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ABSTRACT 

 

Intravenous immunoglobulin (IVIG) is one of the widely used immunotherapeutic molecules 

in the therapy of autoimmune and inflammatory diseases. Previous reports demonstrate that 

one of the anti-inflammatory actions of IVIG implicates suppression of macrophage 

activation and release their inflammatory mediators. However, macrophages are highly 

plastic and depending on the microenvironmental signals, macrophages can be polarized into 

into pro-inflammatory classic (M1) or anti-inflammatory alternative (M2) type. This 

plasticity of macrophages raised additional questions on the role of IVIG towards 

macrophage polarization. In the present report we show that IVIG affects the polarization of 

both classically and alternatively activated macrophages and this process is F(ab’)2-

independent. Our data thus indicate the lack of reciprocal regulation of inflammatory and 

non-inflammatory macrophages by IVIG.  
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Introduction 

Macrophages are heterogeneous and ubiquitous cell populations. They are the principal 

mediators of immune response to pathogens and inflammation. In addition, macrophages also 

play a pivotal role in tissue homeostasis and repair. In order to exert these diverse functions, 

macrophages acquire distinct features in response to local microenvironmental signals.1 Thus, 

macrophages are broadly divided into two subtypes with opposing functions: classically 

activated macrophages or M1 and alternatively activated or M2 macrophages.2,3 M1 

macrophages are induced by type I cytokines like interferon-γ (IFN-γ) and tumor necrosis 

factor α (TNFα), or following recognition of pathogen-associated molecular patterns 

(PAMPs) like lipopolysaccharide (LPS). These macrophages contribute to inflammatory 

processes and macrophage-mediated tissue injury. In contrast, M2 macrophages are induced 

by Th2 cytokines like IL-4 and IL-13 and play a role in the resolution of inflammation.1  

Intravenous immunoglobulin (IVIG), a therapeutic preparation of human normal IgG purified 

from pooled plasma of thousands of donors is extensively used in the therapy of diverse 

autoimmune and inflammatory conditions including immune thrombocytopenic purpura, 

Guillain-Barré syndrome, Kawasaki disease, inflammatory myopathies, chronic inflammatory 

demyelinating polyneuropathy and many others.4,5 The current evidences indicate that the 

therapeutic benefits of IVIG implicate several mutually nonexclusive mechanisms targeting 

the diverse arms of the inflammatory responses.6-8  

Previous data show that IVIG suppresses the activation of monocytes/macrophages leading to 

inhibition of their inflammatory mediators. However, plasticity of macrophages raises 

additional questions on the role of IVIG towards macrophage polarization. In the present 

report we show that IVIG affects the polarization of both classically and alternatively 

activated macrophages thus indicating the lack of reciprocal regulation of inflammatory vs 

non-inflammatory macrophages by IVIG.  
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Results 

We first investigated whether IVIG could modulate M1 and M2 macrophage polarization. 

Human peripheral blood monocyte-derived macrophages were cultured with LPS and IFN-γ 

to obtain M1 macrophages. IVIG was added at two concentrations (10 and 25 mg) during this 

polarization process. We found that IVIG significantly down modulated the proportion of M1 

macrophages as demonstrated by the reduced percentage of cells positive for M1 markers 

CD80 (Fig. 1A-C) and CCR7 (Fig. 1A, B and D). However, the intensity of expression of 

both CD80 and CCR7 was not significantly modified by IVIG (Fig. 1C and D). Although 

polarized M1 macrophages were heterogeneous regarding the expression of CD80 and CCR7 

(CD80+CCR7+ and CD80+CCR7- cells; Fig. 1A and B), IVIG did not display preferential 

action on these populations. The proportions of both these populations were reduced by 

IVIG. As expected, M2 markers CD209 and CD206 were minimally expressed on M1 

macrophages and were further reduced by IVIG.  

We then explored whether the inhibitory effects of IVIG on macrophage polarization are 

restricted only to M1 or whether IVIG suppresses the polarization of M2 macrophage as well. 

Monocyte-derived macrophages were cultured with IL-13 and IL-4 for M2 macrophage 

polarization and IVIG was added at two concentrations during this polarization process. 

Although M2 macrophages are associated with anti-inflammatory process, we found that 

IVIG at high concentrations (25 mg) inhibited M2 macrophage polarization, shown by 

abrogated expression of CD206 (mannose receptor) (Fig. 2A-C) and CD209 (DC-SIGN) 

(Fig. 2A, B and D).  

Next, we then examined if suppressive effect of IVIG on macrophage polarization is also 

reflected on the expression of their cytokines. M1 macrophages express predominantly IL-12 

while M2 macrophages display more of IL-10. A small proportion of cells (M1 or M2) 

expressed both the cytokines. However, the proportion cells expressing IL-10 and IL-12 are 
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low in M1 and M2 macrophages respectively (Fig 3). The low percentage of polarized 

macrophage populations positive for either IL-12 or IL-10 was possibly due to exhaustion of 

cells to produce cytokines (‘ex-producers’).  

Our data revealed that IVIG dampens the expression of cytokines from both classically 

activated M1 macrophages as well as alternatively activated M2 macrophages as shown by 

reduced expression of IL-12 (Fig. 3A and B) and IL-10 (Fig. 3C and D) respectively. All 

together, these results suggest that irrespective of inflammatory or anti-inflammatory 

macrophage phenotype, IVIG hampers both M1 and M2 macrophage polarization.  

We explored the mechanism by which IVIG inhibits macrophage polarization. IgG contains 

Fab region that recognizes specific antigen while Fc exerts effector functions by binding Fc 

receptors. Certain mechanisms of IVIG were reported to be F(ab’)2-dependent while others 

were Fc-dependent.6 Therefore, we investigated if F(ab’)2 fragments of IVIG were able to 

inhibit macrophage polarization similar to that of intact IVIG.  Flow cytometric analyses of 

the expression of M1 (CD80; Fig. 4A) and M2 macrophage (CD206; Fig. 4B) surface 

markers revealed that F(ab’)2 fragments were dispensable for the IVIG-mediated inhibition of 

macrophage polarization thus indicating that this effect is mediated either by Fc-domain or by 

whole IVIG (Fig. 4). Human serum albumin (HSA), used as a protein control for IVIG did 

not affect polarization of macrophages, thus confirming the specificity of IVIG action on 

macrophages (Fig. 4). 

 

Discussion 

Although monoclonal antibodies and recombinant proteins have revolutionized the 

management of autoimmune diseases, and several other novel immunotherapies are in 

pipeline,9-18 immunotherapy with IVIG is still attractive and has several advantages because 

of broad-spectrum action and safety profiles. These mechanisms of IVIG represent functions 
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of circulating normal IgG in the regulation of immune tolerance and immune homoeostasis. 

The mechanisms of action of IVIG vary depending on the pathologies. Several reports have 

demonstrated that IVIG imparts tolerogenic properties to innate cells and effector T cells. In 

addition, IVIG regulates the functions of B cells and neutralizes pathogenic autoantibodies, 

inflammatory cytokines and complements.6-8,19-28 

Previous data from several laboratories including ours have demonstrated that IVIG targets 

monocytes/macrophages to suppress the inflammation both in humans and mice models. 

IVIG suppresses the production of several inflammatory mediators from the monocytes and 

macrophages, and enhances the anti-inflammatory cytokines like IL-1RA.29-32 The 

suppressive effects of IVIG on the activation of monocytes/macrophages are associated 

modulation of intracellular signaling events and in particular reduced ERK1/2, P38 MAPK 

and NF-κB pathways.33 The microarray data from the monocytes of IVIG-treated patients 

also indicate suppression of inflammatory genes.34,35  

The reciprocal regulation of cells implicated in inflammation and anti-inflammation has been 

reported with IVIG. Thus, IVIG reciprocally regulates immunoprotective regulatory T cells 

and pathogenic Th1-Th17 cells.19,21,24-28 Our current data with macrophages however show 

that this reciprocal regulation is not applicable to all immune cells. Thus, under specific in 

vitro polarization conditions, IVIG suppresses the polarization of both inflammatory and anti-

inflammatory macrophages. Data from previous reports both in vitro and in vivo have 

demonstrated that the phenotype and cytokine profiles of polarized M1 and M2 macrophages 

are reversible.36,37 By suppressing both M1 and M2 polarization, IVIG thus ensures global 

suppression of macrophage-mediated inflammatory responses. Although M2 macrophages 

are implicated in eliciting Th2 responses and thus suppress effector Th1 or Th17 cytokines in 

autoimmune and inflammatory conditions, our data suggest that enhanced Th2 responses 
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observed following IVIG therapy in autoimmune pathologies does not implicate regulation of 

cytokine profiles of macrophages.38 

Of interest, we have observed variations among the individual donors regarding the 

expression of macrophage markers. For example, the expression of M2 marker CD206 was 

varying from 33% to 60.4%. It is well recognized that genetic, epigenetic and environmental 

factors influence the ability of immune cells to respond to stimuli. This individual variation is 

also reflected among the patients treated with IVIG wherein all the patients treated with this 

immunotherapy do not respond in a similar way.39   

A recent report shows that IVIG prevents infiltration of M1 macrophages in a rat model of 

chemotherapy-induced peripheral neurotoxicity.40 Another report also found significant 

reduction in inflammatory cytokines in M1 macrophages upon IVIG exposure thus validating 

our observations.41 Similar to this report, we did not observe enhancement of anti-

inflammatory cytokine IL-10 in M1 macrophages upon IVIG treatment. Moreover, we have 

extended our investigation by analyses of surface markers and confirm suppressive effect of 

IVIG on M1 macrophages based on the expression of CD80 and CCR7. However, in contrast 

to the report of Dominguez-Soto et al.41 we did not notice enhancement of M1 macrophage 

features in IVIG-treated M2 macrophages. These discrepancies are mainly due to 

experimental conditions. We have used specific polarizing cytokines to explore the effect of 

IVIG on macrophage polarization while Dominguez-Soto et al. have used LPS stimulation in 

their experiments.   

In our experimental conditions, the uniform expression of CD80 or CD209 indicates 

differentiation of cells into M1 or M2 macrophages. However, the expression of CCR7 and 

CD206 in corresponding macrophage populations was not uniform. Thus, we observed 

CD80+CCR7+ and CD80+CCR7- M1 macrophages, and CD209+CD206+ and CD209+CD206- 

M2 macrophages. These data suggests heterogeneity in polarized M1 or M2 macrophages. 
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Whether cells double positive for the indicated markers are functionally potent compared to 

single positive cells remain to be explored in the future. 

We found that suppressive effects of IVIG on macrophage polarization does not implicate 

F(ab’)2 fragments indicating that either Fc-fragment or entire IgG molecules are required for 

these effects. These data also indicate that the suppressive effects of IVIG on macrophage 

polarization are not due to passive neutralization of polarizing cytokines used in the 

experiments. Though controversy,42 Fc-mediated effects of IVIG are reported to be mediated 

mainly by α(2,6)-sialic acid-linkages43 that are recognized by lectin receptors such as 

dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), 

dendritic cell immunoreceptor (DCIR) and CD22.20,44-46 M2 macrophages are positive for 

DC-SIGN (CD209) and further work is necessary to identify the nature of receptor(s) on M1 

macrophages that mediate anti-inflammatory action of IVIG.  

 

Methods 

Buffy coats of healthy donors were purchased from Centre Necker-Cabanel (Etablissement 

Français du Sang, Paris, France). Ethical approval (Institut National de la Santé et de la 

Recherche-EFS Ethical Committee Convention N° 15/EFS/012/ and 18/EFS/033) was 

obtained for the use of such materials. Monocytes were isolated from peripheral blood 

mononuclear cells (PBMC) of buffy coats by using CD14 microbeads (Miltenyi Biotec, Paris, 

France), and subsequently cultured for 6 days in complete RPMI 1640 supplemented with 

recombinant M-CSF (1000 IU/106 cells, Miltenyi Biotec). The obtained nonpolarized 

macrophages were stimulated with LPS (200 ng/106 cells, Escherichia coli, Sigma-Aldrich, 

St. Quentin Fallavier, France) and IFN-γ (40 ng/106 cells) (Immunotools, Friesoythe, 

Germany) for 72 hours to polarize M1 macrophages. Alternatively, nonpolarized 

macrophages were cultured with IL-4 (500 IU/106 cells, Miltenyi Biotec) and IL-13 (400 
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ng/106 cells, Immunotools) to obtain M2 macrophages. IVIG (10 or 25 mg/ml/0.5x106 cells; 

Tegeline®, LFB Biomedicaments, Les Ulis, France) or equimolar concentrations of F(ab’)2 

fragments of IVIG (16 mg) or HSA (10 mg; LFB Biomedicaments, France) were added 

during this 72 hours of polarization of nonpolarized macrophages into M1 or M2.  

IVIG and HSA were dialysed before their use. F(ab’)2 fragments of IVIG were obtained by 

pepsin digestion (2% wt/wt; Sigma Aldrich). The digested antibodies were passed through 

protein G Sepharose column to remove intact IgG and SDS-PAGE analysis was done to 

confirm the purity of F(ab’)2 fragments.  

Following 72 hours of culturing the cells in the presence or absence of IVIG, the phenotype 

of macrophages was analyzed by flow cytometry (LSR II, BD Biosciences, Le Pont de Claix, 

France) using fluorochrome-conjugated MAbs and data were analyzed by BD FACS DIVA 

software (BD Biosciences). For intracellular staining of cytokines, macrophages following 72 

hours of culturing under polarizing conditions were stimulated with phytohaemagglutinin-L 

(10 µg/ml, Sigma-Aldrich) at 37°C for 18 hours and with golgistop (BD Biosciences) for 

additional 2 hours. Cells were fixed and permeabilized using Foxp3 

Fixation/Permeabilization kit (eBioscience, Paris, France) and incubated at 4°C with 

fluorochrome-conjugated mAbs.  

The antibodies used for flowcytometry were PE-conjugated MAbs to CD80, CD206, IL-10, 

FITC-conjugated MAbs to IL-12, APC-conjugated MAb to CD209 (all from BD 

Biosciences), and APC-conjugated MAbs to CCR7 and IL-12 (all from eBioscience). 

Data were analyzed by one-way ANOVA with Tukey’s multiple comparison test (*P <0.05, 

** p< 0.01) using Prism 6 software (GraphPad Software, Inc, La Jolla, USA). 
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Figure Legends 

Figure 1. IVIG suppresses the polarization of classically activated (M1) macrophages. 

Human monocyte-derived macrophages were treated with LPS and IFN-γ either alone (Ctr) 

or along with IVIG (10 and 25 mg/ml) for 72 hours and analyzed for the expression of CD80 

and CCR7 by flow cytometry. Representative dot-blots (A), scatter plots displaying the 

relative expression of markers (B), and the expression levels (% positive cells and mean 

fluorescence intensity, MFI) of (C) CD80 and (D) CCR7. Data are presented as mean ± SEM 

from 4 independent donors. Statistical significance (*, p< 0.05, **, p<0.01) as analyzed by 

One-way ANOVA Tukey’s multiple comparison test. ns, not significant. 
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Figure 2. IVIG down regulates the surface markers of alternatively activated (M2) 

macrophages. Monocyte-derived macrophages were cultured for 72 hours with IL-13 and IL-

4 either alone or along with IVIG (10 and 25 mg/ml). The expression of CD206 and CD209 

was analyzed by flow cytometry. Representative dot-blots (A), scatter plots displaying the 

relative expression of markers (B), and the expression levels (% positive cells and mean 

fluorescence intensity, MFI) of (C) CD206 and (D) CD209 was analysed by flow cytometry. 

Data are presented as mean ± SEM from 4 independent donors. Statistical significance (*, p< 

0.05, **, p<0.01) as analyzed by One-way ANOVA Tukey’s multiple comparison test. ns, 

not significant. 
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Figure 3. Inhibition of macrophage polarization by IVIG is associated with reduced 

intracellular expression of (A and B) IL-12 (M1 macrophages) and (C and D) IL-10 (M2 

macrophages).  Human monocyte-derived macrophages were treated either (A and B) with 

LPS and IFN-γ either alone (Ctr) or along with IVIG (10 and 25 mg/ml) for 72 hours (M1), 

or (C and D) with IL-13 and IL-4 either alone or along with IVIG (10 and 25 mg/ml) for 72 

hours (M2). The cells were then stimulated with phytohaemagglutinin-L for 18 hours and 

with golgistop for additional 2 hours. Representative dot-blots are presented in panels A and 

C. Data are presented as mean ± SEM from 3-4 independent donors. Statistical significance 

(**, p<0.01) as analyzed by one-way ANOVA Tukey’s multiple comparison test. ns, not 

significant. 
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Figure 4. Inhibition of M1 and M2 macrophage polarization by IVIG is F(ab’)2-independent. 

Monocyte-derived macrophages were cultured under either (A) M1 or (B) M2-polarizing 

conditions for 72 hours along with equimolar concentrations of IVIG, F(ab’)2 or HSA. The 

expression (% positive cells, mean ± SEM from 3 independent donors) of (A) CD80 and (B) 

CD206 was analysed by flow cytometry. Statistical significance (*, p< 0.05) as analyzed by 

One-way ANOVA Tukey’s multiple comparison test. ns, not significant.   

 

 

 

 


