNASH/71 NASH). Highest correlation was observed for HOMA-IR and 

HbA1c as expected due to higher values for both parameters in NASH patients compared to 

NoNASH patients of the learning cohort (Table 5). In contrast, no clear correlations were 

observed between BMI or HDL-C and any signature prediction. Other clinical parameters were 

correlated in a more sex-specific way, with age, LDL-C, HbA1c and HOMA-IR levels being 

more markedly correlated with Smen model prediction, whereas liver enzyme levels (ALAT, 

ASAT) were more strongly correlated with Swomen. Taken together, this correlation analysis 

suggests that despite being based on distinct gene sets, RF-built signatures identify patients 

with altered liver enzyme levels and altered glucose homeostasis. 
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Discussion 

Several studies have already reported liver transcriptomic signatures of NASH, but their 

reliability and stability can be questioned due to limited cohort sizes and the lack of the 

evaluation of signature robustness. In this study, 170 propensity score-matched liver biopsies 

were selected with rigorous biological and statistical criteria, from which we determined DEGs 

using a robust bioinformatic protocol. Several methodological pitfalls, mostly ignored in 

previous studies, have been addressed in our analysis. The use of a bootstrap method to 

increase the robustness of DEGs identification by Limma, a commonly differential analysis 

approach, has previously evidenced a high sensitivity of the differential analysis to cohort 

composition (26). In our study, such a bootstrap analysis led to the exclusion of 50 to 82% of 

transcripts initially identified as DEGs by a single Limma run. This instability was noted for the 

3 contrasts (Gall, Gwomen, Gmen). Importantly, exclusion was not restricted to poorly expressed or 

weakly modulated genes. Thus, to avoid misinterpretation, a stability analysis using a 

bootstrap approach should be systematically performed in cohort studies. 

Numerous studies reported the sexual dimorphic nature of metabolic regulations (38, 

39). In the liver, they have been mostly ascribed to the growth hormone/JAK2/STAT5 pathway 

(40). NASH has also a strong sex-specific component with men generally displaying a more 

severe phenotype than non-menopausal women (41, 42). On the basis of RF models, we 

identified sex-specific NASH signatures whose predictive power were evaluated against 

independent cohorts. We further compared the robustness of such signatures to that of single 

gene predictors and random signatures. We found a larger number of reliable DEGs in men 

than in women, whose median age is 45 years +/-11 (sd). A distinct menopausal status 

amongst women around 40 to 50 year-old could explain such a difference by increasing 

biological noise to the differential analysis and impairing DEGs detection. The low overlap 

between Gwomen and Gmen and associated signatures hints at sex-specificity as well. Indeed, GO 

BP enrichment of reliable DEGs in men or women did not reveal recurrent biological themes 

with the exception of ”cellular adhesion”, a rather broad terminology unable to pin down specific 

biological pathways. The 39 commonly dysregulated genes are not associated to a specific 

biological process, leaving open the question of a potentially (dis)similar natural history of men 

or women NASH. Interestingly, we observed that GO BP term enrichment of DEGs in Gwomen 

pointed to cell cycle regulation processes, a feature which may be related to the higher 

propensity of female hepatocytes to proliferate (43). 

Three signatures were identified using RF models, with Smen and Swomen encompassing 

a similar number of transcripts. Sall was larger due to a higher sample number used for training, 

thereby enabling more sophisticated classification rules to be employed with this more 
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heterogeneous population. A careful evaluation of bioinformatically-defined signatures is 

required as employed algorithms may use FCs which do not seem significant from a biological 

point of view. Thus, while several signatures can reach similarly high classification 

performances in RF, the identification of a unique signature surpassing all others in various 

conditions or cohorts remains unlikely. Additionally, such algorithms limit information 

redundancy when selecting signature genes, thus hindering the detection of significantly 

enriched GO terms in signature gene lists.  

We compared the predictive performances of our signatures to those of randomly-

generated signatures or single gene predictors. RF-based signatures were consistently more 

efficient at classifying NASH vs NoNASH patients from independent cohorts. A single gene 

predictor could perform better than a signature for a given dataset, but not as efficiently on 

other cohorts. For example, FAT1, a gene regulating cell-cell contact, which was highly 

predictive of NASH in male patients from the HUL cohort, turned out to be inefficient in the 

UKD cohort (Supp. Figure 12). Thus signatures are required to extrapolate classification 

performances to other cohorts by reducing prediction variability of single gene predictors. 

Among the tested 3 signatures elaborated from Gwomen, Gmen and Gall, Swomen was the more robust 

with a limited size (n=20). Reason(s) for this better performance are yet unclear.  

The prognostic performance of signatures was improved in the UZA cohort when 

stratifying patients according to the fibrosis grade. In line with this, predictivity of signatures on 

the fibrosis-stratified DU cohort was in the highest range, suggesting that our analysis 

integrates features of the fibrotic response, which is clinically relevant when considering long 

term outcomes (7, 8). Interestingly, some genes constituting the NASH signatures were also 

identified when defining a cross-species transcriptomic signature of fibrosis (12). Indeed, 12 

out of 34 (35%) genes constituting this fibrotic signature (12) were identified as strongly up-

regulated (abs. log2FC>1.5) in the bootstrapped Limma analysis (Supp. Table 3) and 6 of them 

are common to both the cross-species fibrotic signature and NASH signatures reported here 

(Supp. Table 5). These genes are UBD/FAT10, CCDN1/cyclinD1, FAT1,SPP1/osteopontin, 

ZMAT3 and FABP4/aP2. 

Machine learning approaches like RF extract information and outperform linear 

approaches. They identified signatures in the HUL cohort that reached AUROCs in the 0.62-

0.93 range when diagnosing independent cohorts, therefore being comparable to, or better 

than other NASH signatures based on lipidomic (44, 45) or combining multiple proteomic, 

biometric and genomic characteristics (46). Importantly, our study clearly points to sex as an 

often-neglected (22), but nevertheless important factor in liver and NASH biology (42). Indeed, 

liver physiopathological responses to various challenges are sex-dependent in rodents (47-
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49). Although the translatability of these findings to our human-based analysis is not 

straightforward, all these data converge towards a definition of human NASH as a sexually 

dimorphic disease. This is a potentially important and relevant finding in terms of biomarker 

research (as for example YKL-40/CHI3L1 is included in a biomarker panel in development), as 

well as for risk stratification and pharmacological therapy. Liver pathophysiology displays 

gender-linked disparities, suggesting that liver-targeted drugs may exhibit distinct mechanisms 

of action in men and women. In this respect, we note that the recent randomized Phase II 

clinical trial evaluating the effect of cenicriviroc (a dual CCR2-5 antagonist) in the treatment of 

NASH with fibrosis, resulted in positive effect in men, but not in women, on the improvement 

of fibrosis after 1 year (50). Although a limitation of our work is the comparison of a rather small 

NASH population to a larger non-NASH cohort, our data and others call for a careful design of 

pre-clinical and clinical studies integrating sex as a major determinant of liver responses. 
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FIGURES LEGENDS 

 

 

Figure 1: HUL cohort analysis. The main steps of the HUL cohort transcriptomic analysis, 

stratification and bioinformatic analysis are indicated, as well as the steps during which 

definition and validation of proposed sex-specific NASH signatures were undertaken. Details 

can be found in the Methods and in the Results sections. sscDNA: single stranded 

complementary DNA; QC: quality control;  

 

Figure 2: Insulin sensitivity and β-cell function in the HUL cohort. The proportion in the 

HUL cohort of insulin-resistant (HOMA-IR index>2.4, in red) and non insulin-resistant (HOMA-

IR index ≤ 2.4, in blue) patients amongst HL (n=78), NAFL (n=274) and NASH (n=68) groups 

is displayed as a function of sex. HL: healthy liver, NAFL: steatotic liver. 

 

Figure 3: Analysis of variance (ANOVA). F-ratio values of factors included in the Limma 

model were calculated. High F-ratio values indicate a strong linear relationship between a 

given factor and gene expression values. Interaction term between factors A and B are 

indicated as an A*B annotation. Factors were selected on the basis of published reports. 

 

Figure 4: Instability of the Limma-based determination of DE genes. The number of DEGs 

between NoNASH and NASH patients (FDR < 10%) for (A) men, (B) women was assessed 

after 100 subsamplings (rate = 0.9) of the learning cohort followed Limma analysis. Mean DEG 

number is represented by a black dotted line 

 

Figure 5: Identification of reliable DE genes. The absolute log2FC of DEGs was computed 

for the men learning cohort (Gmen , n=85). Each significantly DEG (FDR<10%) is represented 

by a red dot. Gene reliability is established by the number of bootstrap runs for which the gene 

remains significantly DE (75%). Blue dots represent the mean absolute log2FC for a given 

bootstrap run count. Dashed line: FC=1.5; dotted line: occurrence=75. The grey-shaded area 

includes reliable DEGs (FC>1.5) with occurrences ≥ 75. B) Number of reliably identified DEGs 

between NoNASH and NASH groups [men (blue), women (red) and all patients (yellow)]. 

 

Figure 6: Random forest models. (A, B) Classification power (AUC) of RF models. RF were 

trained with a progressively reduced number of genes to identify an optimal subset of genes 

corresponding to the proposed signature, for men and women, established by the second step 
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of RFE strategy. Maximal AUC is indicated by a vertical dotted red line. (C) Number of genes 

composing men (blue), women (red) and all patients (yellow) RF-based signatures. 

 

Figure 7: Principal component analysis. A PCA was run using gene expression values from 

women patients included in learning cohort based on: (A) all genes expression values or (B) 

Swomen genes. The percentage of the global data variance explained by each component is 

indicated by X and Y axis labels (%var.). Each dot represents a patient [NoNASH (blue) or 

NASH (yellow)]. 

 

Figure 8: AUC values of signatures and single gene predictors. (A,B) AUC distribution of 

RF models to predict women (left) and men (right) of the learning cohort in a cross-validation 

scheme. RF models learnt using respectively Swomen and Smen (red) were compared in each 

plot to RF models learnt using random signatures built from Gwomen (khaki), Gmen (green), Gall 

(blue) and the full list of available genes (purple). Distribution means are represented as 

vertical dashed lines. (C,D) AUC of single gene predictors to predict NASH status of women 

(left) and men (right) patients of the learning cohort for each gene composing corresponding 

signatures (Swomen and Smen). Mean AUC reached by RF models learnt from corresponding 

signature in a cross-validation scheme are represented through a red horizontal dashed line. 

  



Vandel et al., HEP-20-0090 R2 

20 
 
 

BIBLIOGRAPHY 
 
1. Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, George J, et al. Global 
burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev 
Gastroenterol Hepatol 2018;15:11-20. 
2. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global 
epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, 
incidence, and outcomes. Hepatology 2016;64:73-84. 
3. Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD 
development and therapeutic strategies. Nat Med 2018;24:908-922. 
4. Argo CK, Northup PG, Al-Osaimi AM, Caldwell SH. Systematic review of risk factors 
for fibrosis progression in non-alcoholic steatohepatitis. J Hepatol 2009;51:371-379. 
5. Singh S, Allen AM, Wang Z, Prokop LJ, Murad MH, Loomba R. Fibrosis progression in 
nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis 
of paired-biopsy studies. Clin Gastroenterol Hepatol 2015;13:643-654 e641-649; quiz e639-
640. 
6. Kleiner DE, Brunt EM, Wilson LA, Behling C, Guy C, Contos M, Cummings O, et al. 
Association of Histologic Disease Activity With Progression of Nonalcoholic Fatty Liver 
Disease. JAMA Netw Open 2019;2:e1912565. 
7. Angulo P, Kleiner DE, Dam-Larsen S, Adams LA, Bjornsson ES, 
Charatcharoenwitthaya P, Mills PR, et al. Liver Fibrosis, but No Other Histologic Features, Is 
Associated With Long-term Outcomes of Patients With Nonalcoholic Fatty Liver Disease. 
Gastroenterology 2015;149:389-397 e310. 
8. Dulai PS, Singh S, Patel J, Soni M, Prokop LJ, Younossi Z, Sebastiani G, et al. 
Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: Systematic 
review and meta-analysis. Hepatology 2017;65:1557-1565. 
9. Schuppan D, Surabattula R, Wang XY. Determinants of fibrosis progression and 
regression in NASH. J Hepatol 2018;68:238-250. 
10. Moylan CA, Pang H, Dellinger A, Suzuki A, Garrett ME, Guy CD, Murphy SK, et al. 
Hepatic gene expression profiles differentiate presymptomatic patients with mild versus severe 
nonalcoholic fatty liver disease. Hepatology 2014;59:471-482. 
11. Ahrens M, Ammerpohl O, von Schonfels W, Kolarova J, Bens S, Itzel T, Teufel A, et 
al. DNA methylation analysis in nonalcoholic fatty liver disease suggests distinct disease-
specific and remodeling signatures after bariatric surgery. Cell Metab 2013;18:296-302. 
12. Lefebvre P, Lalloyer F, Bauge E, Pawlak M, Gheeraert C, Dehondt H, Vanhoutte J, et 
al. Interspecies NASH disease activity whole-genome profiling identifies a fibrogenic role of 
PPARalpha-regulated dermatopontin. JCI Insight 2017;2:92264. 
13. Teufel A, Itzel T, Erhart W, Brosch M, Wang XY, Kim YO, von Schonfels W, et al. 
Comparison of Gene Expression Patterns Between Mouse Models of Nonalcoholic Fatty Liver 
Disease and Liver Tissues From Patients. Gastroenterology 2016;151:513-525 e510. 
14. Hyotylainen T, Jerby L, Petaja EM, Mattila I, Jantti S, Auvinen P, Gastaldelli A, et al. 
Genome-scale study reveals reduced metabolic adaptability in patients with non-alcoholic fatty 
liver disease. Nat Commun 2016;7:8994. 
15. Suppli MP, Rigbolt KTG, Veidal SS, Heeboll S, Eriksen PL, Demant M, Bagger JI, et 
al. Hepatic transcriptome signatures in patients with varying degrees of nonalcoholic fatty liver 
disease compared with healthy normal-weight individuals. Am J Physiol Gastrointest Liver 
Physiol 2019;316:G462-G472. 
16. Haas JT, Vonghia L, Mogilenko DA, Verrijken A, Molendi-Coste O, Fleury S, Deprince 
A, et al. Transcriptional network analysis implicates altered hepatic immune function in NASH 
development and resolution. Nature Metabolism 2019;1:604-614. 
17. Ryaboshapkina M, Hammar M. Human hepatic gene expression signature of non-
alcoholic fatty liver disease progression, a meta-analysis. Sci Rep 2017;7:12361. 
18. Subichin M, Clanton J, Makuszewski M, Bohon A, Zografakis JG, Dan A. Liver disease 
in the morbidly obese: a review of 1000 consecutive patients undergoing weight loss surgery. 



Vandel et al., HEP-20-0090 R2 

21 
 
 

Surg Obes Relat Dis 2015;11:137-141. 
19. Souto KP, Meinhardt NG, Ramos MJ, Ulbrich-Kulkzynski JM, Stein AT, Damin DC. 
Nonalcoholic fatty liver disease in patients with different baseline glucose status undergoing 
bariatric surgery: analysis of intraoperative liver biopsies and literature review. Surg Obes 
Relat Dis 2018;14:66-73. 
20. Gershoni M, Pietrokovski S. The landscape of sex-differential transcriptome and its 
consequent selection in human adults. BMC Biol 2017;15:7. 
21. Labonte B, Engmann O, Purushothaman I, Menard C, Wang J, Tan C, Scarpa JR, et 
al. Sex-specific transcriptional signatures in human depression. Nat Med 2017. 
22. Lonardo A, Nascimbeni F, Ballestri S, Fairweather D, Win S, Than TA, Abdelmalek 
MF, et al. Sex Differences in NAFLD: State of the Art and Identification of Research Gaps. 
Hepatology 2019. 
23. Tramunt B, Smati S, Grandgeorge N, Lenfant F, Arnal JF, Montagner A, Gourdy P. Sex 
differences in metabolic regulation and diabetes susceptibility. Diabetologia 2020;63:453-461. 
24. Ein-Dor L, Zuk O, Domany E. Thousands of samples are needed to generate a robust 
gene list for predicting outcome in cancer. Proc Natl Acad Sci U S A 2006;103:5923-5928. 
25. Chibon F. Cancer gene expression signatures - the rise and fall? Eur J Cancer 
2013;49:2000-2009. 
26. Michiels S, Koscielny S, Hill C. Prediction of cancer outcome with microarrays: a 
multiple random validation strategy. Lancet 2005;365:488-492. 
27. Liao JG, Chin KV. Logistic regression for disease classification using microarray data: 
model selection in a large p and small n case. Bioinformatics 2007;23:1945-1951. 
28. Higgins JP. Nonlinear systems in medicine. Yale J Biol Med 2002;75:247-260. 
29. Diaz-Uriarte R, Alvarez de Andres S. Gene selection and classification of microarray 
data using random forest. BMC Bioinformatics 2006;7:3. 
30. Boulesteix A-L, Janitza S, Kruppa J, König IR. Overview of random forest methodology 
and practical guidance with emphasis on computational biology and bioinformatics. Wiley 
Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2012;2:493-507. 
31. Guyon I, Weston J, Barnhill S, Vapnik V. Gene Selection for Cancer Classification using 
Support Vector Machines. Machine Learning 2002;46:389-422. 
32. Margerie D, Lefebvre P, Raverdy V, Schwahn U, Ruetten H, Larsen P, Duhamel A, et 
al. Hepatic transcriptomic signatures of statin treatment are associated with impaired glucose 
homeostasis in severely obese patients. BMC Medical Genomics 2019;12. 
33. Verrijken A, Francque S, Mertens I, Prawitt J, Caron S, Hubens G, Van ME, et al. 
Prothrombotic factors in histologically proven nonalcoholic fatty liver disease and nonalcoholic 
steatohepatitis. Hepatology 2014;59:121-129. 
34. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Ferrell LD, 
et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. 
Hepatology 2005;41:1313-1321. 
35. Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes 
Care 2004;27:1487-1495. 
36. Tang Q, Li X, Song P, Xu L. Optimal cut-off values for the homeostasis model 
assessment of insulin resistance (HOMA-IR) and pre-diabetes screening: Developments in 
research and prospects for the future. Drug Discov Ther 2015;9:380-385. 
37. Diehl AM, Day C. Cause, Pathogenesis, and Treatment of Nonalcoholic 
Steatohepatitis. N Engl J Med 2017;377:2063-2072. 
38. Morselli E, Frank AP, Santos RS, Fatima LA, Palmer BF, Clegg DJ. Sex and Gender: 
Critical Variables in Pre-Clinical and Clinical Medical Research. Cell Metab 2016;24:203-209. 
39. Mauvais-Jarvis F. Sex differences in metabolic homeostasis, diabetes, and obesity. 
Biol Sex Differ 2015;6:14. 
40. Lichanska AM, Waters MJ. How growth hormone controls growth, obesity and sexual 
dimorphism. Trends Genet 2008;24:41-47. 
41. Hashimoto E, Tokushige K. Prevalence, gender, ethnic variations, and prognosis of 
NASH. J Gastroenterol 2011;46 Suppl 1:63-69. 



Vandel et al., HEP-20-0090 R2 

22 
 
 

42. Ballestri S, Nascimbeni F, Baldelli E, Marrazzo A, Romagnoli D, Lonardo A. NAFLD 
as a Sexual Dimorphic Disease: Role of Gender and Reproductive Status in the Development 
and Progression of Nonalcoholic Fatty Liver Disease and Inherent Cardiovascular Risk. Adv 
Ther 2017;34:1291-1326. 
43. Chen F, Jimenez RJ, Sharma K, Luu HY, Hsu BY, Ravindranathan A, Stohr BA, et al. 
Broad Distribution of Hepatocyte Proliferation in Liver Homeostasis and Regeneration. Cell 
Stem Cell 2019. 
44. Mayo R, Crespo J, Martínez-Arranz I, Banales JM, Arias M, Mincholé I, Aller de la 
Fuente R, et al. Metabolomic-based noninvasive serum test to diagnose nonalcoholic 
steatohepatitis: Results from discovery and validation cohorts. Hepatology Communications 
2018. 
45. Barr J, Caballeria J, Martinez-Arranz I, Dominguez-Diez A, Alonso C, Muntane J, 
Perez-Cormenzana M, et al. Obesity-dependent metabolic signatures associated with 
nonalcoholic fatty liver disease progression. J Proteome Res 2012;11:2521-2532. 
46. Wood GC, Chu X, Argyropoulos G, Benotti P, Rolston D, Mirshahi T, Petrick A, et al. A 
multi-component classifier for nonalcoholic fatty liver disease (NAFLD) based on genomic, 
proteomic, and phenomic data domains. Scientific Reports 2017;7. 
47. Jacobs SAH, Gart E, Vreeken D, Franx BAA, Wekking L, Verweij VGM, Worms N, et 
al. Sex-Specific Differences in Fat Storage, Development of Non-Alcoholic Fatty Liver Disease 
and Brain Structure in Juvenile HFD-Induced Obese Ldlr-/-.Leiden Mice. Nutrients 2019;11. 
48. Ande SR, Nguyen KH, Gregoire Nyomba BL, Mishra S. Prohibitin-induced, obesity-
associated insulin resistance and accompanying low-grade inflammation causes NASH and 
HCC. Sci Rep 2016;6:23608. 
49. Kurt Z, Barrere-Cain R, LaGuardia J, Mehrabian M, Pan C, Hui ST, Norheim F, et al. 
Tissue-specific pathways and networks underlying sexual dimorphism in non-alcoholic fatty 
liver disease. Biol Sex Differ 2018;9:46. 
50. Friedman SL, Ratziu V, Harrison SA, Abdelmalek MF, Aithal GP, Caballeria J, 
Francque S, et al. A randomized, placebo-controlled trial of cenicriviroc for treatment of 
nonalcoholic steatohepatitis with fibrosis. Hepatology 2018;67:1754-1767. 
 

Author names in bold indicate shared co-first authorship. 



For Peer Review

 

Figure 1 - Vandel et al. 

175x192mm (600 x 600 DPI) 

Page 45 of 82

Hepatology

Hepatology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Figure 2 - Vandel et al. 

148x150mm (600 x 600 DPI) 

Page 46 of 82

Hepatology

Hepatology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Figure 3 - Vandel et al. 

156x133mm (600 x 600 DPI) 

Page 47 of 82

Hepatology

Hepatology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Figure 4 - Vandel et al. 

176x85mm (600 x 600 DPI) 

Page 48 of 82

Hepatology

Hepatology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Figure 5 - Vandel et al. 

242x171mm (600 x 600 DPI) 

Page 49 of 82

Hepatology

Hepatology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Figure 6 - Vandel et al. 

288x91mm (600 x 600 DPI) 

Page 50 of 82

Hepatology

Hepatology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Figure 7 - Vandel et al. 

142x256mm (600 x 600 DPI) 

Page 51 of 82

Hepatology

Hepatology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Figure 8 - Vandel et al. 

188x177mm (600 x 600 DPI) 

Page 52 of 82

Hepatology

Hepatology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Vandel et al., HEP-20-0090 R1

Characteristics

Women (n; %) 110; 85% 300; 72% 44; 60%

Age (mean±sd)
BMI (mean±sd)

Body mass (kg)(mean±sd)

35.6±11
46.2±7

128.4±23

42.1±11
47.6±8

134.3±26

47.2±10
47.5±8

135.3±27

Steatosis grade (n; %) 0 118; 100% 0; 0% 0; 0%

1 0; 0% 310; 72% 18; 25%

2 0; 0% 86; 20% 28; 40%

3 0; 0% 35; 8% 25; 35%

Lobular inflammation (n; %) 0 118; 100% 431; 100% 0; 0%

1 0; 0% 0; 0% 50; 70%

2 0; 0% 0; 0% 21; 30%

Ballooning (n; %) 0 118; 100% 431; 100% 0; 0%

1 0; 0% 0; 0% 50; 70%

2 0; 0% 0; 0% 21; 30%

Fibrosis (Kleiner) (n; %) 0 107; 87% 321; 74% 9; 12%

1a 4; 2% 21; 3% 9; 12%

1b 2; 1% 17; 1% 9; 12%

1c 5; 4% 44; 9% 4; 5%

2 0; 0% 13; 3% 12; 16%

3q 0; 0% 10; 2% 13; 18%

3s 0; 0% 4; 1% 13; 18%

4 0; 0% 0; 0% 5; 7%

AST (IU/L)(median; IQR) 21; 9 23; 9 38; 23

ALT (IU/L)(median; IQR) 20; 11 27; 16 47; 31

GGT (IU/L)(median; IQR) 25; 21 30 ;27 57; 44

Diabetes (n; %)
Treated diabetes (n; %)

Fasting blood glucose (mM)(mean±sd)

20; 16%
16; 12%

5.4±0.9

145; 35%
121; 29%

6.4±2.4

63; 86%
56; 77%

9.2±3.3
Fasting insulin (IU/mL)(median; IQR) 12.2; 8.3 13.7; 11.3 23.5; 25.8

HbA1c (%)(median; IQR) 5.5; 0.5 5.9; 0.9 7.8; 3.6

HOMA-IR (median; IQR) 2.9; 2.2 3.5; 3.2 9.3; 10.9

Total cholesterol (mmol/L)(mean±sd)
LDL cholesterol (mmol/L)(mean±sd)

HDL cholesterol (mmol/L)(mean±sd)

Triglycerides (mmol/L)(mean±sd)

4.9±1.0
3.1±0.9

1.2±0.2

1.3±0.5

5.0±1.0
3.1±0.8

1.1±0.3

1.7±1.7

4.8±1.0
2.8±0.9

1.1±0.2

2.1±1.0

Diastolic blood pressure (mmHg)(mean±sd) 72.6±14 77.1±14 76.6±13

Systolic blood pressure (mmHg)(mean±sd) 130.3±15 137.1±19 139.2±19

Table 1. Characteristics of NASH/NoNASH 620 patients from the HUL cohort. 

HL NAFL NASH
n=118 n=431 n=71
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Men Women 
NoNASH NASH NoNASH NASH

Population size 62 23 62 23
Age 43.7±12 48.5±9.0 43.2±12 47.3±10
BMI 47.9±7.4 46.5±6.7 48.8±7.0 46.8±5.6

HOMA-IR 7.79±11 28.7±56 5.69±7.8 26.6±69
HbA1c 6.46±1.6 8.35±1.9*** 6.03±0.8 7.92±1.9***

Steatosis grade 1.23±0.7 2.17±0.8*** 1.16±0.8 2.04±0.7***
Lob. Inflammation 0 1.17±0.4*** 0 1.43±0.5***

Ballooning 0 1.26±0.4*** 0 1.13±0.3***
NAS score 1.23±0.7 4.61±0.9*** 1.16±0.8 4.61±0.8***

Fibrosis score 0.52±0.9 1.52±1.1*** 0.29±0.6 1.61±1.1***
ASAT (IU/L) 29.7±11 42.5±17*** 22.2±7.4$$$ 40.7±21***
ALAT (IU/L) 42.5±23 57.8±27** 24.7±9.7$$$ 48.6±25***

Table 2: Main biometric and biochemical parameters of the learning cohort. Mean ± 

standard deviation of clinical parameters for each patient category are indicated. (BMI: Body 

Mass Index; HOMA-IR: HOmeostasis Model Assessment of Insulin Resistance; HbA1c: 

glycated hemoglobin; NAS: NAFLD Activity Score; ALAT: Alanine transaminase; ASAT: 

Aspartate transaminase). NoNASH vs NASH comparison: **, p<0.05; ***, p<0.01. Women vs 

men comparison: $$$, p<0.01
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Gmen 

n

(1325 genes) Gwomen (55 genes) Galll (1868 genes)Gene set
GO terms Rank p-value Rank p-value Rank p-value

Cell-cell adhesion 1 2.9x10-9*** ∅ ∅ 2 5.7x10-11***

ATP hydrolysis coupled proton transport 2 4.3x10-7*** ∅ ∅ ∅ ∅

ER to Golgi vesicle-mediated transport 3 5.9x10-7*** ∅ ∅ 130 1.0x10-2

Reg. of cellular amino acid metabolic process 4 6.0x10-7*** ∅ ∅ ∅ ∅

Transferrin transport 5 1.3x10-6** ∅ ∅ ∅ ∅

Negative regulation of apoptotic process 6 2.2x10-6** ∅ ∅ 33 1.7x10-4*

Tumor necrosis factor-mediated signaling pathway 7 2.4x10-6** ∅ ∅ 38 3.5x10-4*

Regulation of macroautophagy 8 3.2x10-6** ∅ ∅ ∅ ∅

T cell receptor signaling pathway 9 4.1x10-6** ∅ ∅ 31 1.5x10-4*

NIK/NF-kappa-B signaling 10 4.3x10-6** ∅ ∅ 102 5.9x10-3

G1/S transition of mitotic cell cycle ∅ ∅ 1 1.6x10-4* 17 1.1x10-5**

Response to organonitrogen compound ∅ ∅ 2 6.3x10-4 ∅ ∅

Cell adhesion 50 1.1x10-3* 3 1.3x10-3 5 4.2x10-8***

Triglyceride catabolic process ∅ ∅ 4 2.0x10-3 ∅ ∅

Negative reg. of G1/S transition of mitotic cell cycle ∅ ∅ 5 2.0x10-3 172 2.2x10-2

Liver regeneration 111 1.0x10-2 6 2.7x10-3 81 3.5x10-3

Response to drug 93 6.1x10-3 7 8.8x10-3 110 6.9x10-3

Cellular response to hydrogen peroxide 174 3.3x10-2 8 1.0x10-2 210 3.1x10-2

Intestinal epithelial cell maturation 161 2.4x10-2 9 1.1x10-2 241 4.4x10-2

Aggresome assembly ∅ ∅ 10 1.3x10-2 ∅ ∅

Movement of cell or subcellular component 23 4.0x10-5** ∅ ∅ 1 3.7x10-11***

Cell-cell adhesion 1 2.9x10-9*** ∅ ∅ 2 5.7x10-11***

Leukocyte migration 30 1.4x10-4* ∅ ∅ 3 1.0x10-10***

Fc-gamma receptor signal. Pathway in phagocytosis 36 2.4x10-4* ∅ ∅ 4 5.6x10-9***

Cell adhesion 50 1.1x10-3* 3 1.3x10-3 5 4.2x10-8***

Actin cytoskeleton organization 17 1.3x10-5** ∅ ∅ 6 1.3x10-7***

Leukocyte cell-cell adhesion 29 1.4x10-4* ∅ ∅ 7 5.2x10-7***

Regulation of cell shape 86 5.0x10-3 ∅ ∅ 8 8.1x10-7***

Inflammatory response 169 2.8x10-2 ∅ ∅ 6 8.5x10-7***

Extracellular matrix organization 55 1.2x10-3* ∅ ∅ 10 8.7x10-7***

Table 3: Biological term enrichment. Top 10 enriched gene ontology terms for reliable DEGs 

in NASH vs NoNASH men, women and all patients sub-cohorts. P-values and Benjamini-

Hochberg FDR were computed using DAVID and the Biological Process Direct GO terms 

database, enrichments were ranked following p-values. Enrichments with corresponding FDR 

< 10%, 1% and 0.1% are tagged with *, ** and *** respectively.
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Prediction of: Women Men All
by : Swomen

en

Smen Sall Swomen

en

Smen Sall Swomen

en

Smen Sall 

HUL 0.86 0.84 0.87 0.87 0.87 0.93 0.88 0.84 0.88
UZA 0.73 0.62 0.70 0.76 0.67 0.76 0.75 0.63 0.71

UZAHigh Fib. 0.82 0.69 0.78 0.83 0.71 0.84 0.82 0.69 0.79
UKD 0.90 0.87 0.93 0.83 0.83 0.83 0.89 0.88 0.91
DU ∅ ∅ ∅ ∅ ∅ ∅ 0.80 0.89 0.87

Table 4: AUC of RF models. The ability of signatures to classify women, men and all patients 

of HUL, UZA, UZAHigh Fib. and UKD cohorts, and all patients of DU cohort as NASH or 

NoNASH was evaluated. For each classified population, RF models were learnt from Swomen, 

Smen and Sall. A color gradient is used from low AUC (in red) to high AUC (in green) values.
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Signature Smen Swomen Sall

Clinical parameter Correlation p-value Correlation p-value Correlation p-value
Age 0.275 3.3x10-4*** 0.153 1.1x10-3** 0.21 1.3x10-7***

BMI 0.002 9.7x10-1 0.110 1.9x10-2 0.065 1.0x10-1

LDL-C -0.205 8.6x10-3 -0.069 1.4x10-1 -0.098 1.5x10-2

HDL-C -0.084 2.8x10-1 -0.078 9.7x10-2 -0.077 5.7x10-2

Triglycerides 0.243 1.6x10-3** 0.205 1.1x10-5*** 0.272 5.7x10-12***

HbA1c 0.471 1.9x10-10*** 0.279 1.5x10-9*** 0.353 1.4x10-19***

HOMA- IR 0.423 1.8x10-8*** 0.307 3.2x10-11*** 0.294 1.3x10-13***

ASAT 0.253 1.0x10-3** 0.312 1.2x10-11*** 0.322 2.5x10-16***

ALAT 0.170 2.9x10-2 0.352 1.1x10-14*** 0.306 7.2x10-15***

Table 5: Correlation analysis. Correlation between prediction of RF models learnt from 

reference signatures on the learning cohort and clinical parameters of the HUL cohort. 

Spearman correlation coefficient and corresponding p-value were computed in R. Bonferroni 

correction was applied to deal with multiple comparisons situation, p-values with corresponding 

FWER < 10%, 1% and 0.1% are tagged with *, ** and *** respectively.
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