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ABSTRACT 74 

Graft-versus-host disease (GVHD) and cytomegalovirus (CMV)-related complications 75 

are leading causes of mortality after unrelated-donor hematopoietic cell 76 

transplantation (UD-HCT). The non-conventional MHC class I gene MICB, alike 77 

MICA, encodes a stress-induced polymorphic NKG2D ligand. However, unlike MICA, 78 

MICB interacts with the CMV-encoded UL16, which sequestrates MICB 79 

intracellularly, leading to immune evasion. Here, we retrospectively analyzed the 80 

impact of mismatches in MICB amino acid position 98 (MICB98), a key polymorphic 81 

residue involved in UL16-binding, in 943 UD-HCT pairs who were allele-matched at 82 

HLA-A, -B, -C, -DRB1, -DQB1 and MICA loci. HLA-DP typing was further available. 83 

MICB98 mismatches were significantly associated with an increased incidence of 84 

acute (grade II-IV: HR, 1.20; 95% CI, 1.15 to 1.24; P < 0.001; grade III-IV: HR, 2.28; 85 

95% CI, 1.56 to 3.34; P < 0.001) and chronic GVHD (HR, 1.21; 95% CI, 1.10 to 1.33; 86 

P < 0.001). MICB98 matching significantly reduced the effect of CMV status on 87 

overall mortality from a hazard ratio of 1.77 to 1.16. MICB98 mismatches showed a 88 

GVHD-independent association with a higher incidence of CMV infection/reactivation 89 

(HR, 1.84; 95% CI, 1.34 to 2.51; P < 0.001). Hence selecting a MICB98-matched 90 

donor significantly reduces the GVHD incidence and lowers the impact of CMV status 91 

on overall survival. 92 

  93 
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INTRODUCTION 94 

Unrelated-donor hematopoietic cell transplantation (HCT) is an established 95 

treatment for a wide range of immunological and hematologic disorders, malignant or 96 

otherwise 1. Although more than 50,000 HCTs are performed annually worldwide 2, 3, 97 

adverse clinical outcomes occur frequently. One of the most common life-threatening 98 

complications is graft-versus-host disease (GVHD), which greatly hampers the 99 

successful outcome of this powerful and sometimes unique curative option. In GVHD, 100 

the donor's immune cells attack the patient's organs and tissues, impairing their 101 

ability to function and increasing the patient's susceptibility to infection. The 102 

organs/tissues most frequently targeted are the skin, the gastrointestinal tract and the 103 

liver. Despite the availability of effective immunosuppressive drugs, the incidence of 104 

GVHD remains alarmingly high: up to 35% experience grade III-IV acute GVHD and 105 

40% to 50% experience chronic GVHD 4-6. 106 

 Cytomegalovirus (CMV) infection/reactivation represents another leading 107 

cause of morbidity and mortality in patients undergoing allogeneic HCT because it 108 

frequently causes serious complications, e.g., pneumonia, hepatitis, gastroenteritis, 109 

retinitis, and encephalitis 7-11. Because of the immunosuppressive regimen, 110 

allogeneic HCT patients are indeed at a higher risk for CMV infection and/or 111 

reactivation. The incidence of CMV infection has been reported to vary between 40 112 

and 80% in CMV seropositive allogeneic HCT patients not treated with anti-viral 113 

prophylaxis drugs, which currently represents most of the allogeneic HCT recipients 114 

12-18. In seronegative patients receiving a transplant from a seropositive donor, the 115 

rate of primo infection is approximately 30% 12. Despite the implementation of 116 

prophylaxis, monitoring, and pre-emptive treatment of CMV reactivation/infection, 117 

cases of CMV seropositivity of the donor and/or the recipient show decreased 118 
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survival rates compared to CMV-seronegative recipients who undergo allograft from 119 

CMV-seronegative donors 16, 19. New strategies for preventing CMV 120 

reactivation/infection in transplant recipients therefore remain an important objective 121 

for the improvement of allogeneic HCT. 122 

Increasing the degree of human leukocyte antigen (HLA) matching is one of 123 

the most important strategies to lower the risks of both GVHD and CMV infections. 124 

The former is a direct consequence of better HLA-matching, whereas the latter is an 125 

indirect effect due to the well-described association of CMV infection with GVHD 126 

occurrence 20, 21. However, even in genotypically HLA-matched donors and 127 

recipients, the incidence of grade III-IV acute GVHD and CMV reactivation/infection 128 

can be as high as 30% and 80%, respectively 13, 22. For CMV infection/reactivation, 129 

other risk factors include age, source of stem cells, disease, and donor (D)/recipient 130 

(R) CMV serological status 23, 24. 131 

The MHC-encoded non-conventional MHC class I chain-related (MIC) genes A 132 

(MICA) and B (MICB) encode polymorphic cell surface proteins which bind to 133 

NKG2D; an activating immune receptor expressed by cytotoxic T and NK cells 25, 26. 134 

This interaction is seminal in defense both against infections and malignancies. 135 

Moreover, MICB 27, 28 happens to be one of the most promising candidates to explain, 136 

at least partially, GVHD and CMV complications that cannot be attributed to classical 137 

HLA genes or the related MICA gene incompatibilities 29-31. MICB is indeed highly 138 

polymorphic, with 47 alleles reported to date 139 

(http://www.ebi.ac.uk/ipd/imgt/hla/stats.html). It encodes a cell-surface glycoprotein 140 

up-regulated by cell stress 25, 32. The gene is located 130 kb and 83 kb centromeric to 141 

HLA-B and MICA, respectively, and was discovered by us over 20 years ago 25. 142 

MICB is highly similar to MICA in terms of sequence (83% shared amino acid 143 



 
 

7 

sequence identity), linkage disequilibrium with HLA-B, protein structure (HLA-like 144 

structure without association to ß2-microglobulin) and constitutive expression pattern 145 

(restricted to epithelial cells, fibroblasts, monocytes, dendritic cells and endothelial 146 

cells) 26, 33, 34. MICB is a ligand for the activating NKG2D receptor expressed on the 147 

surface of cytotoxic CD8+ αβ and γδ T lymphocytes and natural killer cells 35. 148 

Interestingly, and in contrast to MICA, MICB binds the CMV protein UL16, which 149 

sequestrates MICB intracellularly in an immune escape mechanism 36. Different 150 

MICB alleles are not equal with respect to binding to UL16. MICB*008 has been 151 

shown to have a decreased binding capacity to UL16 compared to other alleles 37. 152 

MICB*008 is characterized by a polymorphism at amino acid position 98, causing an 153 

isoleucine (Ile) to methionine (Met) exchange in the α2 domain of the MICB protein. 154 

The variation Ile > Met is exclusively present in MICB*008 and is the unique 155 

polymorphic position that is in direct contact with UL16 through hydrophobic contacts 156 

(distance<4.0 Å) with leucine 161 of UL16 38.  157 

Several lines of evidence indicate that MICB could play a role in triggering 158 

GVHD and/or modulating CMV infection/reactivation: (1) the localized expression in 159 

epithelial cells of the gastrointestinal tract, whose damage during GVHD plays a 160 

major pathophysiologic role in the amplification of systemic disease 39; (2) the 161 

common features with MICA that have repeatedly been shown to be involved in 162 

GVHD 29, 30, 40-42; and (3) the binding of MICB to the UL16 protein 36. The present 163 

study hence aims to show the effect of MICB matching at amino acid position 98, 164 

representing about 6% of transplantations, on the outcome of unrelated donor HCT in 165 

a cohort of 943 donor/recipient pairs matched for HLA-A, -B, -C, -DRB1, -DQB1, and 166 

MICA.  167 

 168 
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PATIENTS AND METHODS 169 

STUDY DESIGN AND OVERSIGHT 170 

This retrospective study was designed to test whether donor-recipient matching at 171 

amino acid position 98 of the MICB protein (MICB98) improves the outcome of 172 

unrelated HCT. Patients from six French and three Dutch centers and their donors 173 

were included; the unrelated donors originated from national or international donor 174 

registries. Genomic DNA samples and high-resolution HLA-A, -B, -C, -DRB1, -DQB1, 175 

-DPB1 and MICA typing data were collected. Clinical information was made available 176 

by the SFGM-TC and the HOVON Data Center from the EBMT (European group for 177 

Blood and Marrow Transplantation) ProMISe patient database. All authors vouch for 178 

the accuracy and completeness of the results. This study, conducted under the 179 

auspices of SFGM-TC and the Dutch-Belgian Cooperative Trial Group for 180 

Hematology Oncology (HOVON), was approved by institutional review boards of the 181 

participating centers and was performed according to the principles of the Declaration 182 

of Helsinki. Written informed consent was obtained from all participants. 183 

 184 

PATIENTS AND DONORS 185 

The study population consisted of 943 patients who underwent unrelated HCT for the 186 

treatment of blood disorders between 2005 and 2013. All patients received a first 187 

allogeneic transplant using bone marrow or peripheral blood stem cells, and donor-188 

recipients were matched for 12 of the 12 possible alleles at HLA-A, -B, -C, -DRB1, -189 

DQB1, and MICA loci (Table 1). 190 

 191 

MICB GENOTYPING AT AMINO ACID POSITION 98 192 



 
 

9 

The polymorphic nucleotide position 363 (C/G; rs3134900) causes an isoleucine (Ile) 193 

to methionine (Met) change at amino acid position 98 in the α2 domain of the MICB 194 

protein. Both patients and unrelated donors were genotyped for this position by 195 

Sanger sequencing of MICB’s exon 3, following previously described protocols 43. 196 

The sequences were analyzed using Seqscape v2.6 (Life Technologies, USA) to 197 

assign genotypes. 198 

 199 

DEFINITIONS 200 

Grading of acute and chronic GVHD was performed according to the classification of 201 

Glucksberg et al. 44. For acute GVHD, severe corresponds to grades III and IV. CMV 202 

positivity of the donor and/or the recipient was defined by the presence of anti-CMV 203 

IgG in the serum of the donor and/or the recipient. CMV reactivation was defined as 204 

the time from transplantation to the first CMV infection episode. In addition to clinical 205 

examination, CMV infection/reactivation episodes were characterized at a molecular 206 

level by a viral load > 104 copies/ml as determined by quantitative PCR on whole 207 

blood. Overall survival (OS) was defined as the time from transplantation to death by 208 

any cause. Relapse-free survival (RFS) was defined as the time to relapse of primary 209 

disease or death by any cause, whichever came first. Non-relapse mortality (NRM) 210 

corresponds to mortality within the first complete remission of disease. Causes of 211 

death unrelated to transplantation included deaths related to relapse, progression of 212 

the original disease, secondary malignancy, and cell therapy (non-HCT). OS, RFS, 213 

NRM, GVHD and CMV reactivation were censored at the time of the last follow-up. 214 

Incidences of clinical outcomes were defined as the cumulative probability of the 215 

outcomes at any given point. 216 

 217 
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STATISTICAL ANALYSIS 218 

After validating that the data meet requested assumptions, the distribution of each 219 

covariate between the MICB98 matched and mismatched groups was assessed by 220 

Pearson’s Chi square test or Fisher’s exact test for small sample sizes. The 221 

variances between the two groups were similar for the different variables assessed in 222 

our models and statistical tests (average variances in the matched and mismatched 223 

groups were 1.36 and 1.40, respectively). Multivariable competing risk regression 224 

analyses were performed for acute GVHD II-IV, acute GVHD III-IV, chronic GVHD, 225 

relapse, NRM and CMV reactivation, using an extended Fine and Gray model 45-47. 226 

For OS and RFS, Cox proportional regression models were used 48. Competing 227 

events were defined as death without GVHD and relapse for GVHD endpoints (acute 228 

and chronic GVHD); death from any cause other than transplantation for NRM; 229 

relapse and death for CMV reactivation; and non-relapse mortality for relapse. All 230 

statistical models were adjusted for center effect and covariates defining the 231 

European Society for Blood and Marrow Transplantation risk score: patient age, 232 

disease stage at transplantation, time to transplantation, and donor-recipient sex 233 

combination. In addition to these, the following relevant variables were included: 234 

HLA-DPB1 matching (T-cell epitope matching level as defined by Fleischhauer et 235 

al.49), patient-donor serological status for cytomegalovirus, year of transplantation, 236 

source of stem cells, conditioning regimen, GVHD prophylaxis, treatment with 237 

antithymocyte globulin or Alemtuzumab, and disease category. Interactions between 238 

patient-donor serological status for cytomegalovirus and matching at amino acid 239 

position 98 of MICB were also assessed in the multivariable analyses. 50, 51All models 240 

were checked for interactions and proportional hazards assumptions. All statistical 241 

analyses were conducted using the computing environment R 52.  242 
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 243 

RESULTS 244 

The demographics of the study population are shown in Table 1. The median 245 

post-transplant follow-up was 36 months (mean: 37 months; range: 1 to 105 months), 246 

and the median patient age was 53 years (mean: 48 years; range: 1 to 73 years). 247 

The patients suffered from both malignant and non-malignant diseases. Most 248 

transplants were performed with non-myeloablative/reduced intensity conditioning 249 

regimens (67%); in vivo T-cell depletion was performed in the majority of cases 250 

(73%), and peripheral blood was the main source for stem cells (79%). All 251 

donor/patient pairs were fully typed at high resolution (2nd field) for HLA-A, -B, -C, -252 

DRB1, -DQB1, -DPB1 and MICA 29 and were matched for 12 out of 12 alleles at HLA-253 

A, -B, -C, -DRB1, -DQB1 and MICA loci. Among the 943 transplantations, 394 254 

(41.8%) had non-permissive HLA-DPB1 mismatches. Fifty-six (5.9%) transplants 255 

were MICB98 mismatched. The mismatch vectors of these 56 transplants were graft-256 

versus-host (n=22), host-versus-graft (n=33) and bidirectional (n=1). Except for the 257 

patient-donor CMV status, all relevant covariates for the analyzed clinical outcomes 258 

were equally distributed in the MICB98 matched and -mismatched patients (Table 1). 259 

Organ-specific sub-analyses showed that the MICB98 matching effect was more 260 

important in the gut and the skin than in the liver (supplemental Figure 1). MICB98 261 

mismatches were significantly associated with an increased incidence of acute 262 

GVHD (hazard ratio (HR) for grades II-IV: 1.20; 95% CI, 1.15 to 1.24; P < 0.001; for 263 

grades III-IV: 2.28; 95% CI, 1.56 to 3.34; P < 0.001) (Table 2). At day 100 post-HCT, 264 

the cumulative incidences of severe (grades III-IV) acute GVHD in MICB98 265 

mismatched vs. matched transplantations were 18.9% vs. 12.5%, respectively 266 

(Figure 1A). Matching MICB at position 98 decreased the risk of chronic GVHD by 267 
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4% (40.9% vs. 36.9%) at 4 years post-transplantation (HR, 1.21; 95% CI, 1.10 to 268 

1.33; P < 0.001) (Table 2 and Figure 1B). In addition, MICB98 mismatches were 269 

associated with a higher rate of relapse (HR, 1.42; 95% CI, 1.05 to 1.93; P = 0.024).  270 

Knowing that amino acid position 98 is involved in the binding of MICB to the 271 

UL16 protein of the CMV, we assessed the interaction between MICB98 mismatches 272 

and the CMV status in their effect on clinical outcomes. For this purpose, we 273 

performed multivariate analyses and included an interaction factor in the model. 274 

Table 3 represents the risks of various clinical outcomes associated with (1) MICB98 275 

mismatches when donor and recipients are negative for CMV, (2) CMV positivity in 276 

donor and/or recipients when MICB98 is matched and (3) the interaction of MICB98 277 

matching with CMV status. A statistically significant value for the interaction factor 278 

indicates that the effect of MICB98 matching depends on the category of CMV status 279 

and vice versa. When the hazard ratio of the interaction factor is < 1 or >1, the 280 

hazard ratio of a variable (here, MICB98 matching or CMV status) is, respectively, 281 

lower or higher in the category at risk of its interacting variable compared to the 282 

reference category.  For example, when the hazard ratio of the interaction factor is < 283 

1, the hazard ratio of MICB98 mismatches is lower when the donor and/or recipient 284 

are positive for CMV (category at risk of the CMV status variable) and higher when 285 

both the donor and recipient are negative for CMV (reference category of the CMV 286 

status variable). 287 

For acute GVHD III-IV, the hazard ratio of the interaction was < 1 and was 288 

statistically significant (hazard ratio for acute GVHD III-IV, 0.26; 95% CI, 0.17 to 0.40; 289 

P < 0.001), indicating that the effect of MICB98 mismatching on acute GVHD is more 290 

important when both the donor and the recipient are negative for CMV (acute GVHD 291 

III-IV hazard ratio, 3.63; 95% CI, 3.15 to 4.18; P< 0.001) compared to when the donor 292 
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and/or the recipient are positive for CMV (acute GVHD III-IV hazard ratio, 3.63 x 0.26 293 

= 0.94). This observation was confirmed by representing graphically cumulative 294 

incidences of acute GVHD III-IV in the above mentioned two CMV subgroups (Figure 295 

2A and 2B).  296 

For OS, the interaction between MICB98 mismatching and CMV status was 297 

statistically significant and was > 1 (hazard ratio, 1.53; 95% CI, 1.38 to 1.69; P < 298 

0.001). CMV positivity in the donor and/or recipient was associated with a slightly 299 

lower survival when MICB98 was matched (hazard ratio, 1.16; 95% CI, 1.14 to 1.19; 300 

P< 0.001). However, because of the positive interaction with MICB98 mismatches, 301 

this effect was higher when MICB98 was mismatched (hazard ratio 1.16 x 1.53 = 302 

1.77) (Table 3). The Kaplan-Meier estimates showing the higher impact of the CMV 303 

status on OS in MICB98 matched and mismatched groups are presented in Figures 304 

2C and 2D, respectively. In other words, the risk of death associated with CMV 305 

positivity in the donor and/or recipient is lower in MICB98 matched vs. mismatched 306 

groups. 307 

Finally, to assess whether MICB98 mismatches had a GVHD-independent 308 

effect on CMV infections in donor/recipients pairs at risk for CMV reactivation (i.e., 309 

the donor and/or recipient was positive for CMV pre-HCT), we performed a 310 

multivariate Fine and Gray analysis that included MICB98 matching as well as the 311 

presence/absence of acute GVHD grades III-IV and chronic GVHD as time-312 

dependent covariates in the model (Table 4). In accordance with the higher risk of 313 

death described above, MICB98 mismatches were associated with a higher 314 

incidence of CMV infections (hazard ratio, 1.84; 95% CI, 1.34 to 2.51; P < 0.001) 315 

(Table 4 and Figure 3). MICB98 mismatches were not associated with EBV or HHV6 316 

infections (Supplemental Table 1). 317 
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 318 

DISCUSSION 319 

This is the first study analyzing the role of MICB matching in transplantation 320 

(whether HCT or solid organ). 321 

Here we report that HCT from a MICB98 mismatched, but otherwise fully HLA 322 

10/10 and MICA matched donor, carries a significantly increased risk of acute and 323 

chronic GVHD. Interestingly, the effect on GVHD was not accompanied by a 324 

decreased relapse rate. This unusual observation may be attributed to the CMV 325 

status that is not independent of the MICB98 matching status. The significant 326 

interaction of MICB98 matching with CMV status (P < 0.001) indicates that the CMV 327 

status has a strong positive impact on relapse when MICB98 is mismatched (HR, 328 

0.77 x 2.61 = 2.01) (Table 3).   329 

CMV biology has been known to be linked to MICB for more than 15 years. 330 

Initially, Cosman et al. demonstrated that CMV infected cells can evade the immune 331 

system by the retention of MICB and ULBP-1 and -2 antigens in the cell via binding to 332 

the CMV protein UL16 36. This interaction hampers the ability of newly synthesized 333 

MICB proteins to mature and transit the secretory pathway 53. By dissecting the 334 

molecular basis of MICB binding to UL16, Spreu et al. reported that the UL16-MICB 335 

interaction is dependent on helical structures of the MICB α2 domain 54.  Finally, 336 

more recently, it was shown that UL16 binding was not equivalent for all MICB 337 

alleles. The MICB*008 allele in particular was shown to have a decreased binding 338 

activity compared to other alleles that do not have a methionine at position 98 in the 339 

MICB α2 domain 37. Importantly, position 98 is the only polymorphic position of MICB 340 

that is known to be in direct contact with UL16 38. It is therefore not surprising that 341 

mismatches at this position have less impact on acute GVHD in the presence of CMV 342 
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than in its absence. In the absence of CMV, the MICB98 polymorphism may indeed 343 

not be able to modulate the expression of MICB at the cell surface through interaction 344 

with UL16 and consequently is not able to influence the alloreactivity that remains 345 

higher in the mismatch than in the matched situation. Another explanation for the 346 

higher MICB-mediated alloreactivity in the absence of CMV may be the absence of T-347 

cell exhaustion, that is known to be induced by CMV positivity 55. Ultimately, this 348 

observation demonstrates that to lower the risk of acute GVHD in the absence of 349 

CMV (donor and recipient seronegative), a MICB98 matched donor is a better choice 350 

than a MICB98 mismatched donor.  351 

CMV causes mortality in two ways: (1) directly by causing viral diseases, such 352 

as pneumonitis, a situation that is becoming rare (viral diseases represent less than 353 

2% of deaths) thanks to preemptive therapies, or (2) indirectly by clinical events 354 

associated with virus seropositivity or the development of viral infections that are 355 

independent of the viral disease itself 56. The indirect effects of CMV are recognized 356 

as a major cause of adverse outcomes after HCT, including GVHD and overall 357 

mortality 56-58. Our dataset showed that the CMV effect on overall survival is amplified 358 

in MICB98 mismatched HCT compared to MICB98 matched HCT, indicating that 359 

matching donors at this position could be a useful strategy to decrease the risk of 360 

death related to CMV. Because MICB98 mismatches were further shown to be 361 

associated with CMV infection episodes, and this independently of the occurrence of 362 

GVHD, deaths related to CMV may be due to CMV infections. 363 

Collectively, these results suggest that pre-transplantation MICB98 typing may 364 

help in lowering the risk of both GVHD- and CMV-related mortality. In the absence of 365 

CMV, matching MICB98 provides a means to lower the incidence of GVHD, whereas 366 

in the presence of CMV, it helps improve overall survival. Fortunately, the level of 367 
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MICB98 mismatching is only 5.9% in HLA 10/10 matched donor/patient pairs that are 368 

also matched for MICA; although in absolute terms, this represents several thousand 369 

patients per year. Therefore, finding a MICB98-matched donor should be relatively 370 

easy in clinical practice. 371 
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FIGURE LEGENDS 668 

 669 

Figure 1. Effect of MICB98 matching on severe acute and chronic GVHD 670 

The cumulative incidences of grades III-IV acute (panel A) and chronic GVHD (Panel 671 

B) are shown for MICB98 mismatched (1) versus matched (2) patients. 672 

 673 

Figure 2. Effect of MICB98 matching and CMV status on GVHD and Overall 674 

Survival.  675 

Panels A and B represent the cumulative incidences of grades III-IV acute GVHD in 676 

HCT with donors and recipients negative for CMV (A) and HCT with donors and/or 677 

recipients positive for CMV (B). Panels C and D show the Kaplan-Meier estimates of 678 

overall survival in MICB98 matched (C) and mismatched (D) transplants. 679 

 680 

Figure 3. Effect of MICB98 matching on CMV reactivation/infection 681 

The cumulative incidences of post-transplant CMV infection episodes in MICB98 682 

mismatched (1) versus matched (2) patients are shown. 683 

  684 
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TABLES 685 

Table 1. Demographics of the Study Population 686 
 Total transplants MICB 98 

matched 
transplants 

MICB 98 
mismatched 
transplants 

P-value* 

 (n= 943) (n=887) (n=56)  

Transplantation centers†    0.16 

1 106 (11.2%) 100 (11.3%) 6 (10.7%)  
2 158 (16.8%) 142 (16%) 16 (28.6%)  
3 114 (12.1%) 109 (12.3%) 5 (8.9%)  
4 157 (16.6%) 153 (17.2%) 4 (7.1%)  
5 48 (5.1%) 47 (5.3%) 1 (1.8%)  
6 99 (10.5%) 90 (10.1%) 9 (16.1%)  
7 96 (10.2%) 91 (10.3%) 5 (8.9%)  
8 49 (5.2%) 46 (5.2%) 3 (5.4%)  
9 116 (12.3%) 109 (12.3%) 7 (12.5%)  

     

Age at transplant (years)    0.034 
0-17 58 (6.2%) 57 (6.4%) 1 (1.8%)  
18-49 360 (38.2%) 333 (37.5%) 27 (48.2%)  
50-64 458 (48.6%) 430 (48.5%) 28 (50%)  
65 or older 67 (7.1%) 67 (7.6%) 0 (0%)  

     

Year of transplantation    0.97 
2005–2008 360 (38.2%) 338 (38.1%) 22 (39.3%)  
2009-2013 583 (61.8%) 549 (61.9%) 34 (60.7%)  

     

Patient–donor sex    1.00 
Male–Female 159 (16.9%) 150 (16.9%) 9 (16.1%)  
Other combinations 779 (82.6%) 732 (82.5%) 47 (83.9%)  
Missing 5 (0.5%) 5 (0.6%) 0 (0%)  

     

Patient-donor CMV status    0.082 
neg.-neg. 357 (37.9%) 329 (37.1%) 28 (50%)  
pos.-neg./neg.-pos./pos.-pos. 560 (59.4%) 533 (60.1%) 27 (48.2%)  
Missing 26 (2.7%) 25 (2.8%) 1 (1.8%)  

     

Source of cells    1.00 
Bone marrow 195 (20.7%) 183 (20.6%) 12 (21.4%)  
Peripheral blood stem cells 748 (79.3%) 704 (79.4%) 44 (78.6%)  

     

Conditioning regimen    0.79 
Non-myeloablative/reduced-intensity 635 (67.3%) 598 (67.4%) 37 (66.1%)  
Myeloablative without total-body irradiation 140 (14.8%) 130 (14.7%) 10 (17.9%)  
Myeloablative with total-body irradiation 167 (17.7%) 158 (17.8%) 9 (16.1%)  
Missing 1 (0.1%) 1 (0.1%) 0 (0%)  

     

GvHD prophylaxis    0.49 
Cyclosporin only 183 (19.4%) 171 (19.3%) 12 (21.4%)  
Cyclosporin and Methotrexate 243 (25.8%) 231 (26%) 12 (21.4%)  
Cyclosporin and Mycophenolate 360 (38.2%) 335 (37.8%) 25 (44.6%)  
Other combinations 135 (14.3%) 130 (14.7%) 5 (8.9%)  
Missing 22 (2.3%) 20 (2.2%) 2 (3.6%)  

     

In vivo T-cell depletion ‡    0.34 
No 231 (24.5%) 214 (24.1%) 17 (30.3%)  
Yes 690 (73.2%) 653 (73.6%) 37 (66.1%)  
Missing 22 (2.3%) 20 (2.3%) 2 (3.6%)  

     

Disease    0.99 
Acute myeloid leukemia 240 (25.5%) 225 (25.4%) 15 (26.8%)  
Chronic myeloid leukemia 34 (3.6%) 32 (3.6%) 2 (3.6%)  
Acute lymphoblastic leukemia 121 (12.8%) 114 (12.9%) 7 (12.5%)  
Myelodysplastic syndrome 161 (17.1%) 152 (17.1%) 9 (16.1%)  
Non-Hodgkin lymphoma 127 (13.5%) 121 (13.6%) 6 (10.7%)  
Others § 260 (27.6%) 243 (27.4%) 17 (30.4%)  

     

Disease stage at transplantation ¶    0.97 
Early 371 (39.3%) 348 (39.2%) 23 (41.1%)  
Late 507 (53.8%) 477 (53.8%) 30 (53.6%)  
Not applicable‖ 44 (4.7%) 42 (4.7%) 2 (3.6%)  
Missing 21 (2.2%) 20 (2.3%) 1 (1.8%)  

     

Time until treatment    0.65 
<12 months 440 (46.7%) 416 (46.9%) 24 (42.9%)  
>12 months 503 (53.3%) 471 (53.1%) 32 (57.1%)  

     

Non-Permissive HLA-DPB1 matching**    0.42 
Matched 420 (44.5%) 392 (44.2%) 28 (50%)  
Mismatched 394 (41.8%) 374 (42.2%) 20 (35.7%)  
Missing 129 (13.7%) 121 (13.6%) 8 (14.3%)  

 687 
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The results are presented as the number of patients and corresponding percentages of the 688 

study population.  HLA: Human Leukocyte Antigen. All clinical variables of the table were 689 

used for adjustment in the multivariate models. 690 

* P-values were determined with Pearson’s Chi square test or Fisher’s exact test for small 691 

sample sizes 692 

† Patients received their transplant in six centers of the Francophone Society of Bone 693 

Marrow Transplantation and Cell Therapies (SFGM-TC) (1 to 6; N =682) and in three Dutch 694 

centers that are part of the Europdonor operated by the Matchis Foundation network (7 to 9; 695 

N=261). 696 

‡ in vivo T-cell depletion was performed by the addition of anti-thymocyte globulin (ATG) or 697 

Alemtuzumab to the conditioning regimen. 698 

§ Other diseases include multiple myeloma, Hodgkin lymphoma, Fanconi anemia, aplastic 699 

anemia, chronic lymphocytic leukemia, plasma cell leukemia, other acute leukemias, solid 700 

tumors (not breast), hemophagocytosis and inherited disorders. 701 

¶ Early corresponds to diseases in the first complete remission or in the chronic phase. Late 702 

corresponds to second or higher complete remissions, accelerated phases, partial 703 

remissions, progressions, primary induction failures, relapses or stable diseases. Not 704 

applicable corresponds to bone marrow failure (aplastic anemia, Fanconi anemia), inherited 705 

disorders, hemophagocytosis and solid tumors. 706 

** HLA-DPB1 matching was defined at the T-cell-epitope matching level 49 with typing data at 707 

2nd field resolution following the World Health Organization official nomenclature . 708 

  709 
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Table 2. Analysis of the Impact of MICB Mismatches at amino acid position 98 on 710 

Clinical Outcomes after Multivariate Modeling* 711 

 hazard ratio (95% CI) P-value 

Acute GVHD II-IV  1.20 (1.15-1.24) <0.001 

Acute GVHD III-IV  2.28 (1.56-3.34) <0.001 

Chronic GVHD  1.21 (1.10-1.33) <0.001 

Relapse†  1.42 (1.05-1.93) 0.024 

Overall survival  1.01 (0.84-1.20) 0.93 

Relapse-free survival  0.98 (0.91-1.06) 0.63 

Non-Relapse Mortality  0.62 (0.37-1.04) 0.071 

Results are presented as Hazard Ratios with 95% confidence intervals (CI). GVHD: Graft-712 

versus-host disease. * All models were adjusted for patient’s age, patient-donor sex, patient-713 

donor serological status for cytomegalovirus, year of transplantation, time to transplantation, 714 

transplantation center, source of stem cells, conditioning regimen, GVHD prophylaxis, 715 

treatment with anti-thymocyte globulin or Alemtuzumab, HLA-DPB1 matching status, disease 716 

category and severity at transplantation. † Transplantations performed for non-malignant 717 

diseases were excluded from the analysis. 718 

 719 
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Table 3. Analysis of the Impact of MICB Mismatches at position 98, CMV status and 721 

their interaction on Clinical Outcomes after Multivariate Modeling* 722 

Outcomes and risk factors hazard ratio (95% CI) P-value 

Acute GVHD II-IV   

      MICB98 matching (mismatches) 1.47 (1.05-2.07) 0.025 

      CMV status (D+/R- or D-/R+ or D+/R+)‡ 1.18 (0.92-1.51) 0.2 

      Interaction: MICB98 matching X CMV status 0.57 (0.29-1.10) 0.095 

Acute GVHD III-IV   

      MICB98 matching (mismatches) 3.63 (3.15-4.18) < 0.001 

      CMV status (D+/R- or D-/R+ or D+/R+) 1.50 (1.15-1.96) 0.003 

      Interaction: MICB98 matching X CMV status 0.26 (0.17-0.40) < 0.001 

Chronic GVHD   

      MICB98 matching (mismatches) 1.26 (1.25-1.27) < 0.001 

      CMV status (D+/R- or D-/R+ or D+/R+) 1.34 (1.15-1.56) < 0.001 

      Interaction: MICB98 matching X CMV status 0.91 (0.70-1.18) 0.48 

Relapse
†
   

      MICB98 matching (mismatches) 0.89 (0.78-1.01) 0.073 

      CMV status (D+/R- or D-/R+ or D+/R+) 0.77 (0.70-0.84) < 0.001 

      Interaction: MICB98 matching X CMV status 2.61 (1.79-3.82) < 0.001 

Overall survival   

      MICB98 matching (mismatches) 0.80 (0.64-1.00) 0.054 

      CMV status (D+/R- or D-/R+ or D+/R+) 1.16 (1.14-1.19) < 0.001 

      Interaction: MICB98 matching X CMV status 1.53 (1.38-1.69) < 0.001 

Relapse-free survival   

      MICB98 matching (mismatches) 0.78 (0.70-0.86) < 0.001 

      CMV status (D+/R- or D-/R+ or D+/R+) 1.09 (1.05-1.13) < 0.001 

      Interaction: MICB98 matching X CMV status 1.57 (1.45-1.70) < 0.001 

Non-relapse mortality   

      MICB98 matching (mismatches) 1.14 (0.46-2.86) 0.78 

      CMV status (D+/R- or D-/R+ or D+/R+) 1.38 (1.12-1.70) 0.003 

      Interaction: MICB98 matching X CMV status 0.41 (0.22-0.76) 0.005 

Results are presented as Hazard Ratios with 95% confidence intervals (CI). GVHD: Graft-723 

versus-host disease. * All models were adjusted for patient’s age, patient-donor sex, patient-724 

donor serological status for cytomegalovirus, year of transplantation, time to transplantation, 725 

transplantation center, source of stem cells, conditioning regimen, GVHD prophylaxis, 726 

treatment with anti-thymocyte globulin or Alemtuzumab, HLA-DPB1 matching status, disease 727 

category and severity at transplantation. † Transplantations performed for non-malignant 728 

diseases were excluded from the analysis. ‡ D and R stand for donor and recipient, 729 

respectively. The reference category for the CMV status is D-/R-.  730 
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Table 4. Effect of GVHD and MICB98 matching on CMV infections 731 
 732 
 hazard ratio (95% CI)* P-value 

GVHD   
    Chronic   
        Absent (n=307) Ref. - 
        Present (n=169) 0.99 (0.83-1.19) 1.05 
    Acute III-IV   
        Absent (n=388) Ref. - 
        Present (n=78) 1.12997 (1.1290-1.13) < 0.001 

MICB98 matching   
Matched (n=437) Ref. - 
Mismatched (n=19) 1.84 (1.34-2.51) < 0.001 

Only the pairs in which the donor and/or the recipient was/were positive for CMV pre-733 

HCT were included in the analysis. The results are presented as Hazard Ratios with 734 

95% confidence intervals (CIs). GVHD: Graft-versus-host disease. Ref.: Reference 735 

category. * Multivariate Fine and Gray model including MICB98 matching, acute 736 

GVHD III-IV and chronic GVHD as time-dependent covariates in the model. In 737 

addition, the model was adjusted for patient’s age, patient-donor sex, patient-donor 738 

serological status for cytomegalovirus, year of transplantation, time to transplantation, 739 

transplantation center, source of stem cells, conditioning regimen, GVHD prophylaxis, 740 

treatment with anti-thymocyte globulin or Alemtuzumab, HLA-DPB1 matching status, 741 

disease category and severity at transplantation. 742 
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