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Abstract: Exogenous melatonin has been reported to be beneficial in the treatment of pulmonary 
hypertension (PH) in animal models. Multiple mechanisms are involved, with melatonin exerting 
anti-oxidant and anti-inflammatory effects, as well as inducing vasodilation and cardio-protection. 
However, endogenous levels of melatonin in treatment-naïve patients with PH and their clinical 
significance are still unknown. Plasma levels of endogenous melatonin were measured by liquid 
chromatography-tandem mass spectrometry in PH patients (n = 64, 43 pulmonary arterial 
hypertension (PAH) and 21 chronic thromboembolic PH (CTEPH)) and healthy controls (n = 111). 
Melatonin levels were higher in PH, PAH, and CTEPH patients when compared with controls 
(Median 118.7 (IQR 108.2–139.9), 118.9 (109.3–147.7), 118.3 (106.8–130.1) versus 108.0 (102.3–115.2) 
pM, respectively, p all < 0.001). The mortality was 26% (11/43) in the PAH subgroup during a long-
term follow-up of 42 (IQR: 32–58) months. Kaplan–Meier analysis showed that, in the PAH 
subgroup, patients with melatonin levels in the 1st quartile (<109.3 pM) had a worse survival than 
those in quartile 2–4 (Mean survival times were 46 (95% CI: 30–65) versus 68 (58–77) months, Log-
rank, p = 0.026) with an increased hazard ratio of 3.5 (95% CI: 1.1–11.6, p = 0.038). Endogenous 
melatonin was increased in treatment-naïve patients with PH, and lower levels of melatonin were 
associated with worse long-term survival in patient with PAH. 
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1. Introduction 

Pulmonary hypertension (PH) is a severe disease with a wide spectrum of underlying etiologies 
[1]. Pulmonary arterial hypertension (PAH) and chronic thromboembolic PH (CTEPH) are two 
subgroups of PH, that show severe pulmonary vascular remodeling. Current treatment strategies 
delay disease progression, but curative treatment, reversing microvascular remodeling, has not been 
established [2,3]. Therefore, research identifying novel mechanisms of disease progression and 
identifying potential therapeutic targets is necessary to develop new therapeutic strategies and 
improve prognosis. 

Melatonin is a hormone mainly synthesized by the pineal gland and is well-known for its role 
in the regulation of circadian rhythm [4]. Over the past decades, an increasing number of studies 
demonstrated that exogenous melatonin also exerts protective effects in cardiovascular diseases [5–7], 
respiratory diseases [8], and cancers [9]. It was already shown in 2007 that chronic hypoxia induced 
PH was associated with the loss of the pulmonary vasorelaxation effect of melatonin [10], while 
supplementation of melatonin could prevent chronic hypoxia induced PH via anti-proliferative and 
anti-inflammatory effects [11,12], as well as through inhibiting oxidative stress [13–15], restoring 
nitric oxide production [11], and increasing angiogenesis [16]. These beneficial effects of melatonin 
were also shown in the rat models of monocrotaline-induced PH [12,17,18], and Sugen-hypoxia-
induced PH [12]. In addition, melatonin was also found to be cardio-protective in monocrotaline-
induced PH by improving RV function and inhibiting cardiac fibrosis [16]. 

Although animal studies suggest that exogenous melatonin might be beneficial for patients with 
PH, endogenous melatonin levels in animal models of PH, and in treatment-naïve patients with PH 
and their clinical significance are still unknown. In the present study, we therefore tested the 
hypothesis that lower melatonin levels would be associated with poor prognosis in PH patients. For 
this purpose, we investigated plasma melatonin levels in two well-established rat models of PH, and 
in treatment-naïve patients with PH and studied their clinical significance. 

2. Methods 

2.1. Study Population 

A total of 64 consecutive treatment-naïve adult patients with PH, including 43 patients with 
PAH (Group 1) and 21 patients with CTEPH (Group 4), diagnosed by right heart catheterization 
according to the guidelines between May 2012 and October 2016 were included as PH group in this 
prospective observational cohort study [19,20]. Exclusion criteria for PH group were: incomplete 
diagnostic procedure, not treatment-naïve, not capable of signing informed consent, and other 
Groups of PH, including some patients from Group 1 PH, and all patients from Group 2, 3, and 5 PH 
(Figure 1). A healthy control group consisting of 145 self-reported healthy volunteers, without any 
(prior) cardiovascular diseases and risk factors, was recruited during the same period via an 
advertisement for healthy subjects, 34 volunteers were excluded from this study because of a blood 
pressure over 140/90 mmHg at the time of visit. More details about the study design of both cohorts 
have been previously described [21,22]. The study protocols were approved by the Erasmus MC 
Ethical Committee and written informed consent was obtained by all PH patients and healthy 
volunteers. All procedures were performed in accordance with Declaration of Helsinki. 
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Figure 1. Enrollment scheme of PH patients in the current study. PH: pulmonary hypertension, 
mPAP: mean pulmonary artery pressure, PAH: pulmonary arterial hypertension, PVOD: pulmonary 
veno-occlusive disease, CTEPH: chronic thromboembolic pulmonary hypertension. 

2.2. Follow-Up of PH Patients 

PH patients were prospectively followed-up until 1st of January 2019. All patients were 
prescribed with specific PAH medications and/or treated with balloon pulmonary angioplasty or 
pulmonary endarterectomy (CTEPH patients) when indicated according to the guidelines [19,23]. 
The primary endpoint was defined as all-cause mortality. Survival status of all patients was obtained 
from patients and checked in the Municipal Personal Records database. Patients who did not reach 
the primary endpoint were censored at the 1st of January 2019. 

2.3. Animal Models of PH 

Two well-established rat models of severe PH were used in this study as previously described 
[24]. In brief, a monocrotaline-induced PH model (n = 11) was established in 4 weeks-old male Wistar 
rats (Janvier Labs, Saint Berthevin, France) with a single subcutaneous injection of monocrotaline 
(40 mg/kg, Sigma-Aldrich, Saint-Quentin-Fallavier, France) for 3 weeks. The Sugen-hypoxia-induced 
PH model (n = 10) was established in 4 weeks-old Wistar rats (Janvier Labs, Saint Berthevin, France) 
with a single subcutaneous injection of Sugen (SU5416, 20 mg/kg, Sigma-Aldrich, Saint-Quentin-
Fallavier, France) combined with exposure to normobaric hypoxia for 3 weeks followed by room air 
for 5 weeks. 

2.4. Blood Sampling and Measurement of Melatonin 

For PH patients, regular peripheral venous blood sampling was performed during the 
diagnostic right heart catheterization. For healthy volunteers, regular peripheral venous blood 
sampling was performed at the time of visit. For animal models of PH, blood sampling was 
performed before sacrifice. All blood sampling was conducted during daytime between 9:00 and 
18:00, in which period the levels of melatonin were reported to be stable [25].  All blood samples were 
prepared as EDTA-plasma samples, and then frozen and stored in aliquots at −80 °C, and thawed 
only once for use. Melatonin levels were measured using ultra-performance liquid chromatography-
tandem mass spectrometry (UPLC-MS/MS). Briefly, 10 µL plasma was mixed with 10 µL deuterated 
melatonin (Melatonine-D3, Buchem BV, Apeldoorn, The Netherlands) solution as internal 
isotopically labeled internal standard and subsequently mixed with 80 µL acetonitrile for protein 
precipitation. After 10 min, the samples were cleared by centrifugation and 90 µL supernatant was 
dried under a stream of nitrogen at 30 °C. The residue was reconstituted in 40 µL H2O (in-house 
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purified using a Milli-Q device) with 0.2% (v/v) formic acid before quantitative analysis for melatonin 
using an in-house developed UPLC-MS/MS assay on a Sciex 6500+ QTRAP mass spectrometer (Sciex, 
Nieuwerkerk ad Ijssel, The Netherlands) hyphenated to a Shimadzu Nexera UPLC system (Shimadzu 
Benelux, Den Bosch, The Netherlands). Ten microliters of reconstituted sample was resolved on an 
Acquity HSS T3 UPLC column (2.1 × 100 mm, 1.8 µm; Waters, Etten-Leur, The Netherlands) using a 
gradient of acetonitrile in Milli-Q water, each with 0.2% formic acid (v/v). Melatonin was detected in 
MRM mode by the mass transition m/z 233.1/174.1 (DP 56 V, CE 20V) and quantified to a standard 
calibration curve of 50– pM using the area ratio of melatonin/melatonin-D3. 

3. Statistical Analysis 

Data were tested for adherence to a normal distribution with the Kolmogorov–Smirnov method. 
Continuous variables are presented as mean ± standard deviation (SD) or median (interquartile range 
(IQR)), categoric variables as numbers (percentages), or as otherwise reported. Group comparisons 
of continuous variables (e.g., melatonin levels, age) were performed using the unpaired t-test or 
Mann–Whitney test (2 groups, e.g., human PH versus controls, Rat models of PH versus controls), 
and one-way ANOVA or Kruskal–Wallis Test (3 groups, human controls, PAH, and CTEPH). Groups 
comparisons of categoric variables (e.g., sex, NYHA) were performed using the chi-square test. 
Correlations analysis between melatonin levels and baseline characteristics were determined using 
the Spearman correlation coefficient. Logistic regression was conducted to determine whether 
plasma melatonin was an independent risk factor that distinguishes between PH patients and healthy 
controls. Univariate and multivariate Cox proportional hazard regression were used to assess 
associations between plasma levels of melatonin and mortality in PAH patients, one PAH patient 
with a very high melatonin level of 4471 pM was defined as an outlier (>100 times the IQR), and was 
excluded to avoid interference. Comparisons of long-term survival curves between groups in PAH 
patients were performed using Kaplan–Meier analysis with log-rank (for trend) test. Statistical 
analysis was performed using IBM SPSS software (version 21.0.0.1), figures were made using 
GraphPad Prism (version 8.0.2). A two-sided p-value < 0.05 was considered statistically significant. 

4. Results 

4.1. Baseline Characteristics 

Baseline characteristics of all treatment-naïve patients with PH, PAH, CTEPH, and healthy 
controls are summarized in Table 1. PH patients were older and had higher heart rate and body mass 
index than controls. PAH patients showed more severe PH than CTEPH patients. 

Table 1. Baseline characteristics. 

 
Control 

PH 
 Total PAH CTEPH 

n 111 64 43 21 
Aetiology     

iPAH, n (%) 
CTD-PAH, n (%) 
CHD-PAH, n (%) 

  
15 (35) 
17 (40) 
11 (25) 

 

Age, years old 43 ± 13 55 ± 17 *** 53 ± 17 ** 58 ± 18 *** 
Sex, women n (%) 59 (53) 41 (64) 29 (67) 12 (57) 

sBP, mmHg 123 (115–128) 127 (115–136) 122 (114–132) 133 (124–141) **,† 
HR, beats·min −1 68 (62–76) 78 (65–90) ** 78 (67–90) ** 71 (61–88) 

BMI, kg·m −2 23.8 ± 2.9 28.4 ± 6.3 *** 27.0 ± 6.1 *** 31.4 ± 5.7 *** 
mPAP, mmHg - 46.8 ± 15.7 50.5 ± 16.1 39.3 ± 12.3 †† 
PAWP, mmHg - 12.4 ± 5.1 11.8 ± 5.6 13.7 ± 3.3 

PVR, WU - 5.8 (3.3–9.8) 7.1 (5.1–11.8) 3.4 (3.0–5.3) †† 
CO, L·min −1 - 5.0 (4.1–5.9) 4.7 (3.9–5.5) 5.4 (4.7–6.4) † 

CI, L·min −1·m −2 - 2.6 (2.3–3.2) 2.5 (2.2–3.3) 2.7 (2.3–3.0) 
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6MWD, m - 353 ± 146 337 ± 153 385 ± 130 
NYHA, 1:2:3:4 - 1:25:31:7 1:13:23:6 0:12:8:1 

Data was present as mean ± SD, median (IQR), or numbers (percentages). **p < 0.01, ***p < 0.001 versus 
control; †p < 0.05, ††p < 0.01 versus PAH. Student T Test, Mann–Whitney U Test, one-way ANOVA, 
Kruskal–Wallis Test, or chi-square Test. PH: pulmonary hypertension; PAH: pulmonary arterial 
hypertension; CTEPH: chronic thromboembolic PH; iPAH: idiopathic PAH; CTD-PAH: connective 
tissues diseases associated PAH; CHD-PAH: congenital heart diseases associated PAH; sBP: systolic 
blood pressure; HR: heart rate; BMI: body mass index; mPAP: mean pulmonary arterial pressure; 
PAWP: pulmonary arterial wedge pressure; PVR: pulmonary vascular resistance; CO: cardiac output; 
CI: cardiac index; 6MWD: 6-min walking distance; NYHA: New York Heart Association classification. 

4.2. Levels of Plasma Melatonin 

The median of plasma melatonin levels in healthy volunteers was 108.0 (102.3–115.2) pM, and 
was higher in treatment-naïve patients with PH (118.7 (108.2–139.9) pM, p < 0.001), PAH (118.9 
(109.3–147.7) pM, p < 0.001) and CTEPH (118.3 (106.8–130.1) pM, p < 0.01) (Figure 2A). There was no 
difference between patients with PAH and CTEPH, and there was no sex difference in either controls 
or PH patients. In addition, melatonin levels were significantly higher in rat models of monocrotaline-
induced PH (148.0 (107.2–175.8) pM, p < 0.01) and Sugen-hypoxia-induced PH (103.2 (83.7–118.1) pM, 
p < 0.01) as compared to the control rats (67.6 (58.9–80.2) pM), and were similar in these two rat models 
of PH (Figure 2B). 

 
Figure 2. Plasma melatonin was increased in patients with PH and 2 rat models of PH. (A). Plasma 
melatonin was higher in patients with PH (n = 64), PAH (n = 43), and CTEPH (n = 21) than in healthy 
controls (n = 111), but there was no difference between PAH and CTEPH. (B). Plasma melatonin was 
higher in 2 rat models of PH, including MCT-induced PH (n = 11) and SuHx-induced PH (n = 10), than 
in controls (n = 9), but there was no difference between these two models. Distribution of the Data 
was shown in violin plots with median (solid line) and interquartile range (dotted lines). *p < 0.05, **p 
< 0.01, ***p < 0.001, Mann–Whitney Test or Kruskal–Wallis Test. PH: pulmonary hypertension; PAH: 
pulmonary arterial hypertension; CTEPH: chronic thromboembolic PH; MCT: monocrotaline; SuHx: 
sugen and hypoxia. 

4.3. Correlation Analysis 

In healthy controls, there was a weak association between melatonin and heart rate (r = −0.229, 
p = 0.016), while no association was seen between melatonin with age, sex, body mass index, and 
systolic blood pressure (Table 2). 

In patients with PH, melatonin was inversely associated with age (r = −0.368, p = 0.003) and 
systolic blood pressure (r = −0.251, p = 0.046). In the subgroup of patients with PAH, melatonin was 
also inversely associated with age (r = −0.334, p = 0.029). No association was seen in patients with 
CTEPH (Table 2). 

Neither in patients with PH, nor in the subgroups of PAH and CTEPH, a correlation was found 
between melatonin levels with hemodynamic parameters (mean pulmonary artery pressure, 
pulmonary artery wedge pressure, pulmonary vascular resistance) and cardiac function (cardiac 
output, cardiac index, the 6-min walk distance, NYHA class) (Table 2). 
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Table 2. Correlations between plasma levels of melatonin and baseline characteristics. 

 Plasma levels of melatonin 
 Control PH PAH CTEPH 
 r p value r p value r p value r p value 

Baseline characteristics         
Age −0.119 0.212 −0.368 0.003 −0.334 0.029 −0.363 0.106 
Sex −0.070 0.466 0.103 0.417 0.112 0.475 0.159 0.491 
sBP −0.178 0.063 −0.251 0.046 −0.279 0.070 −0.015 0.949 
HR −0.229 0.016 0.088 0.488 0.155 0.321 −0.182 0.430 
BMI −0.025 0.796 −0.162 0.201 −0.140 0.372 −0.018 0.938 

mPAP   0.166 0.191 0.061 0.699 0.403 0.070 
PAWP   −0.028 0.841 −0.039 0.820 0.178 0.509 

PVR   0.094 0.518 0.097 0.584 0.091 0.737 
CO   −0.184 0.160 −0.154 0.351 −0.302 0.184 
CI   −0.185 0.158 −0.170 0.301 −0.339 0.133 

6MWD   0.103 0.459 0.164 0.340 −0.057 0.823 
NYHA   0.029 0.821 0.033 0.832 −0.084 0.717 

Significant correlations are shown in bold. PH: pulmonary hypertension; PAH: pulmonary arterial 
hypertension; CTEPH: chronic thromboembolic PH; sBP: systolic blood pressure; HR: heart rate; BMI: 
body mass index; mPAP: mean pulmonary arterial pressure; PAWP: pulmonary arterial wedge 
pressure; PVR: pulmonary vascular resistance; CO: cardiac output; CI: cardiac index; 6MWD: 6-min 
walking distance; NYHA: New York Heart Association classification. 

4.4. Logistic Regression Analyses 

Logistic regression analysis was performed to determine whether plasma melatonin was an 
independent risk factor that distinguishes PH patients and controls. Before correction for the 
potential confounders (age, sex, and body mass index), plasma melatonin distinguished PH patients 
and controls (Odds Ratio 1.035 (95% CI 1.016–1.055), p < 0.001), PAH patients and controls (1.036 
(1.016–1.057), p < 0.001), CTEPH patients and controls (1.029 (1.002–1.056), p = 0.033) (Table 3). 
However, after correction for potential confounders, although plasma melatonin still distinguished 
PH patients and controls, it only distinguished PAH patients but not CTEPH patients and controls 
(Table 3). These results indicated that plasma melatonin was only an independent risk factor for PAH, 
but not for CTEPH. 

Table 3. Logistic regression analyses of plasma melatonin to distinguish PH patients and controls. 

  
Univariate 

Multivariate # 
  Model 1 Model 2 

PH 
Odds Ratio 

(95% CI) 
1.035 

(1.016–1.055) 
1.048 

(1.022–1.074) 
1.047 

(1.021–1.073) 
p value <0.001 <0.001 <0.001 

PAH 
Odds Ratio 

(95% CI) 
1.036 

(1.016–1.057) 
1.049 

(1.022–1.076) 
1.047 

(1.020–1.074) 
p value <0.001 <0.001 <0.001 

CTEPH 
Odds Ratio 

(95% CI) 
1.029 

(1.002–1.056) 
1.025 

(0.989–1.062) 
1.025 

(0.988–1.062) 
p value 0.033 0.175 0.184 

#Model 1 was adjusted for age, and body mass index. Model 2 was adjusted for age, sex, and body 
mass index. CI: confidential interval. 

4.5. Long-Term Survival Analyses 

During a median follow-up time of 42 (32–58) months, 12 patients (11 PAH patients and 1 
CTEPH patient) reached the primary endpoint, the observed mortality rates were 19% (12/64) in the 
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total PH group, 26% (11/43) in the PAH subgroup, and 5% (1/21) in the CTEPH subgroup. Long-term 
survival analysis was performed in the PAH subgroup. 

Initially, PAH patients were stratified into 4 groups according to the quartiles of melatonin levels 
in the PAH subgroup: 1st quartile < 109.3 pM, 2nd quartile from 109.3 to 118.9 pM, 3rd quartile from 
118.9 to 147.7 pM, 4th quartile > 147.7 pM. The mortality in these 4 groups was 55% (6/11), 10% (1/10), 
0% (0/12), and 40% (4/10), respectively (Figure 3). No significant difference in the survival curves was 
observed among the 4 groups (Log-rank for trend, p = 0.478, Figure 4A). However, patients in the 1st 
quartile and 4th quartile seemed to have worse survival than others. Therefore, when considering 
melatonin levels as continuous variable in Cox proportional hazard analysis, there was no significant 
association between melatonin levels and mortality, without or with adjustment for age, sex, and 
body mass index (Table 4). 

 
Figure 3. Distribution of mortality in PAH patients. PAH patients were stratified into 4 groups 
according to the quartiles of melatonin levels in PAH patients: 1st quartile (Q1) < 109.3 pM, 2nd 
quartile (Q2) from 109.3 to 118.9 pM, 3rd quartile (Q3) from 118.9 to 147.7 pM, 4th quartile (Q4) > 147.7 
pM. The mortality per quartile was 55% (6/11), 10% (1/10), 0% (0/12), and 40% (4/10), respectively. 

Table 4. Cox proportional hazard analysis for death per pM increase in melatonin in PAH patients. 

Analyses Hazard ratio (95% CI) p value 
Univariate 0.995 (0.981–1.010) 0.546 

Multivariate #   
Model 1 0.999 (0.992–1.005) 0.653 
Model 2 0.998 (0.992–1.005) 0.645 

#Model 1 was adjusted for age, and body mass index. Model 2 was adjusted for age, sex, and body 
mass index. CI: confidential interval. 
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Figure 4. Long-term survival analysis in PAH patients. (A). There were no significant differences in 
long-term survival among 4 quartiles stratified according to melatonin levels in PAH patients. (B). 
There was no significant difference in long-term survival between patients with melatonin levels 
below and above the median (118.9 pM). (C). There was no significant difference in long-term survival 
between patients with melatonin levels in the 4th quartile (>147.7 pM) as compared to quartile 1–3. 
(D). Patients with melatonin levels in the 1st quartile (<109.3 pM) had a worse long-term cumulative 
survival than patients with melatonin levels in quartile 2–4. 

We next undertook a two-group survival comparison based on quartiles of melatonin levels. 
Kaplan–Meier analyses showed that there was no significant difference between patients with 
melatonin levels below and above the median (118.9 pM, Log-rank, p = 0.449, Figure 4B). Similarly, 
stratifying patients based on melatonin levels within and below the 4th quartile showed no difference 
in survival (147.7 pM, Log-rank, p = 0.122, Figure 4C). However, patients with melatonin levels in the 
1st quartile (<109.3 pM) had a worse long-term cumulative survival than patients with melatonin 
levels in the 2nd to 4th quartile (mean survival times were 46 (95% CI: 30–65) versus 68 (95% CI: 58–77) 
months, Log-rank, p = 0.026, Figure 4D) with a significant increased hazard ratio of 3.529 (95% CI: 
1.070–11.642, p = 0.038). 

When looking at baseline characteristics, patients with melatonin levels in the 1st quartile were 
older than others, while there was no difference in other characteristics (Table 5). After adjustment 
for age in the Cox model, the hazard ration of death for low melatonin levels was no longer significant 
(1.607 (95% CI: 0.402–6.426), p = 0.503)), suggesting that age may be a potential confounding variable. 

Table 5. Baseline characteristics in PAH patients in and above the 1st quartile of melatonin levels. 

 PAH  

 1st Quartile  
(<109.3 pM) 

Quartile 2–4 
(≥109.3 pM) p value 

n 11 32  
Aetiology    

iPAH, n (%) 
CTD-PAH, n (%) 
CHD-PAH, n (%) 

2 (18) 
6 (55) 
3 (27) 

13 (41) 
11 (34) 
8 (25) 

 

Age, years old 66 ± 13 48 ± 15 0.001 
Sex, women n (%) 9 (82) 20 (63) 0.213 
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sBP, mmHg 127 ± 14 123 ± 15 0.466 
HR, beats·min −1 79 ± 14 80 ± 18 0.965 

BMI, kg·m −2 27.1 ± 3.9 26.9 ± 6.8 0.931 
mPAP, mmHg 47.0 (38.0–65.0) 45.0 (38.8–65.3) 0.880 
PAWP, mmHg 13.0 ± 5.1 11.3 ± 5.8 0.450 

PVR, WU 5.7 (3.9–11.4) 8.8 (5.6–11.9) 0.316 
CO, L·min −1 5.1 ± 1.5 4.8 ± 1.4 0.522 

CI, L·min −1·m −2 2.9 ± 0.8 2.6 ± 0.7 0.312 
6MWD, m 271 ± 148 356 ± 152 0.172 

NYHA, 1:2:3:4 0:4:4:3 1:9:19:3 0.359 
Data are presented as mean ± SD, median (IQR), or numbers (percentages). Student T Test, Mann–
Whitney U Test, or chi-square test were used for comparison. PAH: pulmonary arterial hypertension; 
iPAH: idiopathic PAH; CTD-PAH: connective tissues diseases associated PAH; CHD-PAH: 
congenital heart diseases associated PAH; sBP: systolic blood pressure; HR: heart rate; BMI: body 
mass index; mPAP: mean pulmonary arterial pressure; PAWP: pulmonary arterial wedge pressure; 
PVR: pulmonary vascular resistance; CO: cardiac output; CI: cardiac index; 6MWD: 6-min walking 
distance; NYHA: New York Heart Association classification. 

5. Discussion 

The present study demonstrates, for the first time, that plasma melatonin levels at the time of 
diagnosis predict clinical outcome in patients with PAH. The main findings of the study are that 
plasma melatonin levels were higher in treatment-naïve patients with PH than in healthy controls, 
which was supported by the findings in two experimental models of PH. Higher levels of melatonin 
were an independent risk factor of PAH in logistic regression analysis. However, lower levels of 
melatonin were predictive of worse long-term survival for PAH patients. 

Our study demonstrates that plasma melatonin levels were higher in treatment-naïve patients 
with PH when compared with healthy individuals, as well as in two rat models with monocrotaline- 
or Sugen-hypoxia-induced PH as compared to control rats, suggesting an increase in melatonin in 
PH. These data seem to be in contrast with a recent study, showing that melatonin was decreased in 
serum from PAH patients [12]. An important difference with our study is that the cohort in the study 
of Zhang et al. was small (15 PAH patients versus 8 controls), and that the patients were treated with 
PAH medication whereas our patients were treatment-naïve. 

The pathophysiological mechanisms underlying higher levels of melatonin in treatment-naïve 
patients with PH versus healthy controls are unclear. It has been shown that melatonin levels decline 
with age in healthy humans [26]. In contrast, such a negative correlation was absent in the healthy 
controls in our cohort, but was present in PH patients. As PH patients, that were generally older, had 
even higher levels of melatonin than the younger controls, the difference between PH and controls is 
unlikely to be caused by the age difference. 

Melatonin is mainly produced by the pineal gland [4], and is an important regulator of circadian 
rhythm [27,28]. Therefore, an entire 24 h profile of melatonin levels, with knowledge sleeping 
patterns, is preferable to describe the melatonin levels, with samples taken under a strict light control 
(<10 lux) because of the strong direct suppressive effect of light on melatonin synthesis in the pineal 
gland. However, melatonin production in the pineal gland, which increases at night, is stable during 
daytime and shows seasonal variation [25,29]. Since we did not observe a seasonal sampling effect 
on melatonin levels in either healthy controls or PH patients (data not shown) and higher melatonin 
levels were also present in two rat models of PH, which were housed in the same facility with 
identical light–dark cycles, we believe that the increased melatonin represents a feature of disease. 

In addition to synthesis in the pineal gland, the enzymes that convert serotonin into melatonin, 
serotonin N-acetyltransferase and N-Acetylserotonin O-methyltransferase, were found to be present 
not only in the pineal gland but also in the plasma [30] and the lung [31]. Melatonin synthesis can be 
activated by the activation of sympathetic system and renin-angiotensin system [32–35]. PH patients 
and the two rat models of PH have previously been shown to exhibit increased sympathetic activity 
(consistent with a higher heart rate in PH patients in the present study) as well as activation of the 



J. Clin. Med. 2020, 9, 1248 10 of 13 

 

renin-angiotensin system [36–40]. Moreover, serotonin, the precursor of melatonin, is increased in 
the plasma of patients with pulmonary hypertension [41]. These may have contributed to the higher 
levels of melatonin in plasma. 

Although there are differences in the pathophysiology between PAH and CTEPH, endothelial 
dysfunction and pulmonary vascular remodeling are common features for both subgroups [2]. 
Interestingly, melatonin levels were increased in both PAH and CTEPH patients, but did not correlate 
with hemodynamic parameters or cardiac functional severity, as evidenced by a lack of correlation 
with pulmonary artery pressure, pulmonary vascular resistance, cardiac output, 6MWD, and NYHA 
class. Although melatonin levels were similarly elevated in patients with PAH and CTEPH, 
melatonin appeared only as an independent risk factor for PAH but not for CETPH in logistic 
regression. In addition, 11 out of 43 patients with PAH died, whereas all CTEPH patients except one 
survived. This might be attributed to the fact that PAH patients showed a more severe PH phenotype 
with higher pulmonary vascular resistance than CTEPH patients, and indicates that melatonin is not 
simply a reflection of disease severity. Importantly, in PAH patients, lower melatonin levels were 
associated with a worse long-term survival although age may be a confounding factor in this 
association. Worse survival with lower melatonin levels is in accordance with a recent study showing 
that lower levels of melatonin in patients with dilated cardiomyopathy correlated with a poor 
prognosis, worse cardiac function (lower cardiac output) and more cardiac injury (i.e., higher levels 
of troponin T) [6]. Furthermore, several studies show cardiovascular protective effects of exogenous 
melatonin in both humans and animal models [5–7,42,43], suggesting that higher endogenous 
melatonin levels may exert a protective effect in PH. Indeed, melatonin induces vasodilation, has 
anti-proliferative effects as well as antioxidant and anti-inflammatory properties [11–18,44], thereby 
counteracting the vasoconstriction, excessive cell proliferation, increased oxidative stress, and 
inflammatory infiltration characteristic of PH [3]. We therefore propose that PAH patients with 
endogenous melatonin in the lowest quartile may have lost the benefits of its protective effects. 
Importantly, a protective effect of exogenous melatonin is still present in the rat models of PH 
[12,17,18] as utilized in the present study, despite the fact that our study shows that the endogenous 
levels of melatonin were already increased in these models. Conversely, PAH patients with the 
highest levels of endogenous melatonin seemed to have a high mortality in the present study. We 
believe that these high endogenous melatonin levels may be attributed to hyper-activation of 
sympathetic system and/or renin-angiotensin system [32–35], which are present in severe PAH 
patients and therefore contribute to a poor survival [40,45,46]. Therefore, whether exogenous 
melatonin supplements may be effective as a therapeutic strategy in patients with PH remains to be 
established. 

6. Conclusion 

To our knowledge, this is the first prospective cohort study demonstrating that lower levels of 
plasma melatonin at the time of diagnosis predict worse long-term survival in PAH patients, 
however, whether exogenous melatonin supplements may be effective as a therapeutic strategy in 
human PH remains to be established. 
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