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Abstract: The bromodomain and extra-terminal domain family inhibitors (BETi) are a promising new
class of anticancer agents. Since numerous anticancer drugs have been correlated to cardiomyopathy,
and since BETi can affect non-cancerous tissues, we aimed to investigate in healthy animals any
ultrastructural BETi-induced alterations of the heart as compared to skeletal muscle. Male Wistar rats
were either treated during 3 weeks with I-BET-151 (2 or 10 mg/kg/day) (W3) or treated for 3 weeks
then allowed to recover for another 3 weeks (W6) (3-weeks drug washout). Male C57Bl/6J mice
were only treated during 5 days (50 mg/kg/day). We demonstrated the occurrence of ultrastructural
alterations and progressive destruction of cardiomyocyte mitochondria after I-BET-151 exposure.
Those mitochondrial alterations were cardiac muscle-specific, since the skeletal muscles of exposed
animals were similar in ultrastructure presentation to the non-exposed animals. I-BET-151 decreased
the respiration rate of heart mitochondria in a dose-dependent manner. At the higher dose, it also
decreased mitochondrial mass, as evidenced by reduced right ventricular citrate synthase content.
I-BET-151 reduced the right and left ventricular fractional shortening. The concomitant decrease
in the velocity-time-integral in both the aorta and the pulmonary artery is also suggestive of an
impaired heart function. The possible context-dependent cardiac side effects of these drugs have to
be appreciated. Future studies should focus on the basic mechanisms of potential cardiovascular
toxicities induced by BETi and strategies to minimize these unexpected complications.
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1. Introduction

The bromodomain (BRD) and extra-terminal domain (BET) family inhibitors (BETi) are a
promising new class of anticancer agents [1]. Indeed, BET proteins mediate protein–protein interaction
networks between diverse arrays of partners, and function as mitosis bookmarks, protein scaffolds and
chromatin regulators in cellular processes; controlling proliferation and cell cycle progression. BETi are
also promising in the treatment of latent virus infections by disrupting transcriptional co-regulators [1].

The BET family includes BRD2, BRD3, BRD4, and BRDT, which are part of a class of proteins
called histone readers. BRD2, BRD3 and BRD4 are ubiquitously expressed, whereas BRDT is localized
primarily to the testis [2]. BRD-containing proteins selectively bind to acetyl lysine marks placed by
histone modifying enzymes (HATs/KATs) [3]. BET binding to acetylated chromatin subsequently
activates RNA Pol II-driven transcriptional elongation. Small molecule BET inhibitors prevent binding
of BET proteins to acetylated histones and inhibit transcriptional activation of BET target genes [3].
BETi like JQ1 and I-BET-151, a highly specific and potent inhibitor of BRD2/3/4 [4,5], have shown
encouraging activity in multiple preclinical models of medulloblastoma [2], prostate cancer [6], NUT
midline carcinoma (NMC), T-Cell Acute Lymphoblastic Leukemia (T-ALL) [7], ovarian cancer [8], drug
resistant myeloma [9,10], uveal melanoma [11], breast cancer cells [12], hepatocellular carcinoma [13],
Ewing sarcoma [14,15], and gastric cancer [16], among others (please see the review from French
Cancer Agency [17] for a recent overview of the BETi in preclinical models).

Since numerous anticancer drugs have been correlated to cardiomyopathy [18,19], and since BETi
can affect non-cancerous tissues, we aimed to investigate any ultrastructural alterations of the heart
induced by BETi in healthy animals. We focused at the mitochondrial mass and function and not on
inflammatory-mediated changes or apoptosis-related changes, because we already observed that the
cardiotoxicity of two other chemotherapies (imatinib and masitinib) was related to severe cardiac
mitochondrial alterations (unpublished data), observations that were consistent with the findings from
Kerkelä et al. [20]. Moreover, we did not observe inflammatory infiltrates nor ultrastructural features
of apoptosis in our sections [21]. For this reason, we did not study the inflammatory-mediated changes
or apoptosis-related changes in the hearts of I-BET-151 treated animals.

We used transmission electron microscopy (TEM) to examine the hearts from mice and rats
exposed to I-BET-151 as compared to non-exposed animals. We found ultrastructural alterations in the
mitochondria of cardiomyocytes in exposed animals. For this reason, we performed dose-response
experiments followed by a drug washout period in rats to address the potential reversibility of the
observed side effects induced by I-BET-151. We analyzed the heart ultrastructure by TEM after the
treatment and the washout periods. We also assessed the heart function in all groups at three time
points (basal, at the end of the treatment, and after the drug washout periods) by echocardiography
and carried out mitochondrial functional assays in permeabilized cardiac ventricular fibers upon
sacrifice of the animals. In parallel to our investigations in the cardiac muscle, we also performed TEM
analysis of the skeletal muscle to assess the potential systemic effects of BRD inhibition.

2. Results

2.1. I-BET-151 Induces Heart-Specific Ultrastructural Alterations of Mitochondria in Healthy Male Mice
and Rats

Ultrastructural alterations of the heart tissue are displayed in Figures 1 and 2, and quantified in
Table 1.
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Figure 1. Transmission electron micrograph of right ventricle (RV) and of the left ventricle (LV) in 
rats at week 3 (W3) (A,a,C,c,E,e for RV and G,g,I,i,K,k for LV) and at week 6 (W6) (3-weeks drug 
washout) (B,b,D,d,F,f for RV and H,h,J,j,L,l for LV). (A,a,B,b,G,g,H,h): non-treated rats. 
(C,c,D,d,I,i,J,j): 2 mg I-BET-151/kg/day treated rats. (E,e,F,f,K,k,L,l): 10 mg I-BET-151/kg/day treated 
rats. SM indicates sub-sarcolemmal mitochondria; IM, interfibrillar mitochondria; Vac, vacuole; Tt, T 
tubule; M, M line; Z, Z line. Bar scale is indicated on each micrograph. Selection of the most 
representative pictures from three animals per group. 

Figure 1. Transmission electron micrograph of right ventricle (RV) and of the left ventricle (LV) in rats
at week 3 (W3) (A,a,C,c,E,e for RV and G,g,I,i,K,k for LV) and at week 6 (W6) (3-weeks drug washout)
(B,b,D,d,F,f for RV and H,h,J,j,L,l for LV). (A,a,B,b,G,g,H,h): non-treated rats. (C,c,D,d,I,i,J,j): 2 mg
I-BET-151/kg/day treated rats. (E,e,F,f,K,k,L,l): 10 mg I-BET-151/kg/day treated rats. SM indicates
sub-sarcolemmal mitochondria; IM, interfibrillar mitochondria; Vac, vacuole; Tt, T tubule; M, M line; Z,
Z line. Bar scale is indicated on each micrograph. Selection of the most representative pictures from
three animals per group.
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(G–L) mouse right ventricle (A–C,G–I) and left ventricle (D–F,J–L). SM indicates sub-sarcolemmal 
mitochondria; IM, interfibrillar mitochondria; PM, perinuclear mitochondria, Vac, vacuole; N, 
nucleus; M, M line; Z, Z line. Asterisks indicate lipid droplets. Bar scale is indicated on each 
micrograph. Selection of the most representative pictures from three animals per group. 

 
Figure 3. Transmission electron micrograph of non-treated (A,D) and treated (B,C,E,F) rat (A–C) and 
mouse (D–F) skeletal muscle. Rats were treated with 10 mg/kg/day of I-BET-151 while mice were 
treated with 50 mg/kg/day of I-BET-151. Bar scale is indicated on each micrograph. Selection of the 
most representative pictures from three animals per group. 

2.2. I-BET-151 Decreases Cardiac Mitochondrial Function in Healthy Rats 

In order to know if changes in mitochondrial structure observed by TEM after I-BET-151 
treatment were associated with alterations of mitochondrial function, mitochondrial oxidative 
capacities were measured in permeabilized fibers prepared from the left ventricle (Figure 4A). In the 

Figure 2. Transmission electron micrograph of non-treated (A–F) and 50 mg I-BET-151/kg/day treated
(G–L) mouse right ventricle (A–C,G–I) and left ventricle (D–F,J–L). SM indicates sub-sarcolemmal
mitochondria; IM, interfibrillar mitochondria; PM, perinuclear mitochondria, Vac, vacuole; N, nucleus;
M, M line; Z, Z line. Asterisks indicate lipid droplets. Bar scale is indicated on each micrograph.
Selection of the most representative pictures from three animals per group.

I-BET-151 led to ultrastructural alterations of heart mitochondria in healthy rats and mice.
In control (non-exposed) rats at each stage, mitochondria were aligned along the sarcomeres without
intermitochondrial spaces and they were of normal size, i.e., approximately the length of a sarcomere,
both in the right (Figure 1A,a,B,b) and in the left (Figure 1G,g,H,h) ventricles. The mitochondrial matrix
looked dense and homogeneous with well distributed cristae (i.e., lamellar and parallel organization
of the inner membrane), and mitochondrial alterations were very rare (Table 1). Sarcomeres occupied
the entire cardiomyocyte area and had a normal structure; the Z-line, and I-band, A-band, and M-line
could be easily identified.

After 3 weeks (W3) of exposure with the high dose of I-BET-151 (10 mg/kg/day), we observed
a significant alteration of mitochondrial ultrastructure, both in the right (Figure 1E,e) and in the left
(Figure 1K,k) ventricles. These alterations affected mitochondria independently of their localization
in the cardiomyocyte (i.e., sub-sarcolemmal, interfibrillar, and perinuclear). Mitochondria appeared
swollen and more heterogeneous in size and shape. Mitochondria were fragmented with fewer cristae
which made the mitochondrial matrix less opaque to electrons. In the right ventricle, this phenotype
was accompanied by a complete disorganization of the cristae and vacuolization of the matrix space (i.e.,
signs of irreversible cell injury). In the left ventricle, some mitochondria had either a rearrangement of
the cristae with an “onion ring-like” appearance (not shown), or electron opacification of their content
indicating the beginnings of vacuolization (Figure 1k). These mitochondrial alterations were cardiac
muscle-specific since skeletal muscles of exposed animals (Figure 3B,C) were similar in ultrastructure
to the non-exposed animals (Figure 3A). In contrast, sarcomere ultrastructure was well preserved
at W3.
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Table 1. Proportion of altered mitochondria amongst total mitochondrial population. Altered mitochondria
were mitochondria with anomalies (A) or vacuoles (V). The sum of mitochondria with anomalies and
mitochondria with vacuoles represents the totality of altered mitochondria (Total). Statistical analysis:
multifactorial ANOVA. ¶—p ≤ 0.05 for the dose effect; §—p ≤ 0.05 for the washout effect; U—p ≤ 0.05 for
the ventricle effect; i—p ≤ 0.05 for the interaction effect. Post hoc Newman–Keuls test: * p ≤ 0.05, ** p ≤
0.01, *** p ≤ 0.001 for difference versus the control group (at a given time and for a given ventricle),
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Figure 3. Transmission electron micrograph of non-treated (A,D) and treated (B,C,E,F) rat (A–C) and
mouse (D–F) skeletal muscle. Rats were treated with 10 mg/kg/day of I-BET-151 while mice were
treated with 50 mg/kg/day of I-BET-151. Bar scale is indicated on each micrograph. Selection of the
most representative pictures from three animals per group.

When treated with I-BET 151 at the dose of 10 mg/kg/day, mitochondrial damage seemed less
severe in the right ventricle (Figure 1F,f) and seemed to be sustained in left ventricles after the washout
period (W6) (Figure 1L,l). Indeed, only 17 ± 4.2% of mitochondrial population exhibited alterations in
right ventricle after the washout period while 61.7 ± 10.9% of the mitochondria were damaged at W3
(Table 1). The beneficial effect of this washout period was not observed in the left ventricle in which
61.3 ± 8.4% and 60.9 ± 10.7% of the mitochondria were altered at W3 and W6 respectively (Table 1).
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However, right ventricular sarcomeres displayed significant I- and A-band alterations at W6 (Figure 1f).
These structures were less opaque to electrons suggesting damage of the contractile apparatus.

Although not statistically significant, after 3 weeks of exposure with the low dose of I-BET-151
(2 mg/kg/day), there was a strong trend towards less severe mitochondrial injury as compared to
the higher dose, both in the right (Figure 1C,c and Table 1) and in the left (Figure 1I,i and Table 1)
ventricles. Even so, these alterations affected mitochondria independently of their localization in the
cardiomyocyte. Mitochondrial matrix appeared less opaque to electrons with a disorganization of
the cristae and a beginning of vacuolization of the matrix space (i.e., sign of irreversible cell injury)
and sarcomere ultrastructure was well preserved. At this low dose, after the washout period (W6)
mitochondrial damage seemed irreversible both in the right (Figure 1D,d and Table 1) and in the
left ventricles (Figure 1J,j and Table 1) since the mitochondrial modifications and the proportion of
altered mitochondria were similar to those observed at W3 (Table 1); on the other hand sarcomeres
were preserved.

In control mice, as is the case in control rats, mitochondria in the right (Figure 2A–C) and in the left
(Figure 2D–F) ventricles were numerous and aligned along the sarcomeres without intermitochondrial
space. Mitochondria contained well aligned, lamellar and parallel cristae, which extended through
the entire body of the organelle with a homogeneous distribution. Sarcomeres occupied the entire
cardiomyocyte area and had a normal structure. Some lipid droplets could be observed in the right
ventricle (Figure 2B,C). After 5 days of exposure with I-BET-151 (50 mg/kg/day), we observed a
significant deterioration of mitochondrial ultrastructure in the right ventricle (Figure 2G–I), which
primarily affected sub-sarcolemmal mitochondria. Fewer and smaller mitochondria were observed,
and these were characterized by an altered shape, transitioning from a tubular-like to a spherical-like
shape. Nonetheless, accurate quantification of these changes was difficult in the absence of 3D
reconstruction by tomography. Moreover, the spaces between mitochondria were extensively enlarged
(Figure 2H). Some interfibrillar mitochondria had a fragmentation of their cristae making the
mitochondrial matrix less opaque to electrons. Sarcomere integrity was altered in the right ventricle,
leading to a loss of myofibrils on the periphery of myocytes. In the left ventricle (Figure 2J–L),
we observed an abnormal accumulation of lipid droplets suggesting an alteration of the fatty acid
metabolism (Figure 2L). Some mitochondria had a total destruction of their inner membrane with loss
of cristae (Figure 2J). Others showed signs of vacuolization (Figure 2K). The structure of sarcomeres
seemed to be preserved at the exception of some myofibrils. As is the case in rats, I-BET-151
in mice induced cardiac muscle-specific mitochondrial alterations, since the skeletal muscles of
exposed animals (Figure 3E,F) were similar in ultrastructure presentation to the non-exposed animals
(Figure 3D).

2.2. I-BET-151 Decreases Cardiac Mitochondrial Function in Healthy Rats

In order to know if changes in mitochondrial structure observed by TEM after I-BET-151 treatment
were associated with alterations of mitochondrial function, mitochondrial oxidative capacities were
measured in permeabilized fibers prepared from the left ventricle (Figure 4A). In the presence of
glutamate and malate (complex I-driven respiration), the respiration rate measured after the addition
of 0.1 mM ADP was significantly lower in I-BET-151 treated groups than in the control group. Increased
ADP (2 mM), gave a trend (p = 0.116) towards a lower maximal complex I-driven respiration in
fibers from animals after 3 weeks of treatment with the high dose of I-BET-151 (10 mg/kg/day).
This difference in oxygen consumption between control and high dose groups became statistically
significant when pyruvate and succinate (allowing the electron transfer from complex II) were added
in the respiration solution, suggesting a decreased mitochondrial function in the myocardium of rats
treated with 10 m/kg/day of I-BET-151.
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band, A-band, and M-line could be easily identified. 
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In contrast, three weeks of treatment with low dose of I-BET-151 (2 mg/kg/day) did not
significantly affect the mitochondrial oxidative capacities of the rat heart (with 2 mM ADP and
pyruvate/succinate). The end of the protocol required addition of amytal (a complex I inhibitor) which
also revealed data suggesting deleterious effects of high dose of I-BET-151 treatment. Indeed, a strong
trend towards lower respiration rates (complex II-driven respiration) was observed following amytal
in the high dose group whilst the effects in fibers from 2 mg/kg/day I-BET-151 treated animals was
less marked.
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Although the activity of citrate synthase (CS), which is commonly used as a marker of
mitochondrial mass, was not affected in left ventricle at W3 or W6 with low or high dose of I-BET-151
(Figure 4B), the cytochrome oxidase (COX) activity was significantly decreased after 3 weeks of
treatment with 2 or 10 mg/kg/day of I-BET-151 (Figure 4C). Surprisingly, three weeks after treatment
cessation (W6), this parameter seemed to be completely restored in the high dose group (p = 0.12,
W3 vs. W6) while in the low dose group, it did not significantly increase between W3 and W6 and
tended to stay lower than control group after the washout period although this difference was not
statistically significant. The measurement of these same enzyme activities in the right cardiac ventricle
(RV) showed significant decreases in these parameters at the end of the treatment (W3) with I-BET-151
at the dose of 10 mg/kg/day (Figure 4D,E); these activities were significantly restored after three weeks
of washout (W6). The activity of these enzymes in the right ventricle was not altered by treatment with
the low dose of I-BET-151.

Overall, these data indicate that I-BET-151 altered mitochondrial function in a dose-dependent
manner inasmuch as the effects of the low dose treatment were much less marked than the effects
observed in the high dose group. In this latter case, the fact that the decreases in oxygen consumption
and COX activity at W3 were associated with no alteration in CS activity strongly suggests that the
treatment specifically affects the mitochondrial respiratory chain without having any consequences
on mitochondrial mass. Although the alterations of mitochondrial functions are not as clear in the
low dose group as they are in the high dose group, the decrease in COX activity in this group at W3
demonstrates mitochondrial damage. Nevertheless, the consequences on maximal mitochondrial
respiration (complex I-driven respiration and complex-II driven respiration) were not clearly shown
since COX is not a limiting enzyme and because the mitochondrial damage induced by low dose
treatment was too mild to induce major damage to mitochondrial respiration. Yet, the significant
decrease in respiration rate measured with 0.1 mM ADP in both treated groups proved that cardiac
mitochondria of rats treated with 2 mg/kg/day are not identical to fully healthy mitochondria of the
control rat hearts. Although the decrease in these parameters only suggests changes in ADP affinity of
the mitochondria, this could imply important reorganization of these organelles. The fact that COX
activity recovery in LV at W6 (three weeks after having stopped the treatment) was not as clear in
low dose group as it was in high dose group has to be considered and could mean that even if the
mitochondria only seem to be mildly affected, the damages could be irreversible.

2.3. I-BET-151-Induced Ultrastructural and Metabolic Alterations of Cardiac Mitochondria Affect
Heart Function

At the high dose (10 mg/kg/day I-BET-151), TEM analyses showed clear mitochondrial damage
that seemed less severe after the washout period, especially in RV (Figure 1F,L,l and Table 1).
The metabolic assays demonstrated a patent decrease in oxidative capacities of cardiac mitochondria
after this high dose treatment (Figure 4A). Enzyme activity measurements in high dose groups
supported this finding (decrease in the COX activity in the LV and in the CS and in the COX
activities in the RV) and demonstrated a real recovery after the washout period since COX and
CS activity values went back to control values (Figure 4B–E). This correlates with the reduction in the
left ventricular fractional shortening values (LVFS, %) after the treatment period and their recovery
after the washout period (Figure 5D). By contrast, the persistent (even the progressive) reduction
of the right ventricular fractional shortening (RVFS, %) after the washout period (Figure 5B) does
not correlate with the metabolic recovery and the normalization of the mitochondrial ultrastructure
at this time point. However, the alterations in the contractile apparatus that we found specifically
in the RV cardiomyocytes (Figure 1F) may partly explain this discrepancy. The decrease in the
velocity-time-integral (VTI) in both the aorta and the pulmonary artery observed at the high dose is
also suggestive of an impaired heart function (Figure 5A,B).
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Figure 5. Effect of I-BET-151 on heart function assessed by echocardiography. Velocity-time-integral
(mm) in the pulmonary artery (A). Right ventricular fractional shortening (%) (B). Velocity-time-integral
in the aorta (mm) (C). Left ventricular fractional shortening (%) (D). Pulmonary artery acceleration
time (ms) (E). Right ventricular ejection time (ms) (F). Between six and 12 rats per group (12 at baseline
and W3, six at W6). W0: baseline, W3: Week 3, 3 weeks of exposure to I-BET-151 or vehicle only; Week
6: 3 weeks of exposure to I-BET-151 or vehicle only followed by 3 weeks of drug wash out. * p < 0.05,
** p < 0.01, and *** p < 0.01 as compared to control group (at W0, W3, or W6).

At a low dose (2 mg/kg/day I-BET-151), TEM analyses showed less severe mitochondrial injuries
as compared to the higher dose (Table 1). Yet, the observed alterations seem irreversible since there
was no apparent improvement after drug washout (Figure 1D,d,J,j and Table 1). The biochemical
analyses confirmed that the mitochondrial damage was modest at this low dose, since only the COX
level was statistically decreased in the left ventricle (LV) (Figure 4C). Metabolic analyses showed a
small trend towards a reduction in mitochondrial respiration in this group (Figure 4A). Interestingly,
COX levels remained low after the washout period as compared to the high dose treatment although
this difference did not reach significance. This suggests that low dose-induced mitochondrial damage,
although small, may be irreversible. This fits with the reduced RVFS and LVFS that persisted in this
group after drug washout (Figure 5B,D).
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3. Discussion

The ultrastructural alterations and progressive destruction of heart muscle mitochondria but
not of skeletal muscle mitochondria after I-BET-151 exposure suggest that BET inhibition may have
detrimental specific effects on energy generation and/or cardiac function in healthy rats and mice.
We provide evidence that I-BET-151 decreases the respiration rate of mitochondria in a dose-dependent
manner with complex I- and II-driven respiration being particularly affected. At the higher dose
(10 mg/kg/day), it also decreased mitochondrial mass, as evidenced by reduced RV content in
citrate synthase. Those modifications may decrease myocardial contractility, as suggested by the
significant reductions in RVFS and LVFS. The decrease in the velocity-time-integral (VTI) in both the
aorta and the pulmonary artery observed at the same dose is also suggestive of an impaired heart
function. I-BET-151-induced functional, metabolic and ultrastructural cardiac alterations were partially
reversible after 3 weeks washout.

This observation appears to contradict previous studies demonstrating that BET inhibition
alleviates heart failure (HF) in experimental models of pressure overload [22–24] and of acute
myocardial infarction (AMI) [25]. One explanation for this apparent contradiction is that BRD4
protein expression is increased during the TAC-induced cardiac hypertrophy [22] even though it
is not consistently reported [23]. BRD2 and BRD4 mRNA and protein expression levels are also
significantly increased in the AMI group compared with those in the sham group [25]. BET inhibition
could be beneficial at high BET expression to restore “healthy” BET activity whereas it could be
detrimental at basal BET expression as seen here in healthy control rats; leading to a failure of normal
BET homeostasic functions. Another possible explanation is that all three studies cited above used JQ1
as the BET inhibitor whereas we used I-BET-151. It may be that the heart ultrastructural alterations we
observed are compound- and not class-specific. However, the in vitro comparison of dissimilar BET
inhibitors (I-BET, I-BET-151, RVX-208, and PFI-1) demonstrated that at equimolar doses, the inhibition
of agonist-induced cardiomyocyte hypertrophy was a class effect of BET inhibitors [23]. Of course, a
remaining general limitation associated with conventional occupancy-driven target inhibition is that
it often demands full target engagement, requiring sustained high concentrations of a potent small
molecule inhibitor over a prolonged time. This in turn enhances off-target effects and can lead to
unwanted side effects or toxicity in a therapeutic setting [26].

The potential cardiac toxicity of I-BET-151, this deleterious effect could be mediated through
c-Myc antagonism. Indeed, c-Myc inhibitors, including BET inhibitors, share a common mechanism of
action involving ATP depletion [27]. This involves the depletion of ATP stores due to mitochondrial
dysfunction and the eventual down-regulation of c-Myc protein. Because c-Myc is needed to
sustain glycolysis, mitochondrial biogenesis and oxidative phosphorylation [28–30], the loss of
its function upon inhibitor treatment leads to a rapid suppression of these energy-generating
pathways resulting in either terminal differentiation or apoptotic cell death. The effects of c-Myc
depletion on ATP levels can be mimicked by pharmacologic inhibition of the mitochondrial electron
transport chain without affecting Myc levels [27]. At the ultrastructural level, mitochondrial mass is
significantly reduced and the remaining organelles become atrophic in the absence of c-Myc [29,30].
The mitochondria of c-Myc−/− cells were not only less abundant and smaller (average length
approx. 500 nm) than those of c-Myc+/+ cells (average length approx. 800 nm), but lacked elaborate
cristae patterns [30]. In accordance with the reversibility of the deleterious consequences of Brd4
inhibition [31], reconstitution of c-Myc in c-Myc−/− cells, not only partially rescues mitochondrial
mass but also increases the number of morphologically normal mitochondria as determined by
TEM [29]. From these studies, we could hypothesize that the ultrastructural alterations of heart muscle
mitochondria we observed in healthy mice and rat exposed to I-BET-151 may be the consequence of
c-Myc inhibition.

Our study has limitations. First, we didn’t analyze the possible gender-specific effect of I-BET-151.
This is indeed a relevant issue, as a sexual dimorphism of some anticancer drug-related cardiotoxicities
has been described in humans and in animal models such as in anthracycline (doxorubicin)-mediated
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cardiotoxicity [32]. We have previously reported mitochondrial dysfunction and energy signaling
as a critical mediator of sex differences in doxorubicin cardiotoxicity in rats [33]. After 7 weeks of
doxorubicin (2 mg/kg/day per week), male Wistar rats developed major signs of cardiomyopathy
with cardiac atrophy, reduced left ventricular ejection fraction and 50% mortality. In contrast, no
females died and their left ventricular ejection fraction was only moderately affected. Since numerous
anticancer drugs have been correlated to cardiomyopathy and heart failure, and since BETi can
affect non-cancer tissues, it was important to explore the cardiac side effects of BETi in animals.
We decided to first use males in this study since they are more sensitive to anticancer drug-related
cardiotoxicity. Males clearly demonstrated alterations in cardiac morphology and function after
I-BET-151 exposure and since mitochondria have a central role for sex differences in pathologies [34],
the question of a sex-specific effect in BETi-mediated cardiotoxicity has to be addressed. At present,
clinical and experimental studies regarding the role of BETi in cancer therapy or their side effects
have been performed in groups including both males and females or in male or female animals
respectively. There is no data available comparing both sexes. Thus, retrospective and prospective
human studies as well as basic studies are needed in order to understand the basis for a possible sexual
dimorphism of BETi cardiotoxicity and to develop new therapeutic approaches. Second, the known
BRD inhibition-induced gastrointestinal (GI) toxicity [31] may favor cardiac dysfunction. For instance,
it is recognized that GI damage may be a critical factor in acute iron poisoning [35]. Loss of body
fluid following GI injury may lead to decreased blood volume and increased blood viscosity. Blood
pressure and tissue perfusion decrease, leading to diminished cardiac output and eventual cardiac
failure. There is also an increasing evidence to suggest that a “leaky” bowel wall may lead to
translocation of bacteria and/or endotoxin, which may be an important stimulus for inflammatory
cytokine activation in chronic heart failure [36] and in pulmonary arterial hypertension [37]. Third,
we did not analyze the glycolysis that could compensate the decrease in the respiration rate of the
mitochondria. Nonetheless, the decreased heart function associated with the reduced mitochondrial
respiration induced by I-BET-151, is highly suggestive that glycolysis does not compensate the loss of
energy production originating from the mitochondrial damage. Fourth, male Wistar rats were treated
for 3 weeks whereas male C57Bl/6J mice were only treated during 5 days. Indeed, the experiments in
mice had to be stopped early due to significant weight loss (see “Materials and Methods”). As matter
of explanation, the rats weighing 100 g are probably adolescents and mice are not (30 g). Previous
work with rodents has shown higher resistance to anticancer drugs in younger animals [38]. Finally, it
is unclear why skeletal muscle was unaffected by I-BET-151 treatment and further studies are required
to comprehensively analyze the differences in response of these two muscle fiber types.

In conclusion, BET inhibition is a promising new option for cancer management, and recent
studies demonstrate a usefulness of BET inhibitors beyond cancer treatment, for instance in the fields
of cardiac hypertrophy and heart failure, and of chronic inflammatory diseases. However, the possible
context-dependent cardiac side effects of these drugs have to be appreciated. Future studies should
focus on the basic mechanisms of the potential cardiovascular toxicities induced by BETi and strategies
to minimize these unexpected complications.

4. Materials and Methods

4.1. In Vivo Studies

Experiments were conducted according to the European Union regulations (Directive 86/609 EEC)
for animal experiments and complied with our institution’s guidelines for animal care and handling.
The animal facility is licensed by the French Ministry of Agriculture (agreement No. B92-019-01).
The Committee on the Ethics of Animal Experiments CEEA26 CAPSud approved the study (Project
#13141, approved on 15 June 2017). Dr. Perros supervised all animal experiments (agreement delivered
by the French Ministry of Agriculture for animal experiment No. A92-392). All efforts were made to
minimize animal suffering.
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I-BET-151 (GSK) was given per os in dextrose 5%, DMSO 5%. The 10 mg/kg /day I-BET-151 dose
used in rats and the 50 mg/kg/day I-BET-151 dose used in mice are doses commonly used in the
literature [23,39]. We used them because it is difficult to extrapolate the doses to be used in rodents
from the doses defined for human use due to the different pharmacokinetic and bioavailability profiles
among species. Nevertheless, we postulate that the cardiac effects of the 2 mg/kg/day I-BET-151 dose
in rats is likely to be similar to that of the human treatment regimen [40].

Male Wistar rats (100 g) were either treated for 3 weeks (W3) or treated for 3 weeks followed by a
3 weeks washout period (W6). Male C57Bl/6J mice (30 g) were only treated during 5 days. Indeed, the
experiments in mice had to be stopped early due to significant weight loss. At experiment termination
(W3 or W6 for rats and 5 days for mice), animals were anesthetized with 2 L/min O2/3% isoflurane
(Minerve, Esternay, France) and euthanized by IV injection of KCl (3 M) before tissue sampling.
Control animals received only the solvent (dextrose 5%, DMSO 5%) following the same schedule.

The observable side effects of I-BET-151 after 3 weeks treatment (W3) and 3 weeks drug washout
(W6) in rats are listed in Table 1.

4.2. Echocardiographic Evaluation

Evaluation by trans-thoracic echocardiography (TTE) was performed with a digital ultrasound
system (Vivid E9, GE Healthcare, Chicago, IL, USA) by using a high-frequency phased array transducer
(12 S-D 4–12 MHz, GE Healthcare). Echocardiographic evaluation procedure was performed under
general anesthesia and spontaneous breathing with an Isoflurane Rodent Anesthesia System (Minerve,
Esternay, France) (induction: isoflurane 3% at room air; maintenance: isoflurane 2% at room air). Rats
were shaved and temperature was controlled during TTE. Time under anesthesia was short enough
(less than 15 min) to minimize the effect of isoflurane. TTE examinations were all performed by the
same trained operator, avoiding inter-operator variability.

Concerning settings, Pulsed Wave (PW) Doppler interest area was 1.5 mm, gain value was high
and frame rate maximal. Data analyses were performed directly or offline with EchoPac Software
(GE Medical). All analyses were performed in a blinded fashion: rats’ experimental conditions were
unknown by the operator during TTE examination and data interpretation.

Echocardiography were performed at baseline (W0) (before I-BET-151 exposure), W3 and W6 in
the same conditions. Measurements were all performed in triplicate (all data were averaged during 5
cardiac cycles) and the following parameters were analyzed:

- In parasternal short axis view: pulmonary artery acceleration time (PAAT), right ventricular
ejection time (RVET), cycle length (CL) with heart rate (HR), shape of pulmonary artery outflow
pattern, pulmonary artery velocity time integral (VTI Pa), aorta velocity time integral (VTI Aorta),
and aorta and Pa valves smallest diameters. Stroke volume (SV) and cardiac output (CO) of left
(SV /CO Aorta) and right (SV/CO Pa) outlet tractus were calculated using classical formulas.
SV (mL) = VTI × Vessel (Aorta or Pa) surface (cm), and CO (mL/min) = SV × HR. SV and CO
are indexed (Si/Ci aorta and Pa) on weight.

- In five cavities view VTI Aorta is analyzed using color and PW dopplers in aorta outlet tractus.
- In four cavities view: RV and LV wall thickness (RVWT, LVWT), RV and LV end-diastolic diameter

(RV/LVEDD) and end-systolic diameter (RV/LVESD), interventricular septum shape, TAPSE
(Tricuspid Annular Plane Systolic Excursion) in TM Doppler and S tricuspid wave in tissue
Doppler imaging coupled with TM.

RV and LV diameter fractional shortening (RV/LV FS) are calculated using the classical formula for
each ventricle: LV FS = ((LVEDD − LVESD)/LVEDD) × 100% or RV FS = ((RVEDD − RVESD)/RVEDD)
× 100%.
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4.3. Transmission Electron Microscopy (TEM)

Pieces of papillary muscles (right and left ventricle) and soleus (3 mm3) from three animals
per group were fixed for 4 h at room temperature (RT) in 2% glutaraldehyde in 0.1 M cacodylate
buffer, pH 7.2 at RT. Samples were then contrasted with Oolong Tea Extract (OTE) 0.5% in cacodylate
buffer, post-fixed with 1% osmium tetroxide containing 1.5% potassium cyanoferrate, gradually
dehydrated in ethanol (30% to 100%) and substituted gradually in mix of propylene oxide-epon and
embedded in Epon. (Delta microscopie, Labège, France). Thin sections (70 nm) were collected onto 200
mesh copper grids, and counterstained with lead citrate before observation with a Hitachi HT7700
electron microscope operated at 80 kV (MIMA2-UMR 1313 GABI, Plateau de Microscopie Electronique,
Jouy-en-Josas, France). Images were acquired with a charge-coupled device camera AMT–Hitachi
(Elexience, Verrière le Buisson, France).

4.4. Stereological Analysis

The sections were cut from each tissue block at several randomly selected levels separated by
more than 50 µm. Nine pictures were analyzed from two or three hearts for each group. The quality
of mitochondria was estimated using ImageJ software. A grid of 2 µm2 squares in which each line
intersection served as a sample point was generated on each image. According to standard stereological
methods, the number of points that overlay mitochondria were counted and the percentage of
mitochondria with anomalies (A) or vacuoles (V) was calculated. The sum of mitochondria with
anomalies and mitochondria with vacuoles represents the totality of altered mitochondria for a given
section and was reported as ‘Total’ (T) in the graphs.

4.5. Mitochondrial Functional Assays in Permeabilized Cardiac Ventricular Fibers

Mitochondrial respiration was studied in situ in saponin-permeabilized cardiac muscle fibers
using a Clarke electrode as previously described [41]. A protocol was designed to measure oxygen
consumption after successive addition of glutamate/malate (10 mM/4 mM), ADP (0.1 mM), ADP
(2 mM), pyruvate/succinate (1 mM/15 mM) and amytal (an inhibitor of complex I, 1 mM) to respiration
solution (in mM: 2.77 CaK2 ethyleneglycol tetraacetic acid (EGTA), 7.23 K2+EGTA [100 nM free Ca2+],
6.56 MgCl2 [1 mM free Mg2+], 20 taurine, 0.5 dithiothreitol (DTT), 50 K-methane sulfonate [160 mM
ionic strength], and 20 imidazole. pH 7.1) at 23 ◦C. Rates of respiration are given in µmoles O2/min/g
dry weight.

4.6. Enzyme Activity

Frozen tissue samples were weighed and homogenized (Bertin Precellys 24) in ice-cold buffer
(50 mg/mL) containing 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) 5 mM (pH 8.7),
EGTA 1 mM, DTT 1 mM and 0.1% Triton X-100. Activity of citrate synthase (CS) and cytochrome
oxidase (COX) were determined using standard spectrophotometric assays [42].

4.7. Stereological Analysis

Results are expressed as mean ± SEM. Statistical differences were analyzed using multifactorial
ANOVA; Newman-Keuls post-hoc tests were used to identify significant differences between means.
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AMI acute myocardial infarction
BRD bromodomain
BET bromodomain and extra-terminal domain
BETi bromodomain and extra-terminal domain inhibitor
CS citrate synthase
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P-TEFb positive transcription elongation factor
TEM transmission electron microscopy
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RV right ventricle
LV left ventricle
VTI velocity-time-integral
RVFS right ventricular fractional shortening
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