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Abstract 

 

The transglutaminase 2 (TG2) is one of the enigmatic enzymes with important 

functional diversity. It plays an important role in several pathologies such as celiac 

disease (CD). In patients with active CD, the abnormal retrotranscytosis of IgA/gliadin 

complexes is mediated by Transferrin Receptor 1 (TfR1). This triad association takes 

also place in IgA nephropathy (IgA-N). IgA-N is characterized by the formation of 

nephrotoxic complexes of IgA1 and soluble CD89 (sCD89). These complexes are 

abnormally deposited in the kidney. Using a humanized mouse model of IgA-N (α1KI-

CD89Tg), we showed that IgA1-sCD89 complexes engender mesangial cell activation 

and proliferation with TfR1 and TG2 up-regulation, associated with IgA-N features. This 

TG2-TfR1 interaction enhances mesangial IgA1 deposition promoting inflammation. 

Humanized α1KI-CD89Tg mice deficient for TG2 show a decrease in TfR1 expression 

in kidney leading to reduced IgA1-sCD89 deposits and an improvement in IgA-N 

features. Moreover, TG2 is active and overexpressed in the intestine of IgA-N mice 

and gliadin participates to this renal pathology. In kidney as in intestine, the TG2 has 

a crucial role in the cooperation between TfR1-IgA and a central role in the pathogenic 

amplification.  
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Introduction 

 

The transglutaminase 2 (TG2) is one of the enigmatic enzymes with important 

functional diversity. This protein plays an important role in several pathologies such as 

cancer, neurologic disorders and celiac disease (CD). During CD, TG2 regulates the 

disease at different levels: deamidation of the gliadin, the retrotranscytosis of IgA 

through the epithelial layer and is also recognized by IgG and IgA as an auto-antigen. 

Interestingly, in IgA nephropathy (IgA-N), a disease characterized by IgA deposition in 

kidney, similar mechanisms are involved. In this review, the molecular mechanisms 

involving TG2, IgA and TfR1 will be explored in intestine and kidney to decipher 

pathological mechanism in IgA nephropathy. 

 

 

IgA and its receptors 

 

IgA is the most abundant antibody isotype produced in our body (Macpherson et al., 

2008). Human IgA exists in two subclasses, termed IgA1 and IgA2. In the secretions, 

IgA is formed as dimers linked by the J chain and associated to the secretory 

component, which is a part of the extracellular domain of the polymeric Ig receptor 

(pIgR) generating secretory IgA (Brandtzaeg et al., 1999; Kaetzel, 2005). Quantitative 

studies of the origin of S-IgA in human external secretions have convincingly 

demonstrated that the majority of IgA is produced locally by plasma cells, densely 

distributed in the mucosal subepithelium. This locally produced IgA is selectively 

transported by the pIgR. S-IgA provides mucosal immune protection and the 

maintenance of appropriate bacterial communities (Cerutti and Rescigno, 2008). IgA 
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constitutes the second Ig class in the bloodstream (R. C. Monteiro and J. G. J. van de 

Winkel, 2003) and is mainly composed of monomers. IgA-induced effector cell 

functions in the immune system are dependent on IgA receptors since IgA poorly 

activates complement (R. C. Monteiro and J. G. J. van de Winkel, 2003). Several IgA 

receptors have been described: the first one, the pIgR is involved in the IgA secretion 

across mucosal epithelium. The second type, designated FcαRI (or CD89), is capable 

of binding both human IgA1 and IgA2 subclasses as well as C reactive protein (Lu et 

al., 2011; R. C. Monteiro and J. G. Van De Winkel, 2003; Woof and Mestecky, 2005). 

The CD89 is expressed on myeloid cells and controls the balance between immune 

cell activation and inhibition depending on the molecular size of IgA. While monomeric 

IgA binding to CD89 induces cell inhibition, IgA-immune complex binding induces cell 

activation through a dual role of the ITAM motif of the CD89-associated FcRγ chain. 

Other IgA receptor types are the Fcα/µR (Cho et al., 2006; R. C. Monteiro and J. G. 

Van De Winkel, 2003; Woof and Mestecky, 2005) and the FcRL4 (Wilson et al., 2012). 

The non-homologous IgA receptors are the asialoglycoprotein receptor (ASGP-R2) 

(Rifai et al., 2000; Stockert et al., 1982), the C-type lectin receptor DC-SIGN (or 

CD209) (Diana et al., 2013), the Dectin-1 on intestinal M cells (Rochereau et al., 2013), 

the recently identified β1-4galactosyltransferase (Molyneux et al., 2017) and the 

transferrin receptor 1 (TfR1, or CD71) (R. C. Monteiro and J. G. J. van de Winkel, 2003; 

Moura et al., 2001). This last receptor is ubiquitous and its main function is iron uptake 

via transferrin binding and internalization. Interestingly, TfR1 binds to IgA1 to promote 

erythroblast proliferation (Coulon et al., 2011).  
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TG2, IgA and TfR1 in the intestinal pathophysiology of celiac disease 

TG2 as an auto-antigen  

Celiac disease (CD) is an autoimmune inflammatory disease of the small intestine 

triggered by a dysregulated response to gluten. Patients suffering with CD exhibit 

increased circulating IgA and IgG antibodies against gliadin (one component of gluten), 

endomysium (a substrate of TG2) and TG2. Celiac autoantibodies are produced in the 

small intestinal mucosa, and it has been recognized that the small intestinal epithelial 

membrane of CD patients contains deposited IgA (Picarelli et al., 1996). Moreover, 

TG2 was shown to cross-link IgD, leading to B cell receptor activation and auto-

reactivity against TG2 (Iversen et al., 2015).  

 

TG2 and IgA retrotranscytosis  

TG2 also participates to the induction of the immune response against gliadin in CD. 

The 31-49 gliadin peptide is protected from lysosomal degradation in intestinal cells 

from CD patients but not in healthy controls. IgA-complexes containing 31-49 peptide 

are observed in both serum and intestinal fluids from CD patients. TfR1, an IgA 

receptor, is overexpressed at the apical face of intestinal biopsies during the active 

phase of CD. Intact gliadin 33-mer or p31-49 peptides complexed with IgA are 

retrotranscytosed from the apical to the basolateral side of enterocytes (Matysiak-

Budnik et al., 2008). Moreover, we established gluten sensitivity in mice which 

developed characteristics of CD, associated with overexpression of TfR1 and TG2, as 

well as overproduction of IgA (Papista et al., 2012). TG2 activity is required in the 

retrotranscytosis since the inhibition of TfR1 or TG2 in intestinal epithelial cells can 

block the p31-49 peptide/IgA transport across the cell monolayer (Lebreton et al., 

2012).  
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TG2 and deamidation of gliadin 

One of the enzymatic function of TG2 is the deamidation of specific glutamines. TG2 

can catalyze the deamidation of gliadin, leading to the generation of immunodominant 

peptides recognized by T cells in CD (Shan et al., 2002). Moreover, the microbial TG 

can also catalyze this reaction (Lerner et al., 2016).   

 

To summarize, TG2 plays different roles in the intestine of CD patients leading to 

reaction to gliadin and intestinal inflammation: This enzyme catalyzes the deamidation 

of gliadin, participates with the TfR1 to the retrotranscytosis of IgA bearing gliadin 

peptides and is also recognized as an auto-antigen (Figure 1, intestinal part).  

 

TG2 and its partners in IgA nephropathy 

TG2 on mesangial cells 

IgA nephropathy (IgA-N), a leading cause of renal failure, is characterized by the 

deposition of hypogalactosylated IgA1 complexes in the renal mesangium. IgG anti-

hypogalactosylated IgA1 autoantibodies have been identified within circulating IgA 

immune complexes (IC) associated with disease progression (Suzuki et al., 2011). We 

and others have shown that that other types of IgA-IC, namely IgA-soluble CD89 

complexes (IgA-sCD89), are essential for disease initiation, present in the mesangium 

and involved in disease pathogenesis (Berthelot et al., 2012; Berthelot et al., 2015; 

Launay et al., 2000; Vuong et al., 2010), Berthelot, Robert et al. 2015). Despite its major 

role in IgA-N physiopathology, CD89 is not expressed by mesangial cells and thus 

cannot be the receptor responsible for IgA deposition in the mesangium. We have 

identified an IgA receptor implicated in mesangial deposition: the transferrin receptor 
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(TfR1/CD71) (Moura et al., 2001). TfR1 binds IgA1 but not IgA2. TfR1 is highly 

expressed and co-localizes with deposited IgA in patient’s biopsies (Haddad et al., 

2003). IgA glycosylation and size (altered in IgA-N patients) are essential for binding to 

TfR1 (Moura et al., 2004). The proliferation of mesangial cells is induced via the 

PI3K/Akt pathway, which produce inflammatory cytokines via the MAPK/Erk pathway 

(Tamouza et al., 2012). The humanized mouse model of IgA-N expressing both human 

IgA1 and CD89 (the α1KI-CD89Tg mice) showed rapid IgA1 deposits associated with 

proteinuria and hematuria. Using this model, we reported the major role of TG2, as a 

critical factor to promote IgA-N (Berthelot et al., 2012). Knock-out mice for TG2 

exhibited less IgA deposits in kidney and a decrease of hematuria. In vitro experiments 

with human mesangial cells showed that the binding of IgA-sCD89 complexes on these 

cells, via the TfR1, induced their activation and the TG2 overexpression at the cell 

membrane (Figure 1, kidney part). This expression of TG2 stabilized the IgA deposits 

by increasing IgA binding to TfR1 (Berthelot et al., 2012). When IgA deposits are 

cleared using an IgA1 protease, TG2 and TfR1 expression are no more detectable 

(Lechner et al., 2016). TG2 is also expressed on other kidney cell types as tubular cells 

(Ito et al., 2018) which could also impact IgA-N progression. Moreover, TG2 

concentration in urine from IgA-N patients correlated proteinuria and distinguished 

active and non-active patients (Moresco et al., 2016).  

 

TG2 and gliadin in IgA-N 

In IgA-N, many links between intestinal mucosa and IgA deposits in the kidney were 

described as genetic, intestinal IgA production, immune responses to mucosal 

antigens, gut microbiota (Chemouny et al., 2018; Coppo, 2018; De Angelis et al., 2014; 

Floege and Feehally, 2016). Food antigens, including milk proteins, bovine serum 
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albumin, soybean proteins and gluten have been described to form IgA complexes in 

IgA-N (Coppo, 1988; Feehally et al., 1987; Fornasieri et al., 1987; Kloster Smerud et 

al., 2010; Laurent et al., 1987; Nagy et al., 1988; Rostoker et al., 1988; Sancho et al., 

1983; Sato et al., 1987; Smerud et al., 2009; Yap et al., 1987), which in some cases 

can be deposited in the mesangium of IgA-N patients (Russell et al., 1986; Sato et al., 

1990; Sato et al., 1988). The role of gluten in IgA-N was assessed by in vitro studies 

showing the direct interaction of gliadin with IgA partners and with mesangial cells 

(Amore et al., 1994; Coppo et al., 1992). Moreover, gliadin directly interacts with CD89 

and participates in the formation of IgA-sCD89 complexes. Purified gliadin bound to 

recombinant sCD89 in a dose-dependent way, as shown by ELISA and surface 

acoustic wave (Papista et al., 2015).  

A gluten free diet during three generations in the mouse model of IgA-N, resulted in a 

massive decrease of IgA1 deposits in kidney associated to the decrease of 

inflammation and hematuria (Papista et al., 2015). This decrease was gluten specific, 

as shown by its re-introduction in the diet being followed by the re-appearance of 

mesangial IgA1. The diminution of IgA1 deposits with gluten free diet was associated 

with down-regulation of mesangial TG2 and TfR1 expression in mouse kidneys. In the 

small intestine, as previously demonstrated, gluten free diet resulted in an 

improvement of morphology and a resorption of inflammation. The number of B cells 

producing IgA was also decreased with the diet. Using a substrate peptide specific for 

TG2 (Itoh et al., 2013), we were able to detect an increased activity of TG2 in the 

intestine of α1KI-CD89Tg mice compared to non-gluten reactive mice (Figure 2) 

showing that, similarly to CD, TG2 is activated in the intestine of IgA-N.  

In human, Costa et al reported a patient case suffering with celiac disease and IgA 

nephropathy. They detected TG2 deposits both in kidney and in duodenum (Costa et 
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al., 2018). The risk of CD in IgA-N patients is increased compared to healthy population 

and associated with a worse renal function (Nurmi et al., 2018). In the same way, the 

risk of IgA-N in CD is increased (Collin et al., 2002; Welander et al., 2013; 

Wijarnpreecha et al., 2016). Glomerular IgA deposits can be found in CD patients 

without clinical signs of renal disease (Pasternack et al., 1990). IgA-N patients exhibits 

abnormal increased intestinal permeability (Davin et al., 1988; Rostoker et al., 1993), 

associated to bad renal outcome (Kovacs et al., 1996) and intestinal inflammation 

(Rantala et al., 1999; Rostoker et al., 2001). These studies showed the clinical 

associations between IgA nephropathy and celiac disease.  

Gluten free diet was tested for IgA-N patients. When CD was clearly associated to IgA-

N, five cases showed the efficacy of gluten free diet for clinical remission of IgA-N 

(Costa et al., 2018; Habura et al., 2019; Koivuviita et al., 2009; La Villa et al., 2003; 

Woodrow et al., 1993). However, the results of trials on non-selected IgA-N patients 

were mitigated. A Japanese group observed no difference for the IgA complex 

production after two weeks of diet with enriched gluten or without gluten (Yagame et 

al., 1988). An uncontrolled study tested a long-term gluten free diet from 6 months to 

4 years depending on patient follow-up. The diet was associated to the decrease of 

circulating IgA complexes and proteinuria after 6 months but serum creatinine was not 

controlled and progression of the disease was not reversed (Coppo et al., 1990). In the 

mouse model, effects of gluten free diet were observed after a long period of time 

(Papista et al., 2015). Clinical trials for gluten free diet in IgA-N patients should be 

assessed over a longer time period. This diet could be more efficient for IgA-N patients 

exhibiting gluten reactivity, as not all patients are positive in serological tests. 
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Conclusions 

Molecular mechanisms involving IgA, TG2 and TfR1 are shared between CD and IgA-

N (Figure 1). CD patients exhibit overexpression of TfR1 and TG2 on enterocytes 

leading to the retrotranscytosis of IgA bearing gliadin (Lebreton et al., 2012; Matysiak-

Budnik et al., 2008). In kidney, TfR1 and TG2 overexpression results in increase of IgA 

deposits in IgA-N (Berthelot et al., 2012; Moura et al., 2005; Moura et al., 2004). The 

binding of IgA1 complexes on TfR1 at the cell surface of mesangial cells induces the 

overexpression of TfR1 (Moura et al., 2005) and TG2 (Berthelot et al., 2012). In the 

absence of TG2, the IgA1 deposits are dramatically reduced and in vitro IgA1 binding 

on mesangial cells is diminished (Berthelot et al., 2012). A deleterious loop following 

IgA1 binding on mesangial cells lead to TfR1 and TG2 production, these proteins in 

turns amplifying the IgA1 deposition. The targeting of these molecules could improve 

disease symptoms. 
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Figure 1 

 

Figure 1 : Pathological mechanisms involving TG2, IgA, and TfR1, starting in the 

intestine to finish into kidney. Gliadin can enter in the body through the epithelial 

barrier due to increased intestinal permeability and/or retrostranscytosis of secretory 

IgA via TfR1 and TG2. This entry also induces the B cell response and the production 

of anti-gliadin and TG2 antibodies. Circulating IgA complexes containing gliadin can 

be deposited in the kidney at the surface of mesangial cells via TfR1 and TG2.  
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Figure 2 

 

 

Figure 2: TG2 activity in intestine from gluten sensitized mice. TG2 activity on 

intestinal fresh frozen slides was detected using peptide T26. G-: α1KI-CD89Tg mice 

with gluten free diet. G+: α1KI-CD89Tg mice with normal diet 
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