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Abstract

Networks based on coordinated spike coding can encode information with high efficiency in

the spike trains of individual neurons. These networks exhibit single-neuron variability and

tuning curves as typically observed in cortex, but paradoxically coincide with a precise, non-

redundant spike-based population code. However, it has remained unclear whether the spe-

cific synaptic connectivities required in these networks can be learnt with local learning

rules. Here, we show how to learn the required architecture. Using coding efficiency as an

objective, we derive spike-timing-dependent learning rules for a recurrent neural network,

and we provide exact solutions for the networks’ convergence to an optimal state. As a

result, we deduce an entire network from its input distribution and a firing cost. After learning,

basic biophysical quantities such as voltages, firing thresholds, excitation, inhibition, or

spikes acquire precise functional interpretations.

Author summary

Spiking neural networks can encode information with high efficiency in the spike trains

of individual neurons if the synaptic weights between neurons are set to specific, optimal

values. In this regime, the networks exhibit irregular spike trains, high trial-to-trial vari-

ability, and stimulus tuning, as typically observed in cortex. The strong variability on the

level of single neurons paradoxically coincides with a precise, non-redundant, and spike-

based population code. However, it has remained unclear whether the specific synaptic

connectivities required in these spiking networks can be learnt with local learning rules.

In this study, we show how the required architecture can be learnt. We derive local and

biophysically plausible learning rules for recurrent neural networks from first principles.

We show both mathematically and using numerical simulations that these learning rules

drive the networks into the optimal state, and we show that the optimal state is governed

by the statistics of the input signals. After learning, the voltages of individual neurons can

be interpreted as measuring the instantaneous error of the code, given by the error

between the desired output signal and the actual output signal.
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Introduction

Many neural systems encode information by distributing it across the activities of large popu-

lations of spiking neurons. A lot of work has provided pivotal insights into the nature of the

resulting population codes [1–4], and their generation through the internal dynamics of neural

networks [5–8]. However, it has been much harder to understand how such population codes

can emerge in spiking neural networks through learning of synaptic connectivities [9].

For sensory systems, the efficient coding hypothesis has provided a useful guiding principle,

which has been successfully applied to the problem of unsupervised learning in feedforward

networks [10,11]. When transferring the insights gained in these simplified rate networks to

more realistic, biological networks, two key challenges have been encountered. The first chal-

lenge comes from locality constraints. Indeed, synapses have usually only access to pre- and

postsynaptic information, but most unsupervised learning rules derived in rate networks use

omniscient synapses that can pool information from across the network. In turn, the deriva-

tion of learning rules under locality constraints has often relied on heuristics or approxima-

tions [12–15], although more recent work has shown progress in this area [16–18]. We note

that supervised learning in neural networks faces similar problems, and recent work has

sought to address these issues [19–23]. We will here focus on unsupervised learning.

The second challenge comes from spikes. Indeed, spikes have often proved quite a nuisance

when moving insights from rate networks to spiking networks. In order to maintain the function-

ality of a given rate network, for instance, the equivalent spiking network usually sacrifices either

efficiency or realism. In mean-field approaches, each rate unit is effectively replaced by tens or

hundreds of (random) spiking neurons, so that the spiking network becomes a bloated and ineffi-

cient approximation of its rate counterpart [24]. In the ‘neural engineering framework’, this exces-

sive enlargement is avoided [7,25]. However, the spike trains of individual neurons become quite

regular, in contrast to the random, almost Poissonian statistics observed in most neural systems.

Some of these problems have recently been addressed in networks with tightly balanced

excitation and inhibition [26–29]. These networks can produce functionality with a limited

number of neurons and random spiking statistics. One of the key insights of this literature has

been that each neuron’s voltage should measure a part of the network’s global objective, such

as the efficiency of the emitted spike code.

However, it has largely remained unclear how networks of spiking neurons could move

into this globally optimal regime, given that they are only equipped with local synaptic plastic-

ity rules. We here show that the membrane voltage holds the key to learning the right connec-

tivity under locality constraints. If we start with a randomly connected or unconnected neural

network, and simply assume that each neuron’s voltage represents part of the global objective,

then the locally available quantities such as membrane voltages and excitatory and inhibitory

inputs are sufficient to solve the learning problem. Using these ideas, we derive learning rules

and prove their convergence to the optimal state. The resulting learning rules are Hebbian and

anti-Hebbian spike-timing and voltage-dependent learning rules, and are guaranteed to gener-

ate highly efficient spike codes.

Results

We study a population of excitatory (E) neurons that are interconnected with inhibitory (I)

interneurons (Fig 1Ai). The excitatory neurons receive many input signals, xj(t), from other

neurons within the brain, and we will ask how the neurons can learn to encode these signals

efficiently in their spiking output. We will first develop a measure for the efficiency of neural

population codes, then show the connectivity structure of efficient networks, and then show

how the respective connectivity can be learnt. In this work, we focus exclusively on the
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problem of encoding a set of signals, and we defer the problem of how to compute with signals

to the discussion.

For concreteness, we will study networks of leaky integrate-and-fire neurons. Each neuron’s

membrane potential is driven by feedforward input signals, xj(t), which we will model as a

leaky integral of input currents cj(t), and by recurrent inputs that feed the output spike trains,

Fig 1. Learning to represent analog signals efficiently with spikes. A. (i) Recurrent neural network with input signals x (purple) and signal estimates x̂ (green), as

reconstructed or read out from the spike trains of the excitatory population (see panel B). (ii) Simplified network without separate excitatory and inhibitory populations.

(F = matrix of feedforward weights, D = matrix of decoding weights,O = matrix of recurrent weights) A network that has learnt to represent its input signals efficiently

should have connectivityO = −FD. (iii) Same as (ii), but unfolded to illustrate the effect of the recurrent connections. These connections act to subtract the

reconstructed signal estimate from the incoming signal. As a consequence, the net input into each neuron is (a projection of) the reconstruction or coding error, x � x̂ .

B. Linear readout of an analog signal from a population of spike trains. The spike train of each neuron is first filtered with a postsynaptic potential (left), and the filtered

spike trains are then linearly combined via decoding weights D to yield a signal estimate (right, green traces). In an optimal learnt network, these signal estimates should

correspond, as closely as possible, to the input signals (black traces). C. Learning of recurrent connections based on precisely balancing the EI currents into each neuron

spike by spike. Shown are the neuron’s membrane voltage (black), which reflects the coding error, spikes from three inhibitory neurons (vertical lines, color-coded by

connection), and the signal (purple), and signal estimate (green). (i) Ideal case with EI balance. Each inhibitory spike perfectly counter-balances the prior excitatory

drive. (ii) One inhibitory synapse too weak. The excitatory drive is not perfectly cancelled, resulting in an aberrant, early spike. (iii) One inhibitory synapse too strong.

The excitatory drive is over-compensated, resulting in a prolonged hyperpolarization and a delay in subsequent spiking. D. Learning of recurrent connections based on

minimizing voltage fluctuations. Shown are the voltages and spikes of a pre- and a postsynaptic neuron over a longer time window (top) and the postsynaptic voltage

fluctuations aligned at the timing of spikes from the presynaptic neuron (bottom, grey lines), as well as their average (bottom, black line). (i) Ideal case with EI balance.

Here, the average effect of the presynaptic spike is to turn a depolarized voltage into an equivalent hyperpolarized voltage (bottom panel, black line). (ii) If the inhibitory

synapse is too weak, the average membrane voltage remains depolarized. (iii) If the inhibitory synapse is too strong, the average membrane voltage becomes overly

hyperpolarized. (Inset: effect of the derived recurrent plasticity rule when tested with a paired-pulse protocol).

https://doi.org/10.1371/journal.pcbi.1007692.g001
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ok(t), back into the network. For simplicity, we will ignore the inhibitory interneurons for now

and treat them as simple relays (Fig 1Aii). As a consequence, we allow the excitatory neurons

to violate Dale’s law, a problem we will come back to later. Formally, the membrane voltages of

the excitatory neurons obey the equation

dVi

dt
¼ � Vi þ

XM

j¼1

Fij cj tð Þ þ
XN

k¼1

Oik ok tð Þ; ðEq 1Þ

where Fij are the feedforward weights, and Oik contains the recurrent synapses (for i6¼k) and

the voltage resets (for i = k). A spike is fired when the voltage surpasses a threshold, Ti. The

voltage is then reset to the value Vi = Ti+Oii, and we assume that Oii<0. For simplicity, here we

consider instantaneous synaptic transmission: the impact of synaptic delays on the network

will be examined in Fig 7.

The first objective of the network will be to encode the input signals into a spiking output

such that a downstream observer can reconstruct the input signal through a linear readout,

i.e., a weighted sum of the neural responses (Fig 1B). We define this linear readout as

x̂ jðtÞ ¼
XN

k¼1

Djk rkðtÞ; ðEq 2Þ

where rk(t) is the postsynaptically filtered spike train of the k-th excitatory neuron, and Djk is

the decoding weight associated with the j-th signal.

The second objective of the network will be to find, among all possible spiking outputs, and

all possible decoders, the ones that are the most efficient. We define the coding efficiency of

the population as a trade-off between the accuracy and the cost of the generated code,

E ¼ h
XM

j¼1

ðxj � x̂jÞ
2
þ CðrÞi; ðEq 3Þ

where the angular brackets denote averaging over time. The first term measures the accuracy of

the code, given by the mean-squared error between the input signals and the linear readout. The

second term, C(r), denotes the cost of the code, exemplified for instance by the number of spikes

fired. The smaller the loss, the higher the coding efficiency (see S1 Text, Section1, for details).

Efficient spike coding requires balance of excitation and inhibition

To find the most efficient spiking output, our network will need to modify its synapses. Since a

single synapse can only see its pre- and postsynaptic partners and their relative spike trains, it

cannot perceive the coding efficiency of the whole network. Without that information, it is

unclear how the synapse should modify its weights in order to improve the coding efficiency.

This rift between locally available information and global objective is the key conundrum of

synaptic plasticity.

However, imagine we could intervene and simply set each neuron’s recurrent synaptic

weights such that they become equal to the feedforward weights multiplied by the decoding

weights of a downstream observer, i.e., Oik = −∑jFijDjk. As shown in S1 Text, Sections 2 and 3,

the membrane potential of each neuron can then be rewritten as

ViðtÞ ¼
XN

j¼1

FijðxjðtÞ � x̂jðtÞÞ: ðEq 4Þ
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In other words, given this specific connectivity structure, each neuron’s membrane poten-

tial suddenly reflects a component of the global coding error, given by the difference between

the input signals, xj(t), and the linear readout of a hypothetical downstream area, x̂jðtÞ. This

peculiar structure emerges even though the membrane potential is generated from only feed-

forward and recurrent inputs (Fig 1Aii and 1Aiii). Since synaptic plasticity can sense postsyn-

aptic voltages, synapses have gained unexpected access to a component of the global coding

error.

Moreover, each neuron will now bound its component of the error from above. Each time

the error component becomes too large, e.g., due to an excitatory signal input, the membrane

potential reaches threshold, and the neuron fires. The spike changes the readout, and the

global coding error decreases (under reasonable conditions on Fij and Djk, see S1 Text, Section

4). This decrease in error is then signaled throughout the network. First, the firing neuron

resets its own voltage after the spike, thus signaling to itself that its error component has

decreased. Second, the firing neuron inhibits (or excites) all neurons with similar (or opposite)

feedforward inputs, thus signaling them the decrease in error. The concurrent change in their

respective membrane voltages is proportional to the overlap in information and thereby

reflects the required update of the error components they are responsible for.

As a consequence, excitatory inputs that depolarize the membrane potential signal growing

coding errors. Vice versa, inhibitory inputs that repolarize the membrane potential signal

shrinking coding errors. In turn, when coding errors are kept in check, each feedforward excit-

atory input will be counterbalanced by a recurrent inhibitory input (and vice versa). This latter

reasoning links the precision of each neuron’s code to the known condition of excitatory and

inhibitory (EI) balance [26,30–33]. Indeed, if excitatory and inhibitory inputs are balanced

optimally, the variance of the membrane potential, and thus, each neuron’s error component,

is minimized.

Recurrent synapses learn to balance a neuron’s inputs

How can a network of neurons learn to move into this very specific regime? Several learning

rules for EI balance have been successfully proposed before [34,35], and spike-timing-depen-

dent plasticity (STDP) can even balance EI currents on a short time scale [35]. We will show

that learning to balance excitatory and inhibitory inputs does indeed lead to the right type of

connectivity (Fig 1Aii and 1Aiii), as long as EI currents are balanced as precisely as possible.

Learning to balance avoids the pitfalls of a direct optimization of the coding efficiency with

respect to the decoder weights, which is mathematically possible, but biophysically implausible

for the synapses we consider here (see S1 Text, Section 5). We developed two ways of reaching

the balanced regime (see S1 Text, Section 6 for a high-level, technical overview). The first

scheme balances excitatory and inhibitory currents on a fine time scale (see S1 Text, Sections 7

and 8 for details), while the second scheme minimizes the voltage fluctuations (see S1 Text,

Sections 9–12 for details). We here briefly explain the current-based scheme, but then focus on

the voltage-based scheme for the rest of the text.

The first scheme directly targets the balance of excitatory and inhibitory currents. In Fig

1C, we show a neuron that receives excitatory feedforward inputs and inhibitory recurrent

inputs. In the interval between two inhibitory spikes, the neuron integrates its excitatory feed-

forward input currents, which leads to a transfer of electric charges across the membrane (Fig

1Ci, gray area). When the next inhibitory spike arrives (Fig 1Ci, blue), electric charges are

transferred in the opposite direction. Precise EI balance is given when these two charge trans-

fers cancel exactly. When the second inhibitory spike overshoots (undershoots) its target, then

the respective synaptic weight was too strong (weak), see Fig 1Cii and 1Ciii. To reach precise
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EI balance, this weight therefore needs to be weakened (strengthened). This learning scheme

keeps the neuron’s voltage (and thereby its component of the coding error) perfectly in check

(see S1 Text, Sections 7 and 8 for details). We note that the membrane potential shown in Fig

1C is an illustrative toy example, for a network representing only one input signal with four

neurons. In larger networks that represent several input signals, the membrane potentials

become more complex, and the inhibitory inputs due to recurrent connections become weaker

than the voltage reset after a spike (see also below).

The precise accounting of charge balances across the membrane may seem unfeasible for

real neurons. Our second scheme minimizes charge imbalances by confining deviations from

a neuron’s resting potential. If a recurrent weight is set such that each presynaptic spike, on

average, resets a voltage depolarization to an equivalent hyperpolarization (or vice versa), then

the membrane voltage is maximally confined (see Fig 1D). To move a recurrent synapse into

this state, its weight should be updated each time a spike from presynaptic neuron k arrives, so

that

dOik

dt
/ pre� post ¼ � ok 2Vi þ Oikð Þ: ðEq 5Þ

where ok is the presynaptic spike train and Vi is the postsynaptic membrane potential before

the arrival of the presynaptic spike. According to this rule, the recurrent connections are

updated only at the time of a presynaptic spike, and their weights are increased and decreased

depending on the resulting postsynaptic voltage. While this rule was derived from first princi-

ples, we note that its multiplication of presynaptic spikes and postsynaptic voltages is exactly

what was proposed as a canonical plasticity rule for STDP from a biophysical perspective [36].

A minor difference to this biophysically realistic, ‘bottom-up’ rule, is that our rule treats LTP

and LTD under a single umbrella. Furthermore, our rule does not impose a threshold on

learning.

Once a synapse has been learnt with this voltage-based learning rule, it will tightly confine

all voltage fluctuations as much as possible. This average confinement is illustrated in Fig 1D.

We note that the membrane potentials look more realistic here simply because the illustration

is based on the simulation of a larger network with multiple input signals.

The learning rule drives the recurrent weights to the desired connectivity, given by the mul-

tiplication of the feedforward weights, Fij, with an (a priori unknown) decoder matrix, Djk, see

Fig 1Aii and 1Aiii. To gain some intuition as to why that is the case, we will show that this con-

nectivity structure is a stationary point of the learning rule. At this stationary point, the recur-

rent weights are no longer updated and become proportional to the average postsynaptic

voltage of neuron i, Oik = −2hViik, where the average, denoted by the angular brackets, is taken

over all time points directly before the arrival of a spike from the presynaptic neuron k (see

Fig 1Di). Since, whenever Oik = −∑jFijDjk, the connectivity structure dictates that the voltage

becomes a function of the global coding error, as stated in Eq 4, the stationary point can be

rewritten as Oik ¼ � 2
P

jFijhxj � x̂jik. If we now simply define the decoder matrix as

Djk ¼ 2hxj � x̂jik, then Oik = −∑jFijDjk. Accordingly, the peculiar multiplicative form of the

recurrent weights, which transformed the voltage into a component of the coding error, is a

stationary point of the learning rule (see S1 Text, Section 9 for details and an additional con-

vergence proof).

Depending on the precise cost terms, C(r), required by the loss function, the learning rules

undergo slight modifications. The effect of these cost terms is to penalize both the total num-

ber of spikes fired by the network, as well as high firing rates in individual cells. The learning
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rules used in all simulations are of the form

dOik

dt
/ � ok bðVi þ mriÞ þ Oik þ mdikð Þ: ðEq 6Þ

with β and μ positive constants, and with δik the Kronecker delta (see S1 Text, Sections 9–13

for a detailed explanation of these modifications and their relation to the cost).

Fig 2 illustrates the effect of the voltage-based learning rule in a network with 20 neurons

receiving two random, uncorrelated feedforward inputs (see S1 Text, Section 14 for details on

the simulations). Since each neuron receives two input signals, each neuron has two feedfor-

ward weights. The initial setting of these weights was lopsided, as shown in Fig 2Bi (left panel),

so that no neuron received a positive contribution of the first input signal. The recurrent

weights were initially set equal to zero (Fig 2Bi, right panel; the diagonal elements correspond

to the self-resets of the neurons).

While the network receives the random input signals, the recurrent synapses change

according to the learning rule, Eq 6, and each neuron thereby learns to balance its input cur-

rents. Once learnt, the recurrent connectivity reaches the desired structure, and the voltages of

the neurons become proportional to a component of the coding error. As a result of the EI bal-

ance, the voltage fluctuations of individual neurons are much better bounded around the rest-

ing potential (compare Fig 2Ei with 2Eii), the global coding error decreases (Fig 2A), and the

network experiences a large drop in the overall firing rates (Fig 2A, 2Di and 2Dii). The net-

work’s coding improvement is best illustrated in Fig 2Ci and 2Cii, where we test the network

with two input signals, a sine and cosine, and illustrate both the input signals and their recon-

structions, as retrieved from the spike trains in Fig 2Di and 2Dii using an optimal decoder.

Note that this improvement occurred despite a drastic drop in overall firing rates (Fig 2Di and

2Dii).

Feedforward weights change to strengthen postsynaptic firing

Despite the performance increase, however, the network still fails to represent part of the

input, even after the recurrent connections have been learnt (Fig 2Cii, arrow). Indeed, in the

example provided, positive values of the first signal cannot be represented, because there are

no neurons with positive feedforward weights for the first signal (Fig 2Bi and 2Bii). These

missing neurons can be easily spotted when plotting the tuning curves of all neurons (Fig 2Gi

and 2Gii). Here, directions of the input signal associated with positive values of the first signal

are not properly covered, even after the recurrent weights have been learnt (Fig 2Gii, arrow).

Consequently, the feedforward connections need to change as well, so that all parts of the

input space are dealt with. We can again obtain a crucial insight by considering the final,

‘learnt’ state, in which case the feedforward connections are directly related to the optimal

decoding weights. For example, if the input signals are mutually uncorrelated, i.e., hxi(t)xj(t)i =

0 for zero-mean inputs and i6¼j, then the optimal feed-forward and decoding weights are

equal, i.e., Fik = Dki (see S1 Text, Section 4). In Fig 3A, we illustrate the problem with five neu-

rons that seek to represent two input signals. We assume a constant input signal, which we rep-

resent by a point in a signal space (Fig 3Ai, purple dot). In turn, a neuron’s spiking shifts the

signal estimate in a direction given by its respective decoding weights, which we can illustrate

through vectors (Fig 3Ai, colored arrows). Accordingly, the input signal can be represented by

a linear combination of the decoding vectors. For a biased distribution of decoding vectors,

some input signals will require the combined effort of many neurons (Fig 3Ai). For uncorre-

lated input signals, however, the best representation is achieved when the decoding vectors

(and thereby the feedforward weights) are evenly distributed (Fig 3Aii).
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Fig 2. A 20-neuron network that learns to encode two randomly varying signals. A. Evolution of coding error (blue), defined as the mean-square error

between input signal and signal estimate, and mean population firing rate (orange) over learning. B. Feedforward and recurrent connectivity at three stages of

learning. In each column, the left panel shows the two feedforward weights of each neuron as a dot in a two-dimensional space, and the right panel shows the

matrix of recurrent weights. Here, off-diagonal elements correspond to synaptic weights (initially set to zero), and diagonal elements correspond to the
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The feedforward weights of the i-th neuron can learn to optimally cover the input space if

they change each time neuron i fires a spike,

dFij

dt
/ xj � aFij

� �
oi; ðEq 7Þ

where xj is the feed-forward input signal, α is a positive constant whose value depends on the

enforced cost (see S1 Text, Section 11), and oi is the neuron’s spike train. Note that the feedfor-

ward weights remain unchanged if neuron i does not spike.

The intuition for this rule is shown in Fig 3B. In an unconnected network, a neuron fires

the most when its feedforward input drive is maximal. Under a power constraint on the input

signal, the drive is maximized when the vector of input signals aligns with the vector of feed-

forward weights. In a network connected through recurrent inhibition, however, neurons start

competing with each other, and a neuron’s maximum firing (Fig 3Bi; dashed lines) can shift

away from the maximum input drive (Fig 3Bi, colored arrows) towards stimuli that face less

competition. If competition is well-balanced, on the other hand, then a neuron’s maximum fir-

ing will align with the maximum input drive, despite the presence of recurrent connections

(Fig 3Bii, compare colored arrows and dashed lines). The above learning rule moves the net-

work into this regime by shifting the feedforward weights towards input signals that elicit the

most postsynaptic spikes (Fig 3Bii, gray arrows). Learning converges when all tuning curve

maxima are aligned with the respective feedforward weights (Fig 3Bii; dashed lines and

arrows). Eventually, the input space is thereby evenly covered (see S1 Text, Section 10 for

mathematical details).

From the perspective of standard frequency-modulated plasticity, the learning rule is Heb-

bian: whenever neuron i fires a spike, the resulting change in its synaptic weight Fij is propor-

tional to the j-th presynaptic input, xj, received at that time. The more neuron i spikes, and the

higher the input xj, the stronger the change in weight. Accordingly, connections are reinforced

for co-occurring high pre- and postsynaptic activity. In the case of correlated input signals, the

term “Fij” is replaced by the covariance of the j-th presynaptic input signal with the total post-

synaptic input current (see S1 Text, Section 12). In this case, the decoding weights provide

optimal coverage by favoring more frequent input signal directions (See Fig 3C and 3D).

The effect of the feedforward plasticity rule is shown in Fig 2Aiii–2Giii. The feedforward

weights change slowly until the input space is spanned more uniformly (Fig 2Biii). While these

changes are occurring, the recurrent weights remain plastic on a faster time scale and thereby

keep the system in a balanced state. At the end of learning, the neuron’s tuning curves are uni-

formally distributed (Fig 2Giii), and the quality of the representation becomes optimal for all

input signals (Fig 2Aiii and 2Ciii). More specifically, the feedforward weights have become

identical to the decoding weights, Fik = Dki, and the latter minimize the objective function,

Eq 3.

Importantly, the final population code represents the input signals spike by spike, with a

precision that approaches the discretization limit imposed by the spikes, i.e., the unavoidable

steps in the signal estimate caused by the firing of individual spikes. Initially, when the neurons

were unconnected (Fig 2Bi), their voltages reflected the smooth, time-varying input (Fig 2Ei).

neurons’ self-resets after a spike (initially set to -0.5). C. Time-varying test input signals (purple) and signal estimates (green). The test signals are a sine wave

and a cosine wave. Signal estimates in the naive network are constructed using an optimal linear decoder. Arrows indicate parts of the signal space that remain

poorly represented, even after learning of the recurrent weights. D. Spike rasters from the network. E. Voltages and spike times of three exemplary neurons (see

thick dots in panel B). Dashed lines illustrate the resting potential. Over the course of learning, voltage traces become confined around the resting potential. F.

As in E, but for a different trial. G. Tuning curves (firing rates as a function of the angle of an input signal with constant radius in polar coordinates for all

neurons in the network. Angles from −90˚ to 90˚ correspond to positive values of x1 which are initially not represented (panel B).

https://doi.org/10.1371/journal.pcbi.1007692.g002
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Moreover, neurons fired their spikes at roughly the same time from trial to trial (compare Fig

2Ei with 2Eii). After learning, the membrane potentials are correlated, reflecting their shared

inputs, yet the individual spikes are far more susceptible to random fluctuations (compare Fig

2Eiii with 2Fiii). Indeed, whichever neuron happens to fire first immediately inhibits (resets)

the others, so that a small initial difference in the membrane potentials is sufficient to change

the firing order completely. Here, the random nature of spike timing is simply a consequence

of a mechanism that prevents any redundant (or synchronous) spikes. More generally, any

source of noise or dependency on previous spike history will change the firing order, but with-

out a significant impact on the precision of the code. Thus, variable spike trains co-exist with a

highly reproducible and precise population code.

Learning in networks with separate excitatory and inhibitory populations

We have so far ignored Dale’s law so that individual neurons could both excite and inhibit

other neurons. Fortunately, all of our results so far can also be obtained in networks with sepa-

rate excitatory (E) and inhibitory (I) populations (Fig 1Ai), governed by Eq 1. In this more

realistic case, the inhibitory population must simply learn to represent the population response

of the excitatory population, after which it can balance the excitatory population in turn. This

can be achieved if we train the EI connections using the feedforward rule (Eq 7) while the II,

EE, and IE connections are trained using the recurrent rule (Eq 6; see S1 Text, Section 13 for

details).

Fig 3. Learning rules for the feedforward weights, depicted for a network with five neurons. A. Arrangement of decoding weights influences coding efficiency. The

purple dot represents the input signals, and each vector represents the jump in the signal estimates caused by the firing of one neuron. The gray circle represents the

distribution of input signals; here, they are centered and uncorrelated. (i) A biased arrangement of the decoding weights is suboptimal for uncorrelated signals. Many

spikes are required to represent the purple input. (ii) Evenly spaced decoding weights are optimal for uncorrelated signals. Here, the purple input can be reached with a

single spike. B. Tuning curves of the five neurons before and after training. Shown are the firing rates of the neurons as a function of the angle of the input signal.

Colored arrows above represent the feedforward weights (or the input signals that drive the neurons maximally in the absence of recurrent connections). (i) In the

untrained network, maximum input drive and maximum firing are not aligned. The learning rule shifts the feedforward weights towards the maximum of the firing

rates (gray arrows, top). In turn, the firing rate maxima shift in the opposite direction (gray arrows, bottom). (ii) After learning, the maximum input drive (and thereby

the feedforward weights) are aligned with the maximum firing rate. C. Similar to A, but for correlated input signals. D. Similar to C, but for correlated input signals. In

the optimal scenario, the neurons’ feedforward and decoding weights are attracted towards more frequent stimuli.

https://doi.org/10.1371/journal.pcbi.1007692.g003
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Fig 4 illustrates how the key results obtained in Fig 2 hold in the full EI network. The net-

work converges to the optimal balanced state (Fig 4B), and the precision of the representation

improves substantially and approaches the discretization limit (Fig 4Bi and 4Cii), despite the

overall decrease in output firing rates (Fig 4Bii and 4Cii). Initially regular and reproducible

spike trains (Fig 4Biii) become asynchronous, irregular, and comparable to independent Pois-

son processes (Fig 4Biii, pairwise correlations are smaller than 0.001). Crucially, both the

inhibitory and excitatory populations provide an accurate representation of their respective

input signals, as shown by their small coding errors (Fig 4Bi). Furthermore, we observe that

the neurons’ tuning curves, when measured along the first two signal directions, are bell-

shaped just as in the previous example (Fig 4Dii). Note that the inhibitory neurons fire more

and have broader tuning than the excitatory neurons. This result is simply owed to their

smaller number: since less neurons are available to span the signal space with their feedforward

weights, they generally face less competition, and consequently have broader tuning.

Learning for correlated inputs

We have so far considered input signals that are mutually uncorrelated. For correlated input

signals, the network learns to align its feedforward weights to the more frequent signal direc-

tions (Fig 3C). As a result, the tuning curves of the learnt network reflect the distribution of

inputs experienced by the network (Fig 3D). In particular, tuning curves are denser and

sharper for signal directions that are a-priori more probable. This result is reminiscent of the

predictions for efficient rate-based population codes with independent Poisson noise [37].

Note, however, that our networks learn a spike-per-spike code that is more precise and effi-

cient than rate-based population codes.

To further demonstrate the power of the learning rules, using learning rules developed in

S1 Text, Section 12, we trained a network to represent speech signals, filtered through 25 fre-

quency channels, in its spiking output (Fig 5A). Despite consisting of 100 neurons that fire at

only ~ 4 Hz, the network learns to represent the signals with high precision (Fig 5B and 5C).

This feat would be impossible if the network had not learnt the strong correlations in speech.

After training with the speech signals, the feedforward and decoding weights adopt a structure

reflecting the natural statistics of speech. The feedforward weights typically have excitatory

subfields covering a limited range of frequencies, as well as inhibitory subfields (Fig 6Ai and

6Aii). Decoding weights are wider and more complex, thus exploiting the high correlations

between frequency channels (Fig 6Bi and 6Bii). These model predictions are broadly compati-

ble with observations in the mammalian auditory pathway, and notably the representation of

speech signals in A1 [38].

As a drawback, the network has become specialized, and a new “non-speech” stimulus

results in poor EI balance, high firing rates, and poor coding (Fig 5D and 5E). After experienc-

ing the new sound several times, however, the network represents the “non-speech” sound as

precisely and parsimoniously as the previously experienced speech sounds (Fig 5F). After

retraining to the new stimulus, feed-forward weights are modified specifically at the frequen-

cies of the new stimulus (Fig 6Aiii). However, these changes are not massive. In particular,

only a handful of neurons (two in this example) have become truly specialized to the new stim-

ulus, as reflected by their decoding weights (Fig 6Biii).

Robustness of Learning against perturbations

A crucial final question is whether these learning rules continue to work under more realistic

conditions, such as noise in various components of the circuit, delays in the synaptic transmis-

sion, or constraints on the ability of arbitrary neurons to form synaptic connections in the first
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place. To answer these questions, we first note that the learning rules work independent of the

initial state of the network. As long as the initial network dynamics are sufficiently stable, the

learning rules converge globally (see S1 Text, Sections 9 and 10 for a proof). We furthermore

note that the networks perform better and become more robust as the number of neurons

increases (Fig 7A, see also [28]).

We first studied how the learning rules perform when not all neurons can form (potential)

synaptic connections. As shown in Fig 7B, eliminating potential synapses only affects the per-

formance of the learnt network when drastic limits are imposed (less than 20% of connections

Fig 4. Large network (300 excitatory and 75 inhibitory neurons) that learns to encode three input signals. Excitation shown in orange, inhibition in blue. A. The EI

network as in Fig 1Ai and the learning rules (i, feedforward rule; ii and iii, recurrent rule). The insets show cartoon illustrations of the learning rules, stemming from

STDP-like protocols between pairs of neurons, with the x-axis representing the relative timing between pre- and postsynaptic spikes (Δt = tpre−tpost), and the y-axis the

change in (absolute) weight. Note that increases (decreases) in synaptic weights in the learning rules map onto increases (decreases) for excitatory weights and decreases

(increases) for inhibitory weights. This sign flip explains why the STDP-like protocol for EE connections yields a mirrored curve. B. Evolution of the network during

learning. (i) Coding error for excitatory and inhibitory populations. The coding error is here computed as the mean square error between the input signals and the

signal estimates, as reconstructed from the spike trains of either the excitatory or the inhibitory population. (ii) Mean firing rate of excitatory and inhibitory populations.

(iii) Averaged coefficient of variation (CV, gray) and Fano factor (FF, black) of the spike trains. C. Network input and output before (i) and after (ii) learning. (Top)

Raster plots of spike trains from excitatory and inhibitory populations. (Center) Excitatory and inhibitory currents into one example neuron. After learning, inhibitory

currents tightly balance excitatory currents (inset). (Bottom) One of the three input signals (purple) and the corresponding signal estimate (green) from the excitatory

population. D. Tuning curves (firing rates as a function of the angle for two of the input signals, with the third signal clamped to zero) of the most active excitatory and

inhibitory neurons.

https://doi.org/10.1371/journal.pcbi.1007692.g004
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available for a network with N = 50 inhibitory neurons). Smaller networks are generally more

sensitive (Fig 7B, dashed blue line), whereas larger networks are less sensitive.

To study the resistance of the learning rules against noise, we introduced random currents

into the neurons, which can be viewed as a simulation of stochastic fluctuations in ion chan-

nels or background synaptic activity. For reasonable levels of noise, this modification had an

essentially negligible effect on network performance. Fig 7C shows the error made by the net-

works after learning as a function of the strength of the introduced noise.

A final concern could be to what extent the learning rules rely on overtly simplistic synaptic

dynamics—each spike causes a jump in the postsynaptic voltage followed by an exponential

decay. To address this question, we also simulated the network assuming more realistic synap-

tic dynamics (Fig 7D). We measures the effective delay of transmission as the time-to-peak for

a postsynaptic potential. Within the range of mono-synaptic transmission delays observed in

cortical microcircuits, the networks still learns to encode their input signals efficiently, see Fig

7B. As transmission delays grow larger, a degradation in performance is incurred due to lim-

ited synchrony between similarly tuned neurons, which is unavoidable in the presence of

delayed inhibition. Indeed, by keeping excitatory and inhibitory currents as balanced as possi-

ble, the network automatically finds an optimal regime of weak synchronization, removing the

need for fine tuning of the network parameters. Such weak synchronization causes weak oscil-

lations in the network activity whose time scales may be related to gamma rhythms [29].

Thus, we found that under a wide range of perturbations, the network learnt to achieve a

performance near the discretization limit, outperforming conventional spiking networks or

population coding models based on Poisson spike trains. This robustness is inherited from the

generality of the relationship between EI balance and the error-correcting coding strategy in

the network [27,28].

Manipulating plasticity

One of the key consequences of our derivations is that feedforward and recurrent plasticity

serve different goals. Whereas recurrent plasticity works to balance the network, keeping all

voltages (and thereby the respective coding errors) in check, feedforward plasticity works to

unbalance each neuron, driving up excitation as much as possible. Since the recurrent plastic-

ity rules are faster, they win this competition, and the network remains in a balanced state.

These considerations lead to some fundamental, yet experimentally testable predictions

that are illustrated in Fig 8. In this simulated experiment, a number of neurons with similar

tuning curves to angular stimuli (such as oriented gratings) are suddenly killed (Fig 8A, dashed

arrows). In principle, this should severely impair the representation of stimuli in this direction.

However, three mechanisms are recruited to compensate for the degradation of the represen-

tation. In a first step, the EI imbalance introduced by the lesion is immediately corrected by

the network. This occurs instantaneously, before any plasticity mechanisms can be involved.

As a result, the tuning curves of some neurons shift, widen, and increase in amplitude in an

Fig 5. Network (100 neurons) that encodes a high-dimensional, structured natural input (speech sounds). A. Spectrogram of a speech

sound. B. “Naive” network with random feedforward and recurrent weights. (Top) Optimal linear estimator applied to output spike trains

reconstructs the stimulus poorly. (Center) Spike raster from all neurons, showing synchronous firing. (Bottom panel) Excitatory (orange) and

inhibitory (blue) current into an example neuron are poorly balanced, causing large fluctuations in the total current (black). C. Same as B, after

learning. The signal estimate tracks the signal closely (top), spike trains are asynchronous and irregular (center), and EI currents are tightly

balanced (bottom). D. Spectrogram of artificial, “non-speech” sound. E. Response of the trained network trained to a non-speech sound, similar

format as B, C. The new sound is improperly reconstructed (top), and EI currents of individual neurons are poorly balanced (bottom). Grey

lines show the total (E+I) currents for the individual neurons, orange and blue lines show the mean excitatory and inhibitory currents, averaged

over the population. F. Same as E, after re-training the network with a mixture of speech sounds and the new sound. The new sound is now

represented precisely (top) with fewer spikes (center), and EI balance is improved (bottom).

https://doi.org/10.1371/journal.pcbi.1007692.g005
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effort to cover the “hole” made in the representation (Fig 8B). This compensation is a result of

instantaneous des-inhibition in the lesioned network, not plasticity [28]. While this re-balanc-

ing limits coding errors, it still leads to an inefficient representation due to the large firing

rates required from compensating neurons. In a second step, the recurrent learning rules kick

in, and the network adapts its recurrent connections so that each neuron is again balanced on

a spike-by-spike time scale. In a third step, the network also re-learns the feedforward weights

through the slower feedforward learning rules. As a consequence, the final, adapted network

again covers the input space uniformly, just with fewer neurons (Fig 8C).

Importantly, and as already shown in Fig 2, plasticity of the recurrent EI loop (including E

to I connections) is more important for this process than plasticity on the feedforward weights.

Fig 6. Feedforward and recurrent connection structure before and after learning speech sounds. A. (i)

Feedforward weights of neurons before learning. These weights correspond to the spectral receptive fields (SRF) of the

neurons, since they weight the different frequency bands. Although set to random, a weak diagonal is visible because

neurons were sorted according to maximal frequency. Bluish colors correspond to negative values, reddish colors to

positive values. (ii) Feedforward weights or SRFs after learning. The SRFs now have an excitatory subfield, and one or

two inhibitory subfields, compatible with SRFs observed in primary auditory cortex [38]. Note that the neurons have

been resorted according to maximal frequency. (iii) Change in SRFs after re-training with a new stimulus (see Fig 5D).

The SRFs change selectively (positively and negatively) at the position of the trained frequencies. The frequency-

selective change in SRFs is in line with fast plastic changes of SRFs observed following behavioral training [39]. There is

also a small decrease in gain at other frequencies, due to the competition with the new stimulus. B. Same as in A, but

for the decoding weights. (i) Decoding weights before learning appear random. Here, we sorted neurons as in A(i) in

order to ease the comparison of feedforward and decoding weights. (ii) After learning, the decoding weights are more

structured and broader than the SRFs in A(ii), compatible to the decoding filter of speech measured in auditory cortex

[38]. Same sorting of neurons as in A(ii). (iii) After re-training to the new stimulus, a small number of decoding filter

(neurons) “specialize” to the new stimulus, while the decoding weights of the others change only mildly. The network

thereby minimizes its firing rate response to the new stimulus, while still providing an accurate representation of it.

https://doi.org/10.1371/journal.pcbi.1007692.g006
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This observation leads to the following prediction: even in the absence of feedforward plastic-

ity, the network recovers most of its efficiency (Fig 8D). While the tuning curves never achieve

the perfect re-arrangement of the network with intact plasticity (Fig 8C), the responses of over-

active cells are suppressed and shifted further towards the impaired direction. In contrast, if

we were to block recurrent plasticity (Fig 8E), the network would become unbalanced and

thereby inefficient due to the remaining action of the feedforward weights. While selectively

blocking plasticity mechanisms at different synapses may seem a bit outlandish at first, the

modern molecular biology toolbox does put it within reach [40]. By combining such tech-

niques with focal lesions and awake recordings (e.g. calcium imaging) in local neural popula-

tions, these predictions are now within the range of the testable.

A second important prediction arises from the differential time course of feedforward and

recurrent plasticity. Since recurrent plasticity should be much faster than feedforward plastic-

ity, we predict that a partial recovery of the network efficiency will occur relatively fast (in min-

utes to hours of exposure to the stimuli with orientations matching the knocked-out cells).

This will be performed mainly through a re-equalization of the population responses, but with-

out major changes in the preferred tuning of the cells (compare Fig 8B and 8D). It will eventu-

ally be followed by a slower recovery of the tuning curve shapes and uniform density (but at a

much slower time scale, e.g. over days or weeks of exposure).

Discussion

In summary, we have shown how populations of excitatory and inhibitory neurons can learn

to efficiently represent a set of signals spike by spike. We have measured efficiency with an

objective function that combines the mean-square reconstruction error with various cost

Fig 7. Robustness of the learning rules to missing connections, noise, and synaptic delays. All simulations are based on EI networks receiving two-dimensional,

random input signals. Network size is given as number of inhibitory neurons. The pool of excitatory neurons is twice as large in all cases. A. Performance (mean-square

error between input signal and signal estimate) of the learnt network as a function of (inhibitory) network size. Trained network (blue) and equivalent Poisson rate

network (black), given by neurons whose firing follows Poisson processes with identical average rates. B. Performance of the learnt network as a function of connection

sparsity. Here, we randomly deleted some percentage of the connections in the network, and then trained the remaining connections with the same learning rule as

before. We adjusted the variance of the input signals to achieve the same mean firing rate in each neuron (r = 5 Hz in excitatory, r = 10 Hz in inhibitory neurons). Black

lines denote the performance of an equivalent (and unconnected) population of Poisson-spiking neurons. C. Network performance as a function of synaptic noise and

synaptic delay. Here, we injected random white-noise currents into each neuron. The size of the noise was defined as the standard deviation of the injected currents,

divided by the time constant and firing threshold. Roughly, this measure corresponds to the firing rate cause by the synaptic noise alone, in the absence of connections

or input signals. As in B, the input variance was scaled to get the same mean firing rate in each neuron (r = 5 Hz in excitatory, r = 10 Hz in inhibitory neurons). Different

colors show curves for different synaptic delays (see panel D). D. Temporal profile of EPSCs and IPSCs (injected currents each time a spike is received) in the delayed

networks, plotted as a function of the synaptic delay d. We rescaled the time axis to get the different delays used in panel C.

https://doi.org/10.1371/journal.pcbi.1007692.g007
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terms. While mathematically simpler than mutual-information-based approaches, our objec-

tive function includes both principal and overcomplete independent component analysis as

special cases [41,42]. This type of unsupervised learning has previously been studied exten-

sively in rate networks [10,16,17,43–48]. Implementations that seek to mimic biology by

assuming spiking neurons, recurrent network architectures, and local learning rules, have

always faced difficulties, and have therefore been largely limited to heuristic or approximative

approaches, [12,13,15,36,49]. Using a rigorous, spike-based, and top-down approach, we have

here derived biologically plausible learning rules that are guaranteed to converge to a specific

connectivity and achieve a maximally efficient spike code. Importantly, single spikes are not to

be considered as random samples from a rate, but are rather an integral part of a metabolically

efficient brain.

We have limited our study on learning here to the encoding of time-varying signals into

spikes. Several questions seem natural at this point. First, beyond peripheral sensory systems,

most neurons receive spikes as inputs, not analog signals, which seems to violate one of our

core premises. Second, neural systems perform computations with the signals they receive,

rather than encoding them into spikes, only to be read out again at a later stage, which may

seem a rather pointless exercise. Third, our learning rules have been derived in an unsuper-

vised scenario, and one may wonder whether the core ideas underlying these rules can be

extended beyond that.

Concerning spiking inputs, we note that nothing prevents us from replacing the analog

input signals with spike trains. While we have chosen to explain these learning rules using ana-

log inputs, our derivations were not dependent on this restriction. In fact, we have already

used spike trains (rather than analog input signals) in the simulation of the EI-network in Fig

4—here the inhibitory neurons received spike trains from the excitatory neurons as ‘feedfor-

ward’ inputs, and we applied exactly the same feedforward learning rules as for the continu-

ous-valued input signals (see also S1 Text, Section 13).

Concerning computations, we note that the solution to the encoding problem provides a

necessary starting point for introducing more complex computations. For example, we showed

previously that a second set of slower connections can implement arbitrary linear dynamics in

optimally designed networks [27]. Non-linear computations can be introduced as well, but

require that these non-linearities are implemented in synapses or dendrites [50]. The separa-

tion between coding and computation in these approaches is very similar to the separation

used in the neural engineering framework [7].

Fig 8. Manipulating recurrent and feedforward plasticity. A. EI network with 80 excitatory neurons and 40 inhibitory

neurons, trained with two uncorrelated time-varying inputs. Left panels: learnt feedforward weights of excitatory population.

Central panels: Optimal decoding weights of excitatory population. Right panels: Tuning curves of excitatory neurons (red)

and inhibitory neurons (blue). Neurons encoding/decodings weights and tuning curves are shaded according to their preferred

direction (direction of their decoding weight vector) in 2D input space. The color code is maintained in all subsequent figures

(even if their preferred direction changed after lesion and/or retraining). B. Same network after deletion of leftward-coding

excitatory neurons (see dashed lines in panel A). Note that no new training of the weights has yet taken place. Changes in

tuning curves and decoding weights are due to internal network dynamics. We observe a large increase in firing rates and a

widening and shifting of tuning curves towards the lesion, a signature that the network can still encode leftward moving

stimuli, but does it in an inefficient way. C. Retrained network. The lesioned network in (B) was subjected to 1000s re-training

of the connection. Consequently, the “hole” induced by the lesion has been filled by the new feedforward/decoding weights, all

tuning curves once again covering the input space uniformly. D. Network with retrained recurrent connections (feedforward

weights are the same as in panel B). Even without feedforward plasticity, the lesioned network is able to recover its efficiency to

a large extent. E. Network with retrained feedforward weights only (recurrent connections are the same as in panel B). While

feedforward weights once again cover the input space, absence of recurrent plasticity results in a massive increase in firing rates

(and a concomitant decrease in coding precision). Consequently, training only feedforward weights after a lesion actually

worsens the representation.

https://doi.org/10.1371/journal.pcbi.1007692.g008
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Concerning learning, we note that there has been quite a lot of progress in recent years in

developing local learning rules in supervised scenarios, both in feedforward [19–21] and recur-

rent networks [51,52]. We believe that the framework presented here provides crucial intui-

tions for supervised learning in spiking networks, since it shows how to represent global errors

in local quantities such as voltages. In the future, these ideas may be combined with explicit

single-neuron models [53] to turn local learning rules into global functions [21,52,54].

Apart from the theoretical advances in studying learning in spiking networks, many of the

critical features that are hallmarks of cortical dynamics follow naturally from our framework,

even though they were not included in the original objective. We list four of the most impor-

tant features. First, the predicted spike trains are highly irregular and variable, which has

indeed been widely reported in cortical neurons [4,55]. Importantly, this variability is a signa-

ture of the network’s coding efficiency, rather than detrimental [32] or purposeful noise

[56,57]. Second, despite this spike train variability, the membrane potentials of similarly tuned

neurons are strongly correlated (due to shared inputs), as has indeed been found in various

sensory areas [58,59]. Third, local and recurrent inhibition in our network serves to balance

the excitatory feedforward inputs on a very fast time scale. Such EI balance, in which inhibitory

currents track excitatory currents on a millisecond time scale, has been found in various sys-

tems and under various conditions [60,61]. Fourth, we have derived learning rules whose

polarity depends on the relative timing of pre-and postsynaptic spikes (see insets in Fig 4A). In

fact, the respective sign switches simply reflect the immediate sign reversal of the coding error

(and thus of the membrane potential) after each new spike. As a result, even though our pro-

posed learning rules are not defined in terms of relative timing of pre- and postsynaptic spikes,

most connections display some features of the classic STDP rules, e.g., LTP for pre-post pair-

ing, and LTD for post-pre pairing [62,63]. The only exception are E-E connections that exhibit

“reverse STDP”, i.e. potentiation for post-pre pairing (Fig 4A). Despite their simplicity, these

rules are not only spike-time dependent but also weight and voltage-dependent, as observed

experimentally [36].

Our framework thereby bridges from the essential biophysical quantities, such as the mem-

brane voltages of the neurons, to the resulting population code, while providing crucial new

insights on learning and coding in spiking neural networks.

Materials and methods

Detailed mathematical derivations of the learning rules are explained in the supplementary

materials (S1 Text). In addition, MATLAB code for the key simulations of the article is avail-

able on https://github.com/machenslab/spikes.

Supporting information

S1 Text. The supplementary material contains detailed mathematical derivations and

proofs of all the main concepts explained in this article. While it is referenced section by sec-

tion, it can also be read as a separate, more technical explanation of the learning rules.

(PDF)
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