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Abstract

In order to intervene appropriately and develop disease-modifying therapeutics for pulmonary arterial hypertension, it is crucial to

understand the mechanisms of disease pathogenesis and progression. We herein discuss four topics of disease mechanisms that are

currently highly debated, yet still unsolved, in the field of pulmonary arterial hypertension. Is pulmonary arterial hypertension a

cancer-like disease? Does the adventitia play an important role in the initiation of pulmonary vascular remodeling? Is pulmonary

arterial hypertension a systemic disease? Does capillary loss drive right ventricular failure? While pulmonary arterial hypertension

does not replicate all features of cancer, anti-proliferative cancer therapeutics might still be beneficial in pulmonary arterial hyper-

tension if monitored for safety and tolerability. It was recognized that the adventitia as a cell-rich compartment is important in the

disease pathogenesis of pulmonary arterial hypertension and should be a therapeutic target, albeit the data are inconclusive as to

whether the adventitia is involved in the initiation of neointima formation. There was agreement that systemic diseases can lead to

pulmonary arterial hypertension and that pulmonary arterial hypertension can have systemic effects related to the advanced lung

pathology, yet there was less agreement on whether idiopathic pulmonary arterial hypertension is a systemic disease per se. Despite

acknowledging the limitations of exactly assessing vascular density in the right ventricle, it was recognized that the failing right

ventricle may show inadequate vascular adaptation resulting in inadequate delivery of oxygen and other metabolites. Although the

debate was not meant to result in a definite resolution of the specific arguments, it sparked ideas about how we might resolve the

discrepancies by improving our disease modeling (rodent models, large-animal studies, studies of human cells, tissues, and organs) as

well as standardization of the models. Novel experimental approaches, such as lineage tracing and better three-dimensional imaging of

experimental as well as human lung and heart tissues, might unravel how different cells contribute to the disease pathology.
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Introduction

We summarize hot topics in pulmonary arterial hypertension
(PAH) disease mechanisms, which were passionately
debated in a public Pro-Con debate at the American
Thoracic Society (ATS) International Conference 2018 in
San Diego, CA, USA. Specifically, we will discuss the rele-
vance and limitations of the cancer paradigm in PAH, the
involvement of the adventitia in lung vascular remodeling,
and the systemic nature of PAH, as well as the role of capil-
lary rarefaction in right ventricular failure. Why were these
topics chosen for a debate? In order to develop effective and
disease-modifying therapeutics, it is crucial to understand
the mechanisms of disease pathogenesis and progression to
intervene appropriately. If we consider pulmonary vascular
remodeling as a cancer-like disease, should we use cancer
chemotherapeutics with their anti-proliferative properties as
promising treatment approaches? Questions about the safety
and tolerability of these drugs have raised many concerns
regarding their use in PAH. Should we focus on improving
endothelial dysfunction in PAH if we assume the ‘‘inside-
out’’ hypothesis, that vascular remodeling starts with endo-
thelial injury which sets of a cascade of events involving
smooth muscle cell (SMC) proliferation and migration,
inflammatory cell recruitment and activation of adventitial
fibroblasts? Or should we rather focus predominantly on
targeting the immune system and the adventitia as the initi-
ating culprit of vascular remodeling, if the ‘‘outside-in’’
hypothesis is true. If PAH is a systemic disease, is it
enough to focus on treating the pulmonary vascular bed,
or should we rather develop more systemic approaches?
Furthermore, can we use systemic manifestations of the dis-
ease as surrogate biomarkers for diagnosis and therapy?
And last but not least, should we focus on the relative rar-
efaction of capillaries in the right ventricle (RV) in order to
prevent heart failure, or would this be the wrong treatment
target, as our current methodologies are not able to reliably
assess the capillary density in the RV?

The following debate will shed some light on the above
questions and show ways how to overcome some of the
discrepancies.

Pulmonary arterial hypertension is a
cancer-like disease

by Elena A. Goncharova
Key points:

. Sustained proliferative signaling in pulmonary vascular
cells

. Deficiency of tumor suppressor genes

. Resistance to apoptosis

. Deregulated cellular energetics

. Cancer-like replicative immortality—cell monoclonality
and enhanced replicative potential

. Chronic inflammation and altered immune processes

. Genome instability, mutations, and DNA damage

PAH is a progressive, fatal disease with high mortality
rates and no cure.1 Remodeling of small pulmonary arteries,
a major and currently irreversible feature of PAH, is caused
by increased proliferation and reduced apoptosis of resident
pulmonary vascular cells.2 It is becoming increasingly clear
that PAH can be viewed and treated as a proliferative dis-
ease.3,4 One of the most studied groups of proliferative dis-
eases is human cancers, and multiple anti-cancer therapies
are already available or in the pipeline. Caution, however,
should be taken when repurposing cancer-focused drugs to
treat hyperproliferation in PAH. Specifically, analysis of
both the similarities and the differences between human can-
cers and PAH is needed to dissect shared molecular patho-
logical components and develop new treatment options for
PAH patients.

One unbiased way to determine the extent of similarities
and identify cancer-shared mechanisms is to test the applic-
ability of the classic Hanahan and Weinberg principles to
the pathogenesis of PAH. Like PAH, human cancers have
high heterogeneity, but there are several biological capabil-
ities that are shared. Douglas Hanahan and Robert
Weinberg proposed eight hallmarks of cancer: (1) sustaining
proliferative signaling, (2) evading growth suppressors,
(3) resisting cell death, (4) enabling replicative immortality,
(5) inducing angiogenesis, (6) invasion and metastasis,
(7) deregulating cellular energetics, and (8) avoiding
immune destruction.5–8 Underlying these hallmarks, there
are two enabling characteristics, genome instability and
inflammation, which support cancer development and
growth by generating genetic diversity and foster several
other hallmark functions.8

First proposed in 1998 by Rubin Tuder and colleagues,9

the cancer theory of PAH has been further developed and
expanded by many research groups. Below, I briefly high-
light current findings supporting the cancer-like nature of
PAH in the view of current hallmarks and enabling charac-
teristics of cancer. For an in-depth review, I refer our read-
ers to other studies.3,7,10,11

Sustaining proliferative signaling

Like cancer cells, pulmonary vascular cells from PAH lungs
have increased proliferative potential and exhibit unstimu-
lated growth in culture.3,11 Growth signal autonomy is
acquired by employing cancer-specific mechanisms, such as
increased expression of mitogens coupled with activation of
mitogen receptors;12,13 constitutive up-regulation of key
pro-proliferative/pro-oncogenic signaling pathways, such
as mitogen-activated protein kinases, Akt, and mechanistic
target of rapamycin;14–18 and destruction of ‘‘off’’ switches/
formation of self-supporting pro-proliferative signaling
circuits (HIPPO-YAP/TAZ-ILK1, YAP/TAZ-miR-130/
301).19,20 Furthermore, similar to the growth-promoting
interactions between cancer and stromal cells, there is evi-
dence for heterotypic signaling between pulmonary artery
endothelial cells (PAECs) and pulmonary artery smooth
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muscle cells (PASMCs),21 and likely between macrophages
and adventitial fibroblasts in PAH.22

Evading growth suppressors

Like human cancers, PASMCs in human PAH have inacti-
vation or deficiency of key tumor suppressors, including
PTEN, LATS1, FoxO1, p53, and Rb. This effect plays an
important role in driving PASMC hyperproliferation, pul-
monary vascular remodeling, and overall PAH.19,23–28

Resisting cell death

Resistance to apoptosis is another feature that is shared by
cancer cells and pulmonary vascular cells in PAH.
Resistance to apoptosis by microvascular PASMCs and
PAECs in PAH is supported by the overexpression of
anti-apoptotic proteins (Bcl-2, survivin, STAT3) and defi-
ciency of pro-apoptotic proteins (Bax, Bim, p53).9,14,29–31

Notably, protein-kinase Akt, which mitigates apoptosis in
a substantial fraction of human tumors, is constitutively up-
regulated in PASMCs in human PAH lungs and is required
for the development of pulmonary hypertension (PH).14,32

Deregulating cellular energetics

Cancer-like metabolic reprograming is one of the key emer-
ging hallmarks of PAH (reviewed in other studies33–36).
Resident pulmonary vascular cells in PAH undergo a
cancer-like metabolic shift to glycolysis (Warburg
effect).37–39 This is coupled with multiple cancer-like
abnormalities in mitochondrial metabolism and dynamics
in PAH PASMCs and the RV, including suppressed activity
of mitochondrial pyruvate dehydrogenase and glucose oxi-
dation, superoxide dismutase 2 deficiency, mitochondrial
hyperpolarization and fragmentation, and dysregulated
mitochondrial dynamics caused by down-regulation of the
fusion protein mitofusin 2 and up-regulation of the fission
protein DRP-1.34,36,40 Elevated glutaminolysis and fatty
acid oxidation have been reported as key metabolic abnorm-
alities in PAH PAECs and PAH PASMCs,41,42 further sup-
porting similarities in metabolic rewiring between PAH and
cancer.

Enabling replicative immortality

Both components of cancer-specific replicative immortality,
cell monoclonality, and enhanced replicative potential are
present in human PAH. Monoclonal proliferation has
been reported in PAECs in PAH.43 As in cancers, the pro-
tein component of telomerase that enhances replicative
potential by preventing telomere shortening, Telomerase
reverse transcriptase (TERT), is up-regulated in PASMCs
from remodeled pulmonary arteries in idiopathic PAH
(IPAH) lungs and supports pulmonary vascular remodeling
and PH.44

Inflammation and immunity

As in human cancers, chronic inflammation and altered
immune processes are important drivers of PAH pathogen-
esis.45 Patients with PAH have elevated levels of circulating
cytokines and chemokines, such as interleukin (IL)-1�, IL-6,
IL-8, monocyte chemoattractant protein 1, fractalkine,
CCL5/RANTES, and tumor necrosis factor a. Providing
additional evidence of chronic inflammation and maladap-
tive immune response, there are increased perivascular
inflammatory infiltrates (T- and B-lymphocytes, macro-
phages, dendritic cells, and mast cells) in PAH-remodeled
pulmonary arteries, dysregulated Treg function, existence of
PAH-specific remodeling-associated activated macrophages,
and presence of autoantibodies against anti-nuclear anti-
gens, endothelial cells (ECs), and fibroblasts. There is also
an emerging role of PD1/PDL1 dysregulation in the patho-
genesis of PAH, suggestive of cancer-like mechanisms to
evade immune destruction.33,45–49

Genome instability and mutations

In addition to mutations of bone morphogenetic protein
type 2 (BMPR2) and other members of the transforming
growth factor � (TGF-�) family, which are strongly linked
to a predisposition for PAH,50 PAECs in PAH have genetic
alterations associated with microsatellite instability and
concomitant perturbation of expression of growth and
apoptosis genes (Smad9, TGF�RII, Rb1, BRCA2, Bax), sup-
porting monoclonal cell growth.51 As in cancers, somatic
chromosome deletions, increased mutagen sensitivity and
DNA damage, and dysregulation of DNA repair-associated
genes are also reported and play an important role in hyper-
proliferation of pulmonary vascular cells in PAH.52–56

In conclusion, there is an overwhelming number of simi-
larities between PAH and cancer. Notably, 8 of 10 hall-
marks and characteristics of cancer not only are present in
PAH but also strongly impact disease pathogenesis. The
existence of such fundamental similarities offers us an
opportunity to employ certain cancer-specific strategies
and repurpose already available anti-cancer drugs for the
treatment of PAH. It should be noted however, that cell
invasion and metastasis are not present in PAH, and the
roles and regulatory mechanisms of angiogenesis differ
between cancer and PAH. Thus, caution should be
taken in repurposing cancer therapeutics for the treatment
of PAH.

Pulmonary arterial hypertension is NOT a
cancer-like disease

by Christophe Guignabert
Key points:

. In contrast to cancer cells, pulmonary vascular cells from
PAH patients exhibit a low proliferation rate and do not
acquire the ability to proliferate uncontrollably
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. These cells are sensitive to density-dependent inhibition of
cell growth, and they generally differentiate normally and
progress to their fully differentiated state

. These cells also maintain their cellular features and
functions

. There is no constitutive activation of receptors (e.g. epider-
mal growth factor receptor) or known key regulators of the
cell cycle

. Even if PAH occurs in a genetic context, the penetrance of
mutations in genes predisposing to PAH is generally
incomplete, and none of these mutations have been
described in cancer

Loss of growth control and loss of contact inhibition are
two hallmark features of cancer cells, but not of pulmonary
vascular cells in PAH. Currently, there is no evidence
that pulmonary vascular cells, even in plexiform lesions,
acquire the ability to reproduce uncontrollably in PAH.
Furthermore, even if the balance between cell proliferation
and cell death that normally maintains healthy tissue
homeostasis is disturbed in PAH, both the rate of cell pro-
liferation and the rate of cell death in PAECs, fibroblasts,
and PASMCs from patients with IPAH are considerably
closer to physiological conditions than are those in cancer
cells.37,57–62 It is also well documented that PAH pulmonary
vascular cells have a limited lifespan in vitro, like any
normal somatic cell. After a certain number of cell divisions,
they enter senescence, which is morphologically character-
ized by enlarged, irregular cell shapes, and ultimately stop
proliferating. In contrast to cancer cells, PAH pulmonary
vascular cells also carry out their normal differentiation pro-
gram and generally progress to a fully differentiated state.

The formation of efficient vascular networks, also known
as tumor angiogenesis, is a critical hallmark in tumor
development, but not in PAH. Even if high levels of
various angiogenic factors, including fibroblast growth
factor 259,60,63 and vascular endothelial growth factor
(VEGF),64 are present in the lungs of PAH patients, the
angiogenesis process is clearly disordered or misguided,
leading to a pattern of vascular rarefaction (dead-tree pic-
ture) that is characteristic of all forms of human PAH. This
notion is further supported by the decreased capacity of
PAECs from PAH patients to form vascular tubes in
vitro, an observation that can be reproduced in ECs
grown from induced pluripotent stem cells (iPSCs) derived
from the skin of the same patient.58,65 Since the total
number of pericytes in pulmonary arterioles increases sub-
stantially during disease progression in human PAH66 and
defects in pericyte functions have been demonstrated,67 a
better knowledge of the contribution of circulating cells
and resident vascular progenitors is needed.66–68

Cancer, but not PAH, is caused by mutations in onco-
genes, tumor suppressor genes, and stability genes. Even
when PAH occurs in a genetic context, the penetrance of
mutations in genes predisposing to PAH is generally incom-
plete, and none of these mutations have been described in

cancer.69 For example, several types of cancer have a high
incidence of TP53 mutations, leading to the expression of
mutant p53 proteins, but none of these mutations have been
detected in PAH.

Although the pathogenesis of PAH is still incompletely
understood, various stimuli, such as high glucose, insulin
resistance, disturbed blood flow, and oxidative stress can
partly explain metabolic reprograming or dysfunction of
PAECs and their miscommunication with both resident vas-
cular cells and immune cells in PAH.70,71

Therefore, it is clear that a tumorigenic mechanism alone
cannot fully explain PAH. Yet, it should be conceded that
the cancer-like concept has opened a new field of investiga-
tion regarding the potential use of anti-proliferative and/or
oncologic drugs in PAH. However, questions about the
safety and tolerability of these drugs raise many concerns
regarding their use in PAH.72,73

The adventitia plays an important role in the
initiation of pulmonary vascular remodeling

by Kurt Stenmark
Key points:

. Changes in the adventitia in many vascular injury models
precede those in other compartments and are in fact
required for remodeling

. The highly complex adventitia consists of heterogeneous
cells that release multiple factors upon injury, which can
regulate differentiation, proliferation, apoptosis, migration,
and collagen synthesis by other cells in the vessel wall

. There is evidence that adventitial fibroblasts can transform
to myofibroblasts and migrate into the intima through the
medial layer

. Inflammatory diseases of the vessel wall are largely orche-
strated from the outside-in

. There is a relationship between adventitial angiogenesis
(vasa vasorum) and the development of neointimal
remodeling

. Resident stromal cells (fibroblasts) are involved in tertiary
lymphoid organ (TLO) development in the lung

The organizing committee of the Pulmonary Circulation
Assembly at the ATS conference in 2018 was interested in
examining the question of whether vascular remodeling in
PH is initiated in the adventitia. Questions regarding initi-
ation in human disease are obviously difficult, as the time of
onset is usually not identifiable, at least not in most of the
PH groups that have been identified to date. The question is,
however, important, because it raises questions about the
cells as well as the vessel layers (intima, media, and adven-
titia) that are potentially involved in the initiation, perpetu-
ation, and persistence of vascular disease. It has been
traditionally thought that the development of vascular
lesions in both the systemic circulation and the pulmonary
circulation follows an inside-out paradigm. This idea is
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largely based on the observation that injuries to ECs often
occur before other changes in the morphology and function
of the vessel wall take place. It is well known that endothe-
lial dysfunction causes activation of medial cells, often lead-
ing to neointimal formation as well as medial hypertrophy
and fibrosis. Until recently, the adventitia has somehow
been overlooked in this traditional concept.74–76 In fact,
the adventitia was ignored to the extent that many investi-
gators stripped the adventitia from vascular specimens
before the study. Yet emerging evidence leads us to recog-
nize the possibility that the adventitia can serve as a staging
ground for some of the earliest changes that occur in the
vessel wall, especially inflammatory changes, and for medial
and intimal changes. In the past 20 years, cumulative results
have suggested that the adventitia is not merely a bystander
in the pathogenesis of arterial disease, but rather, may rep-
resent a direct driving force for the development of vascular
lesions.

Accumulating evidence, especially in the systemic circu-
lation, has demonstrated that in many vascular injury
models, changes in the adventitia precede those in other
compartments and are in fact required for remodeling in
response to various systemic vascular injuries.77–81 This
may be a consequence of the fact that the adventitia is a
highly complex tissue and is poised to respond immediately
to many of the stimuli involved in vascular remodeling.
Unlike the intima and media, which are composed of
single, although heterogeneous, types of cells, the adventitia
contains, in addition to fibroblasts, leukocytes (including
macrophages, dendritic cells, and mast cells), progenitor
cells, nerves (sympathetic and parasympathetic), and lymph-
atics, as well as an additional blood supply, the vasa
vasorum.74,75 All of these cells have been shown to be col-
lectively activated in response to injury and to release mul-
tiple factors that can regulate differentiation, proliferation,
apoptosis, migration, and collagen synthesis by other cells in
the vessel wall, including SMCs and ECs, through paracrine
mechanisms. Clearly, many of these changes in cells have
been ascribed to factors released by the injured endothelium.
In support of adventitial involvement, many experimental
models of vascular disease in the systemic circulation indi-
cate early critical roles of the adventitia in vascular remodel-
ing. These include experimental balloon/wire injury,
hypercholesterolemia/atherosclerosis, transplant vasculopa-
thies, and viral-induced vasculopathies.81–87 In several stu-
dies in which blood vessels were injured from the intimal
side (by wire or balloon), a rapid increase in cell prolifer-
ation was observed in the adventitia that exceeded that in
the media at all time points after injury.81,86,87 In these
models, there was little accumulation of proliferating cells
in the media and intima until at least seven days following
an injury. In a large-animal model of hypercholesterolemia
(porcine), it was shown that adventitial remodeling of the
coronary artery, including adventitial angiogenesis, was an
early change that preceded the development of changes in
the intima and media.83 Studies of human coronary artery

specimens found that immature atherosclerotic plaques were
surrounded by numerous adventitial macrophages, a finding
supporting the idea that formation of the plaque is asso-
ciated with early adventitial inflammation.84 Further
support for early adventitial involvement in vascular
remodeling, even in the pathogenesis of intimal hyperplasia,
was shown in experiments using LacZ (beta-galactosidase)-
transfected adventitial fibroblasts. These cells were identified
in the neointima following initial arterial injury.88 These and
other studies also showed that adventitial fibroblasts could
transform into myofibroblasts and that these transdifferen-
tiated cells could migrate into the intima through the medial
layer. With regard to PH, at least in hypoxic rat models as
well as in the neonatal calf model of PH, the earliest and
most significant changes in proliferation occur in the adven-
titial compartment.89,90 Whether these proliferative changes,
though occurring earlier and more significantly than
changes in the intimal and medial compartments, are a
result of early endothelial injury remains unclear.
Additional evidence for the important role of adventitial
cells in early remodeling comes from studies showing that
hypoxia-driven gene regulation in pulmonary artery fibro-
blasts results in a mitogenic stimulus for adjacent SMCs.91

There is strong evidence to suggest that inflammatory
diseases of the vessel wall are largely orchestrated from
the outside in.74,77,80 It is increasingly appreciated that
inflammatory responses are unique to the tissue where the
inflammation occurs.77,82 More recently, the idea has
emerged that there is significant diversity in stromal cells,
particularly in fibroblasts, and that function varies consid-
erably among these subsets of cells, which have previously
been lumped simply as ‘‘fibroblasts.’’ Our recent data sug-
gest that one subset of a fibroblast-like cell that exists in the
pulmonary hypertensive vascular wall is characterized by
inflammatory cytokine production that exceeds that of
other fibroblasts, SMCs, and ECs.62,92–94 Other fibroblast
subsets exist that are functionally more similar to traditional
myofibroblasts, while there are others that have anti-inflam-
matory properties. There is strong evidence that in the initial
phases of PH in the animal models currently available, the
earliest inflammatory responses occur in the adventitia.92 In
chronic persistent disease, this inflammation persists but
then often involves both the medial and the intimal layers.
This is consistent with the idea that in most normal arteries,
the media is an immune-privileged site.95 Human studies
clearly demonstrate that the most intense inflammatory
responses in late-stage human PH are observed in the adven-
titia.96 Thus, we posit that, although the nature of initial
damage to the vascular wall can vary with different types
of injuries in both the systemic and the pulmonary circula-
tion, mounting evidence strongly supports the idea that vas-
cular inflammation may act as a driving force in the
development of subsequent medial and intimal remodeling.
Thus, it seems possible that inflammation represents a cen-
tral mechanistic link between adventitial activation and vas-
cular changes in response to a variety of stimuli.
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It has been established that angiogenesis is important for
wound-healing responses throughout the body. However,
aberrant growth of new blood vessels is deleterious in patho-
logic conditions, which include diabetic retinopathy and
tumorigenesis. Vascular injury is clearly associated with
adventitial neovascularization in both the systemic and the
pulmonary circulation.74,97–99 A relationship between
adventitial angiogenesis and the development of neointimal
remodeling has been established in animal models of arterial
injury in the systemic circulation.100 We and others observed
a tremendous expansion of the adventitial vasa vasorum in
the pulmonary arteries of humans with PH and in large-
animal models of PH. These vessels have been implicated
in acting as conduits providing a pathway for further inflam-
matory cells to invade the vessel wall. More strikingly,
recent information from two groups supports the idea that
in the pulmonary circulation, this expansion of the vasa
vasorum may result in establishing a connection with the
venous circulation.101,102 In fact, at the most recent World
Congress, it was proposed that this may be a driving force in
causing the venous changes that are now increasingly appre-
ciated to occur in various forms of human PH.

Recent data suggest that the development of TLOs in PH
is much more common than was previously thought.103,104

These TLOs are thought to be the source of autoantibodies
that can drive and promote the disease process. Intriguingly,
there is strong experimental evidence to suggest that
resident stromal cells, such as fibroblasts, in response to
chronic inflammatory activation, as exists in various forms
of PH and systemic vascular diseases, prime resident ECs to
ultimately promote the growth of lymphatic vessels to aid
antigen clearance and to foster the development of lym-
phoid-like tissue.77 It has been shown that the presence of
TLOs is associated with worse outcomes and morbidities.
Because fibroblasts are critical for the development and
maintenance of these organs, some researchers have gone
so far as to propose that stromal cells should be targeted
alongside the leukocyte component in TLO-associated
pathologies.77

We must recognize that some of the conclusions we have
drawn about the adventitia, both pro and con, are based
largely on studies in mice and rats. Clearly, these species
offer immense advantages for experimental work, as genetic
and pharmacologic strategies for investigations of gain and
loss of function have enabled enormous strides in under-
standing the functional consequences of various cell types
and mediators. Recent studies using genetically engineered
mice have also provided an opportunity to do lineage-tra-
cing studies, which can provide important information on
disease initiation and pathogenesis, at least in this species.
However, it must be considered that these small-rodent stu-
dies are usually performed over a period of weeks, whereas
diseases in humans, in particular, PH, develop over signifi-
cantly longer periods of time. Furthermore, the functional
attributes of cell populations and subpopulations in inbred
mouse strains can often lead to more clear-cut answers than

in studies of their human counterparts, where cellular and
subcellular changes occur over a continuum rather than in
black-and-white terms. As we move forward, we must inte-
grate rodent studies with studies in larger animal models and
continue to be driven by observations of human cells and
tissues. It may be that pinpointing one cell as the originator
and driver of PH is not within the realm of experimental
probability.
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Vascular remodeling in pulmonary
hypertension is NOT initiated in
the adventitia

by Grazyna Kwapiszewska
Key points:

. Only the remodeling of the intima and media is correlated
with increased mean arterial pressure (mPAP) in PH
patients

. Lineage-tracing experiments do not show a contribution of
adventitial fibroblasts to the neointima

. Endothelial dysfunction as a result of EC-specific deletion
of peroxisome proliferator-activated receptor gamma
(PPAR�), BMPR2, or prolyl-hydrolase-2 (PHD2)
causes spontaneous PH in mouse models and, by dysfunc-
tional crosstalk, indirectly affects PASMCs

. SMCs expand during remodeling, and this expansion
accounts for approximately 95% of remodeled vessels

. There is abundant evidence for the inside-out hypothesis of
vascular remodeling

Even though the adventitial layer contains inflammatory
cell infiltrates, and their abundance correlates with the
extent of vascular remodeling,105,106 this does not imply
causality because inflammatory cells are also present in all
other layers of the pulmonary arteries.96,107

Vascular remodeling is characterized by narrowing of the
small pulmonary arteries, which is mainly due to neointima
formation (a-smooth muscle actin positivity) and some
thickening of the media, but almost no changes in the thick-
ness of the adventitial layer.106,108,109 Furthermore, remodel-
ing of the intima and media, but not of the adventitia, is
correlated with mPAP.106

In murine models of vascular remodeling, lineage-tracing
approaches have demonstrated that the number of platelet-
derived growth factor receptor a (PDGFRa)-positive cells
that determine fibroblasts does not expand and does not
contribute to vascular remodeling.110 Correspondingly,
immunostaining in other PH models and lungs revealed
that PDGFRa-positive cells are not detected in remodeled
vessels (within a-smooth muscle actin-positive cells).110
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If vascular remodeling is not initiated in the adventi-
tia, which other cell types contribute to the remodeling of pul-
monary arteries? Pioneering work has shown that thickened/
edematous ECs, followed by endothelial apoptosis, are the
first events in the vascular remodeling process.111–113 Indeed,
in recent years, it has been shown that endothelial dysfunction
is the hallmark of vascular remodeling, and that crosstalk
between ECs and SMCs is a key mechanism for PH develop-
ment. In the hypoxic mouse model of PH, diverse growth and
vasoactive factors secreted by the endothelium, such as
endothelin-1 (ET-1) and Platelet Derived Growth Factor-sub-
unit BB (PDGF-BB),114,115 have a direct proliferative effect on
neighboring PASMCs.

Most importantly, all current therapies are clinically
effective in PAH target mediators affecting the EC/
PASMC interaction or PASMC directly, namely ET-1,
nitric oxide, and the prostacyclin pathway. Cumulatively,
all lead to vasorelaxation of PASMCs.116

Direct evidence for the involvement of ECs in vascular
remodeling and the development of PH has been demon-
strated in transgenic animal models. Deletion of PPARg
or BMPR2 in ECs caused a spontaneous increase in right
ventricular systolic pressure (RVSP), and the latter also
increased inflammation.117,118 Deficiency of PHD2 in ECs
gives rise to obliterative vascular remodeling resembling that
seen in IPAH patients.119 PHD2 mice not only develop PH,
but RVSP continues to increase over time. The underlying
mechanisms include stabilization of hypoxia-inducible
factor 2a (HIF2a) in ECs, decreases in caveolin 1 (CAV1),
BMPR2, and apelin, and increases in ET-1 and IL-6,
which cumulatively cause obliterative remodeling and
severe PH.119

Deletion of HIF1a or PDGFR� in ECs results
in decreased SMC expansion and ameliorated PH.120

In this study, the authors additionally provide the
sequence of events leading to vascular remodeling in
their PH model. In the initiation phase (days 1–3 of
hypoxia), expression of HIF1a and PDGFR� in ECs
induces Krüppel Like Factor 4 (KLF4) expression in pri-
mary PASMCs and their migration. From day 5 to day 7,
clonal expansion of PASMCs takes place, with final differ-
entiation between days 14 and 21.120

What about PASMCs? Lineage tracing revealed that
SMCs expand during remodeling and contribute to approxi-
mately 95% of remodeled vessels.110,121 Deletion of crucial
molecules modulating PASMC proliferation leads to protec-
tion from PH (Foxm1)122 or increased RVSP (Foxo1, Hif1a,
PPARg).23,123,124

Cumulatively, previous and current reports point toward
the inside-out hypothesis of vascular remodeling and rather
minimal involvement of adventitia in the initiation and fur-
ther development of pulmonary vascular remodeling.
However, further studies with specific adventitial fibro-
blast drivers (which are currently lacking) could prove—or
refute—the involvement of fibroblasts in the remodeling
process.

Pulmonary arterial hypertension is a systemic

disease

by Marlene Rabinovitch
Key points:

. The presence of skeletal, coronary, and renal capillary
abnormalities points to PAH as a systemic disease

. iPSC-derived ECs are abnormal in PAH

. Transplantation of bone marrow-derived cells from CAV1
knockout mice causes PH

. Systemic diseases (metabolic, infectious, and autoimmune)
can cause PAH

Recent work by a number of groups has provided evi-
dence that PAH is a systemic disease. For example, both
skeletal and coronary arterial abnormalities are associated
with PAH. Recently, renal capillary abnormalities have been
related to PAH. Our group has shown that iPSC-derived
ECs and SMCs have abnormalities similar to those in
native cells. Transplantation of bone marrow cells can
recapitulate the full features of PH in a transgenic mouse
with loss of CAV1. Finally, metabolic syndrome and infec-
tious disorders such as schistosomiasis and HIV, as well as
an autoimmune disease and Raynaud’s phenomenon, are
associated with PAH. These studies are described in more
detail below.

In 2014, Potus et al.125 showed that patients with PAH
had rarefaction of skeletal blood vessels in association with
impaired exercise tolerance independently of pulmonary
vascular resistance. As early as 2011, Shimony et al.
reported that the incidence of coronary artery disease was
higher in PAH patients than in people of a similar age in the
general population (28% vs 7.8%).126 Meloche et al. in 2017
showed that coronary arteries from patients with PAH were
more thick-walled than those of control subjects. The same
result, i.e. almost a doubling of coronary arterial wall thick-
ness, was evident in an experimental model of PH induced
by the toxin monocrotaline.127

Nickel et al.128 described renal dysfunction as a signifi-
cant comorbidity in patients with PAH. At the ATS
Scientific Sessions, Nickel showed a significant increase in
the albumin:creatinine ratio, reflecting impaired renal func-
tion in patients with PAH associated with a BMPR2 muta-
tion when compared with unaffected mutation carriers and
controls. This finding was further substantiated by extensive
renal tubular damage and inflammation in mice with a hom-
ologous BMPR2 mutation that developed PH. Most inter-
esting was a recent report by Asosingh et al.129 using CAV1
transgenic mice that develop PH in hypoxia. Simply trans-
planting bone marrow from these mice was sufficient to
induce PH.

Many systemic arterial diseases, such as scleroderma, are
associated with PAH, as is digital ischemia or Raynaud’s
syndrome.130 In addition, PAH is a major complication of
systemic infections, such as schistosomiasis and HIV.131
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Studies have described an extensive systemic bronchial
arterial disease in PAH patients, most recently in 2016.132

Most compelling are studies from our group by Sa et al.65

showing that fibroblasts reprogramed to iPSCs and then
differentiated to ‘‘generic’’ ECs have the same phenotype
as native pulmonary arterial ECs, in that they have impaired
angiogenesis, a result indicating that all ECs have dysfunc-
tion related to reduced BMPR2. Finally, PAH is associated
with a high incidence of metabolic syndrome,133,134 a sys-
temic disease that complicates PAH, causing reduced sur-
vival and event-free survival.

Pulmonary arterial hypertension is NOT a
systemic disease

by Norbert Voelkel
Key points:

. Although PAH can be a manifestation of a systemic dis-
ease, it does not mean that it IS a systemic disease. IT IS
NOT!

. In all associated forms of severe PAH, there is a require-
ment for the susceptibility of the lung vessels

. Sick lung vessels affect the heart and kidneys and are
responsible for muscle microvasculopathy: the sick lung
circulation is the cause of the systemically observed effects
in PAH

. It is likely that resident vascular stem cells play a role in the
evolution from lung vessel injury to ‘‘wound healing gone
awry‘‘

Very few things in PAH are categorically either black or
white. Starting with the conclusion, one can safely state that
severe PAH can be a lung organ manifestation of systemic
disease. Examples are PAH associated with systemic scler-
osis or sarcoidosis, POEMS syndrome, and tumor meta-
static obliteration of small lung vessels.135,136

However, ‘‘primary’’ PAH—now called IPAH—is a dis-
ease that starts in the lung arterioles and progresses with the
participation of bone marrow-derived cells, secondarily
affecting the heart and skeletal muscle and leading to neu-
roendocrine activation. For short: the sick lung vessels affect
the heart and the kidneys and are responsible for a muscle
microvasculopathy.125,137–139

There are, as mentioned by Dr. Rabinovitch, several fac-
tors apparently supporting the view of a systemic disease
cause or component of IPAH: circulating precursor cells,
bone marrow-derived mast cells, dendritic cells, and mega-
karyocytes—which are found in and around the pulmonary
vascular lesions, anti-vascular autoantibodies140–143 and adi-
pose tissue-derived inflammatory mediators,144 and the
association with the metabolic syndrome.145 Yet, in all asso-
ciated forms of severe PAH, there is a requirement for the
susceptibility of the lung vessels—genetic or otherwise—that
permits the vascular disease to take hold in the lung (the
majority of patients with systemic sclerosis or sarcoidosis do

not develop PH, and there are many BMPR2 mutation car-
riers who never develop PH).

As in cancer pathobiology, one can apply the ‘‘soil and
seed’’ concept. In this case, the prepared soil is the predis-
posed lung circulation that is being remodeled.

As an aside: the term ‘‘pulmonary vascular remodeling’’
and the recently coined ‘‘de-remodeling’’ are vague and not
particularly helpful. Contractors and interior designers usu-
ally have a clear idea when they discuss the remodeling of a
kitchen,146 but apparently, each PH investigator has his or
her idea about what constitutes and drives pulmonary vas-
cular remodeling.92,147,148

To build a case for the lung-specific pathology that is the
cause of severe PAH, we need only to consider that the cells
that line the small lung vessels are lung-specific microvascu-
lar ECs,149,150 that their maintenance is VEGF-dependent,
and that lung EC somatic mutations can cause these ECs to
proliferate and expand monoclonally.43,151 Finally, the
second hit that is required for severe angio-obliterative
PAH to develop requires, as mentioned, some susceptibility
that resides in the lung vessels.

One pathobiological concept of severe PAH, ‘‘wound
healing gone awry’’,152 paradoxically includes the loss of
small lung vessels (the pruning of the vascular tree) due to
the action of anti-angiogenic factors such as soluble fms-like
tyrosine kinase, angiostatin, and others.153,154 In this model,
the disease is initiated by apoptosis of lung vascular ECs,
leading to vessel loss. One example is the emphysema gen-
erated in wild-type rats after treatment with the VEGF
receptor blocker, Sugen 5416.155 Subsequent to or concomi-
tant with the apoptotic loss of small vessels is—under the
influence of a second hit—the evolution of an apoptosis-
resistant EC phenotype that proliferates and somehow
triggers an immune response packaged in and around the
pulmonary arteriolar wall.156

This phenomenon is observed in the lung circulation
only, and not in the heart or the skeletal muscles, which
show vessel loss only (capillary rarefaction).125,156

An area that requires further investigation is the identifi-
cation of lung vessel-specific resident stem cells. It is likely
that they play a role in the evolution from lung vessel injury
to ‘‘wound healing gone awry.’’152

To rephrase the ‘‘systemic disease or not’’ question, and
conceding that extrapulmonary cells modulate the so-called
pulmonary vascular remodeling,152 we can ask whether
there are any published data on models of severe PAH
that illustrate the potential development of an autonomous
lung vascular disease. Dai et al.,119 in their remarkable
study, demonstrated just that. They showed that knockout
of Egln 1, encoding prolyl 4 hydroxylase 2 (to be sure: one
single hit!) in the ECs of mice, was sufficient to increase the
expression of the transcription factor HIF-2a in lung vascu-
lar ECs, with the consequence of spontaneously generating
severe, angio-obliterative PAH. There were no other organ
manifestations reported, and there was no systemic
hypertension.
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To return to the beginning: the pathobiology of the lung
circulation, the ‘‘sick lung circulation,’’ is a complex affair;
extrapulmonary cells contribute to the vascular pathobiol-
ogy, and in the opinion of this writer, the extrapulmonary
manifestations observed in patients with IPAH128,157 are not
part of a systemic disease but consequences of the sick
lung circulation. It remains unclear to what extent metabolic
disorders158 and comorbidities—including manifest dia-
betes159—contribute to the development of extrapulmonary
vascular abnormalities in patients with severe PAH.

Capillary loss drives right ventricular failure in
pulmonary arterial hypertension

by Harm J. Bogaard
Key points:

. Compared with the well-adapted RV, there is reduced
capillary density in the failing RV

. Capillary rarefaction has been attributed to impaired
angiogenesis

. Targeting angiogenesis in the RV has improved RV
function

. Two-dimensional histological quantification of the number
of capillaries per cardiomyocyte, although imperfect, has
been reproduced multiple times

. Stereological assessment of capillary numbers in RV fail-
ure documents a 50% increase in the cross-sectional area
that a capillary needs to perfuse, likely resulting in cardi-
omyocyte malperfusion.

Rarefaction is the loss of density of an item in a given
volume or space. Rarefaction can result either from a reduc-
tion in the total number of items or from an increase in
volume not matched by a proportional increase in the
number of items. Most researchers would agree that in the
setting of RV pressure overload, cardiomyocytes hypertro-
phy and capillaries attempt to keep up with the increase in
tissue volume and oxygen demand through angiogenesis.
We and others have described how the failure of RV adap-
tation to pressure overload may be due to insufficient angio-
genesis, given the excessive degree of cardiomyocyte
hypertrophy in PAH.160,161 It has been demonstrated that
capillary density remains normal in the well-adapted RV,
whereas there seems to be an association between RV capil-
lary rarefaction and deterioration in RV failure. The obser-
vations were based either on quantification of capillary
volume per volume of RV tissue160 or on the finding of a
comparatively insufficient increase in the number of capil-
laries per cardiomyocyte, resulting in a reduced number of
capillaries per tissue area.161

Mechanistically, capillary rarefaction has been attributed
to impaired angiogenesis, either related to a loss in VEGF
signaling160,162 or due to reduced expression of the pro-
angiogenic miRNA126.161 However, the active disappear-
ance of capillaries (e.g. due to endothelial apoptosis) was

never fully excluded. Calculations suggesting capillary rar-
efaction in histological sections were corroborated by
reduced molecular signals of angiogenesis and a metabolic
shift toward nonaerobic energy generation.163 Importantly,
experimental interventions that resulted in a normalization
of capillary density were shown to result in an improved
function of the pressure-overloaded RV.160,161,164

Recently, meticulous quantification using stereological
methods has suggested that the extent of capillary rarefac-
tion in early studies was probably exaggerated.165 This could
very well be true, but it should not lead to a premature
conclusion that capillary rarefaction is not present or is
irrelevant in RV failure. First, it is unclear why conventional
histological methods would always lead to a systematic error
in the disadvantage of the failing RV. In other words, even if
the methods of assessment are imperfect, does not the con-
sistency of findings within and between studies suggest that
capillary rarefaction is indeed present? Second, how can the
discrepancy be explained between stereological findings and
molecular analyses, which are clearly pointing in the direc-
tion of a loss in angiogenic signaling? Finally, stereology
itself does seem to suggest that the oxygen supply to the
tissues is indeed impaired in the failing RV. Graham et al.
described an increase in the radius of tissue served per vessel
from 14 to 17 mm.165 This is equivalent to an increase in the
cross-sectional area of perfused tissue from 616 to 900m2

and thus to a 50% increase in the area of tissue to be per-
fused by the same vessel. Given the fact that oxygen demand
is massively increased in RV hypertrophy, this would imply
severely impaired RV perfusion, particularly during exer-
cise. Therefore, it seems that a failure in angiogenesis
should still be viewed as critical in the transition from RV
adaptation to failure.

Capillary loss does NOT drive right
ventricular failure in pulmonary arterial
hypertension

by Brian Graham
Key points:

. Capillary rarefaction occurs in the RV in PH, in the setting
of RV hypertrophy

. Capillary rarefaction is likely due to inadequate prolifer-
ation relative to the degree of hypertrophy, rather than
vessel loss

. There are likely homeostatic mechanisms, as yet unclear,
that work to maintain appropriate RV vascular density

. In severe or end-stage PH, there is likely suppression of
homeostasis—through a decrease in pro-angiogenic factors
and/or an increase in anti-angiogenic factors—which
results in failure to maintain homeostasis of vascular dens-
ity. The degree of RV vascular rarefaction is thus likely
greater in more severe or end-stage PH

. RV capillary rarefaction results in an increase in the aver-
age perfusion radius per vessel. This rarefaction may
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critically limit the required delivery of O2 and other meta-
bolic substrates to RV tissue in exercise

. Planimetry likely exaggerates the degree of rarefaction
observed compared with stereology

RV failure is the major cause of death in PH, but the
determinants of RV failure are not well understood. More
than 10 studies have reported that there is a decrease in the
density of capillaries in the RV tissue of animals and
humans with PH. I agree with these findings. However,
I disagree with the interpretation that rarefaction is evidence
of capillary loss.

An alternative interpretation of RV vascular rarefaction
in PH is that there is significant hypertrophy of RV cardio-
myocytes (which is well known) with a relatively inadequate
proliferation of the vascular network to compensate for this
hypertrophy. It is impossible to distinguish between vessel
loss and relative underproliferation in the setting of hyper-
trophy by simply looking at histologic images (i.e. planim-
etry). Distinguishing between these two possibilities requires
stereology: a set of methods to minimize bias in the analysis
of tissue characteristics, which includes measurement of the
reference volume.

Using stereology, our group has analyzed the vasculature
of the RV free wall in specimens from humans, rats, and
mice, with and without PH.165,166 Across these specimens,
we have observed that there is, in fact, a substantial increase
in both RV volume and absolute length of the RV vascula-
ture. In human and rat specimens, the magnitude of the
increase in RV vascular length is slightly (but statistically
significantly) less than the magnitude of the increase in RV
volume. This ratio of the change in tissue length to the
change in tissue volume results in a modest but real decrease
in the density of the vasculature; in the mouse specimens, we
found no change in RV vascular density. Furthermore, in
the rat and mouse specimens, we observed many proliferat-
ing but no apoptotic ECs. Analysis of mouse RV tissue
using stereology has also been reported by Kolb et al.
with similar results.167

We also performed metabolomic analysis of the rat and
mouse RV specimens and found significant metabolic differ-
ences in the diseased RVs. However, there were no decreases
in the concentrations of glucose, glutamine, or hydroxybu-
tyrate, and we found no evidence of hypoxia, at least at the
steady state. It is quite possible that with exercise, the RV
vascular rarefaction results in inadequate substrate delivery
at a lower threshold; this remains to be tested.

In summary, we find evidence that there is significant
proliferation, not the loss, of the vasculature in the RV
in PH. We find that the degree of RV vascular proliferation
in humans and rats with PH is less than the degree of
RV hypertrophy, resulting in modest vascular rarefaction.
I interpret these data as evidence of homeostatic
mechanisms that promote the maintenance of appropriate
RV vascular density. In the failing RV, there may be an
interruption of these homeostatic mechanisms that

result in inadequate vascular adaptation through down-
regulation of homeostatic drivers and/or up-regulation of
anti-angiogenic factors. A consequence of the resulting rar-
efaction may be inadequate delivery of oxygen and other
metabolites during exercise, which may contribute to RV
failure.

Conclusion

Although the debate was not meant to result in a definite
resolution of the pro and con sides of the specific arguments,
it sparked ideas about how we might resolve the discrepan-
cies. Improving our disease modeling by integration of
rodent models of the disease with large-animal studies and
studies of human cells, tissues, and organs, as well as stand-
ardization of the models, would allow for a better under-
standing of the pathogenesis of the disease that is relevant to
the human disease and could potentially result in the devel-
opment of more effective therapies. Novel experimental
approaches, such as lineage tracing and better three-dimen-
sional imaging of experimental as well as human lung and
heart tissues, might unravel how different cells contribute to
the disease pathology and clarify the ambiguous termin-
ology of capillary rarefaction versus vessel loss versus vas-
cular remodeling.
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